xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision d0b73b48)
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/thread_info.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 
12 #include <asm/processor.h>
13 #include <asm/pgtable.h>
14 #include <asm/msr.h>
15 #include <asm/bugs.h>
16 #include <asm/cpu.h>
17 
18 #ifdef CONFIG_X86_64
19 #include <linux/topology.h>
20 #include <asm/numa_64.h>
21 #endif
22 
23 #include "cpu.h"
24 
25 #ifdef CONFIG_X86_LOCAL_APIC
26 #include <asm/mpspec.h>
27 #include <asm/apic.h>
28 #endif
29 
30 static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
31 {
32 	u64 misc_enable;
33 
34 	/* Unmask CPUID levels if masked: */
35 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
36 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
37 
38 		if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
39 			misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
40 			wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
41 			c->cpuid_level = cpuid_eax(0);
42 			get_cpu_cap(c);
43 		}
44 	}
45 
46 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
47 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
48 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
49 
50 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
51 		unsigned lower_word;
52 
53 		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
54 		/* Required by the SDM */
55 		sync_core();
56 		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
57 	}
58 
59 	/*
60 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
61 	 *
62 	 * A race condition between speculative fetches and invalidating
63 	 * a large page.  This is worked around in microcode, but we
64 	 * need the microcode to have already been loaded... so if it is
65 	 * not, recommend a BIOS update and disable large pages.
66 	 */
67 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
68 	    c->microcode < 0x20e) {
69 		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
70 		clear_cpu_cap(c, X86_FEATURE_PSE);
71 	}
72 
73 #ifdef CONFIG_X86_64
74 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
75 #else
76 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
77 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
78 		c->x86_cache_alignment = 128;
79 #endif
80 
81 	/* CPUID workaround for 0F33/0F34 CPU */
82 	if (c->x86 == 0xF && c->x86_model == 0x3
83 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
84 		c->x86_phys_bits = 36;
85 
86 	/*
87 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
88 	 * with P/T states and does not stop in deep C-states.
89 	 *
90 	 * It is also reliable across cores and sockets. (but not across
91 	 * cabinets - we turn it off in that case explicitly.)
92 	 */
93 	if (c->x86_power & (1 << 8)) {
94 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
95 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
96 		if (!check_tsc_unstable())
97 			sched_clock_stable = 1;
98 	}
99 
100 	/*
101 	 * There is a known erratum on Pentium III and Core Solo
102 	 * and Core Duo CPUs.
103 	 * " Page with PAT set to WC while associated MTRR is UC
104 	 *   may consolidate to UC "
105 	 * Because of this erratum, it is better to stick with
106 	 * setting WC in MTRR rather than using PAT on these CPUs.
107 	 *
108 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
109 	 */
110 	if (c->x86 == 6 && c->x86_model < 15)
111 		clear_cpu_cap(c, X86_FEATURE_PAT);
112 
113 #ifdef CONFIG_KMEMCHECK
114 	/*
115 	 * P4s have a "fast strings" feature which causes single-
116 	 * stepping REP instructions to only generate a #DB on
117 	 * cache-line boundaries.
118 	 *
119 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
120 	 * (model 2) with the same problem.
121 	 */
122 	if (c->x86 == 15) {
123 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
124 
125 		if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
126 			printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
127 
128 			misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
129 			wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
130 		}
131 	}
132 #endif
133 
134 	/*
135 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
136 	 * clear the fast string and enhanced fast string CPU capabilities.
137 	 */
138 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
139 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
140 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
141 			printk(KERN_INFO "Disabled fast string operations\n");
142 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
143 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
144 		}
145 	}
146 }
147 
148 #ifdef CONFIG_X86_32
149 /*
150  *	Early probe support logic for ppro memory erratum #50
151  *
152  *	This is called before we do cpu ident work
153  */
154 
155 int __cpuinit ppro_with_ram_bug(void)
156 {
157 	/* Uses data from early_cpu_detect now */
158 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
159 	    boot_cpu_data.x86 == 6 &&
160 	    boot_cpu_data.x86_model == 1 &&
161 	    boot_cpu_data.x86_mask < 8) {
162 		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
163 		return 1;
164 	}
165 	return 0;
166 }
167 
168 #ifdef CONFIG_X86_F00F_BUG
169 static void __cpuinit trap_init_f00f_bug(void)
170 {
171 	__set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
172 
173 	/*
174 	 * Update the IDT descriptor and reload the IDT so that
175 	 * it uses the read-only mapped virtual address.
176 	 */
177 	idt_descr.address = fix_to_virt(FIX_F00F_IDT);
178 	load_idt(&idt_descr);
179 }
180 #endif
181 
182 static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
183 {
184 	/* calling is from identify_secondary_cpu() ? */
185 	if (!c->cpu_index)
186 		return;
187 
188 	/*
189 	 * Mask B, Pentium, but not Pentium MMX
190 	 */
191 	if (c->x86 == 5 &&
192 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
193 	    c->x86_model <= 3) {
194 		/*
195 		 * Remember we have B step Pentia with bugs
196 		 */
197 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
198 				    "with B stepping processors.\n");
199 	}
200 }
201 
202 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
203 {
204 	unsigned long lo, hi;
205 
206 #ifdef CONFIG_X86_F00F_BUG
207 	/*
208 	 * All current models of Pentium and Pentium with MMX technology CPUs
209 	 * have the F0 0F bug, which lets nonprivileged users lock up the
210 	 * system.
211 	 * Note that the workaround only should be initialized once...
212 	 */
213 	c->f00f_bug = 0;
214 	if (!paravirt_enabled() && c->x86 == 5) {
215 		static int f00f_workaround_enabled;
216 
217 		c->f00f_bug = 1;
218 		if (!f00f_workaround_enabled) {
219 			trap_init_f00f_bug();
220 			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
221 			f00f_workaround_enabled = 1;
222 		}
223 	}
224 #endif
225 
226 	/*
227 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
228 	 * model 3 mask 3
229 	 */
230 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
231 		clear_cpu_cap(c, X86_FEATURE_SEP);
232 
233 	/*
234 	 * P4 Xeon errata 037 workaround.
235 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
236 	 */
237 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
238 		rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
239 		if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
240 			printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
241 			printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
242 			lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
243 			wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
244 		}
245 	}
246 
247 	/*
248 	 * See if we have a good local APIC by checking for buggy Pentia,
249 	 * i.e. all B steppings and the C2 stepping of P54C when using their
250 	 * integrated APIC (see 11AP erratum in "Pentium Processor
251 	 * Specification Update").
252 	 */
253 	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
254 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
255 		set_cpu_cap(c, X86_FEATURE_11AP);
256 
257 
258 #ifdef CONFIG_X86_INTEL_USERCOPY
259 	/*
260 	 * Set up the preferred alignment for movsl bulk memory moves
261 	 */
262 	switch (c->x86) {
263 	case 4:		/* 486: untested */
264 		break;
265 	case 5:		/* Old Pentia: untested */
266 		break;
267 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
268 		movsl_mask.mask = 7;
269 		break;
270 	case 15:	/* P4 is OK down to 8-byte alignment */
271 		movsl_mask.mask = 7;
272 		break;
273 	}
274 #endif
275 
276 #ifdef CONFIG_X86_NUMAQ
277 	numaq_tsc_disable();
278 #endif
279 
280 	intel_smp_check(c);
281 }
282 #else
283 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
284 {
285 }
286 #endif
287 
288 static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
289 {
290 #ifdef CONFIG_NUMA
291 	unsigned node;
292 	int cpu = smp_processor_id();
293 
294 	/* Don't do the funky fallback heuristics the AMD version employs
295 	   for now. */
296 	node = numa_cpu_node(cpu);
297 	if (node == NUMA_NO_NODE || !node_online(node)) {
298 		/* reuse the value from init_cpu_to_node() */
299 		node = cpu_to_node(cpu);
300 	}
301 	numa_set_node(cpu, node);
302 #endif
303 }
304 
305 /*
306  * find out the number of processor cores on the die
307  */
308 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
309 {
310 	unsigned int eax, ebx, ecx, edx;
311 
312 	if (c->cpuid_level < 4)
313 		return 1;
314 
315 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
316 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
317 	if (eax & 0x1f)
318 		return (eax >> 26) + 1;
319 	else
320 		return 1;
321 }
322 
323 static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
324 {
325 	/* Intel VMX MSR indicated features */
326 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
327 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
328 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
329 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
330 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
331 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
332 
333 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
334 
335 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
336 	clear_cpu_cap(c, X86_FEATURE_VNMI);
337 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
338 	clear_cpu_cap(c, X86_FEATURE_EPT);
339 	clear_cpu_cap(c, X86_FEATURE_VPID);
340 
341 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
342 	msr_ctl = vmx_msr_high | vmx_msr_low;
343 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
344 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
345 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
346 		set_cpu_cap(c, X86_FEATURE_VNMI);
347 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
348 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
349 		      vmx_msr_low, vmx_msr_high);
350 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
351 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
352 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
353 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
354 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
355 			set_cpu_cap(c, X86_FEATURE_EPT);
356 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
357 			set_cpu_cap(c, X86_FEATURE_VPID);
358 	}
359 }
360 
361 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
362 {
363 	unsigned int l2 = 0;
364 
365 	early_init_intel(c);
366 
367 	intel_workarounds(c);
368 
369 	/*
370 	 * Detect the extended topology information if available. This
371 	 * will reinitialise the initial_apicid which will be used
372 	 * in init_intel_cacheinfo()
373 	 */
374 	detect_extended_topology(c);
375 
376 	l2 = init_intel_cacheinfo(c);
377 	if (c->cpuid_level > 9) {
378 		unsigned eax = cpuid_eax(10);
379 		/* Check for version and the number of counters */
380 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
381 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
382 	}
383 
384 	if (cpu_has_xmm2)
385 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
386 	if (cpu_has_ds) {
387 		unsigned int l1;
388 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
389 		if (!(l1 & (1<<11)))
390 			set_cpu_cap(c, X86_FEATURE_BTS);
391 		if (!(l1 & (1<<12)))
392 			set_cpu_cap(c, X86_FEATURE_PEBS);
393 	}
394 
395 	if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
396 		set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
397 
398 #ifdef CONFIG_X86_64
399 	if (c->x86 == 15)
400 		c->x86_cache_alignment = c->x86_clflush_size * 2;
401 	if (c->x86 == 6)
402 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
403 #else
404 	/*
405 	 * Names for the Pentium II/Celeron processors
406 	 * detectable only by also checking the cache size.
407 	 * Dixon is NOT a Celeron.
408 	 */
409 	if (c->x86 == 6) {
410 		char *p = NULL;
411 
412 		switch (c->x86_model) {
413 		case 5:
414 			if (l2 == 0)
415 				p = "Celeron (Covington)";
416 			else if (l2 == 256)
417 				p = "Mobile Pentium II (Dixon)";
418 			break;
419 
420 		case 6:
421 			if (l2 == 128)
422 				p = "Celeron (Mendocino)";
423 			else if (c->x86_mask == 0 || c->x86_mask == 5)
424 				p = "Celeron-A";
425 			break;
426 
427 		case 8:
428 			if (l2 == 128)
429 				p = "Celeron (Coppermine)";
430 			break;
431 		}
432 
433 		if (p)
434 			strcpy(c->x86_model_id, p);
435 	}
436 
437 	if (c->x86 == 15)
438 		set_cpu_cap(c, X86_FEATURE_P4);
439 	if (c->x86 == 6)
440 		set_cpu_cap(c, X86_FEATURE_P3);
441 #endif
442 
443 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
444 		/*
445 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
446 		 * detection.
447 		 */
448 		c->x86_max_cores = intel_num_cpu_cores(c);
449 #ifdef CONFIG_X86_32
450 		detect_ht(c);
451 #endif
452 	}
453 
454 	/* Work around errata */
455 	srat_detect_node(c);
456 
457 	if (cpu_has(c, X86_FEATURE_VMX))
458 		detect_vmx_virtcap(c);
459 
460 	/*
461 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
462 	 * x86_energy_perf_policy(8) is available to change it at run-time
463 	 */
464 	if (cpu_has(c, X86_FEATURE_EPB)) {
465 		u64 epb;
466 
467 		rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
468 		if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
469 			printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
470 				" Set to 'normal', was 'performance'\n"
471 				"ENERGY_PERF_BIAS: View and update with"
472 				" x86_energy_perf_policy(8)\n");
473 			epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
474 			wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
475 		}
476 	}
477 }
478 
479 #ifdef CONFIG_X86_32
480 static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
481 {
482 	/*
483 	 * Intel PIII Tualatin. This comes in two flavours.
484 	 * One has 256kb of cache, the other 512. We have no way
485 	 * to determine which, so we use a boottime override
486 	 * for the 512kb model, and assume 256 otherwise.
487 	 */
488 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
489 		size = 256;
490 	return size;
491 }
492 #endif
493 
494 #define TLB_INST_4K	0x01
495 #define TLB_INST_4M	0x02
496 #define TLB_INST_2M_4M	0x03
497 
498 #define TLB_INST_ALL	0x05
499 #define TLB_INST_1G	0x06
500 
501 #define TLB_DATA_4K	0x11
502 #define TLB_DATA_4M	0x12
503 #define TLB_DATA_2M_4M	0x13
504 #define TLB_DATA_4K_4M	0x14
505 
506 #define TLB_DATA_1G	0x16
507 
508 #define TLB_DATA0_4K	0x21
509 #define TLB_DATA0_4M	0x22
510 #define TLB_DATA0_2M_4M	0x23
511 
512 #define STLB_4K		0x41
513 
514 static const struct _tlb_table intel_tlb_table[] __cpuinitconst = {
515 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
516 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
517 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
518 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
519 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
520 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
521 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
522 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
523 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
524 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
525 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
526 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
527 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
528 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
529 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
530 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
531 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
532 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
533 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
534 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
535 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
536 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
537 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
538 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
539 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
540 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
541 	{ 0x00, 0, 0 }
542 };
543 
544 static void __cpuinit intel_tlb_lookup(const unsigned char desc)
545 {
546 	unsigned char k;
547 	if (desc == 0)
548 		return;
549 
550 	/* look up this descriptor in the table */
551 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
552 			intel_tlb_table[k].descriptor != 0; k++)
553 		;
554 
555 	if (intel_tlb_table[k].tlb_type == 0)
556 		return;
557 
558 	switch (intel_tlb_table[k].tlb_type) {
559 	case STLB_4K:
560 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
561 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
562 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
563 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
564 		break;
565 	case TLB_INST_ALL:
566 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
567 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
568 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
569 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
570 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
571 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
572 		break;
573 	case TLB_INST_4K:
574 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
575 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
576 		break;
577 	case TLB_INST_4M:
578 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
579 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
580 		break;
581 	case TLB_INST_2M_4M:
582 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
583 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
584 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
585 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
586 		break;
587 	case TLB_DATA_4K:
588 	case TLB_DATA0_4K:
589 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
590 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
591 		break;
592 	case TLB_DATA_4M:
593 	case TLB_DATA0_4M:
594 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
595 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
596 		break;
597 	case TLB_DATA_2M_4M:
598 	case TLB_DATA0_2M_4M:
599 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
600 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
601 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
602 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
603 		break;
604 	case TLB_DATA_4K_4M:
605 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
606 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
607 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
608 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
609 		break;
610 	}
611 }
612 
613 static void __cpuinit intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
614 {
615 	switch ((c->x86 << 8) + c->x86_model) {
616 	case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
617 	case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
618 	case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
619 	case 0x61d: /* six-core 45 nm xeon "Dunnington" */
620 		tlb_flushall_shift = -1;
621 		break;
622 	case 0x61a: /* 45 nm nehalem, "Bloomfield" */
623 	case 0x61e: /* 45 nm nehalem, "Lynnfield" */
624 	case 0x625: /* 32 nm nehalem, "Clarkdale" */
625 	case 0x62c: /* 32 nm nehalem, "Gulftown" */
626 	case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
627 	case 0x62f: /* 32 nm Xeon E7 */
628 		tlb_flushall_shift = 6;
629 		break;
630 	case 0x62a: /* SandyBridge */
631 	case 0x62d: /* SandyBridge, "Romely-EP" */
632 		tlb_flushall_shift = 5;
633 		break;
634 	case 0x63a: /* Ivybridge */
635 		tlb_flushall_shift = 1;
636 		break;
637 	default:
638 		tlb_flushall_shift = 6;
639 	}
640 }
641 
642 static void __cpuinit intel_detect_tlb(struct cpuinfo_x86 *c)
643 {
644 	int i, j, n;
645 	unsigned int regs[4];
646 	unsigned char *desc = (unsigned char *)regs;
647 
648 	if (c->cpuid_level < 2)
649 		return;
650 
651 	/* Number of times to iterate */
652 	n = cpuid_eax(2) & 0xFF;
653 
654 	for (i = 0 ; i < n ; i++) {
655 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
656 
657 		/* If bit 31 is set, this is an unknown format */
658 		for (j = 0 ; j < 3 ; j++)
659 			if (regs[j] & (1 << 31))
660 				regs[j] = 0;
661 
662 		/* Byte 0 is level count, not a descriptor */
663 		for (j = 1 ; j < 16 ; j++)
664 			intel_tlb_lookup(desc[j]);
665 	}
666 	intel_tlb_flushall_shift_set(c);
667 }
668 
669 static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
670 	.c_vendor	= "Intel",
671 	.c_ident	= { "GenuineIntel" },
672 #ifdef CONFIG_X86_32
673 	.c_models = {
674 		{ .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
675 		  {
676 			  [0] = "486 DX-25/33",
677 			  [1] = "486 DX-50",
678 			  [2] = "486 SX",
679 			  [3] = "486 DX/2",
680 			  [4] = "486 SL",
681 			  [5] = "486 SX/2",
682 			  [7] = "486 DX/2-WB",
683 			  [8] = "486 DX/4",
684 			  [9] = "486 DX/4-WB"
685 		  }
686 		},
687 		{ .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
688 		  {
689 			  [0] = "Pentium 60/66 A-step",
690 			  [1] = "Pentium 60/66",
691 			  [2] = "Pentium 75 - 200",
692 			  [3] = "OverDrive PODP5V83",
693 			  [4] = "Pentium MMX",
694 			  [7] = "Mobile Pentium 75 - 200",
695 			  [8] = "Mobile Pentium MMX"
696 		  }
697 		},
698 		{ .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
699 		  {
700 			  [0] = "Pentium Pro A-step",
701 			  [1] = "Pentium Pro",
702 			  [3] = "Pentium II (Klamath)",
703 			  [4] = "Pentium II (Deschutes)",
704 			  [5] = "Pentium II (Deschutes)",
705 			  [6] = "Mobile Pentium II",
706 			  [7] = "Pentium III (Katmai)",
707 			  [8] = "Pentium III (Coppermine)",
708 			  [10] = "Pentium III (Cascades)",
709 			  [11] = "Pentium III (Tualatin)",
710 		  }
711 		},
712 		{ .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
713 		  {
714 			  [0] = "Pentium 4 (Unknown)",
715 			  [1] = "Pentium 4 (Willamette)",
716 			  [2] = "Pentium 4 (Northwood)",
717 			  [4] = "Pentium 4 (Foster)",
718 			  [5] = "Pentium 4 (Foster)",
719 		  }
720 		},
721 	},
722 	.c_size_cache	= intel_size_cache,
723 #endif
724 	.c_detect_tlb	= intel_detect_tlb,
725 	.c_early_init   = early_init_intel,
726 	.c_init		= init_intel,
727 	.c_x86_vendor	= X86_VENDOR_INTEL,
728 };
729 
730 cpu_dev_register(intel_cpu_dev);
731 
732