xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision cef69974)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/thread_info.h>
11 #include <linux/init.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 
15 #include <asm/cpufeature.h>
16 #include <asm/msr.h>
17 #include <asm/bugs.h>
18 #include <asm/cpu.h>
19 #include <asm/intel-family.h>
20 #include <asm/microcode_intel.h>
21 #include <asm/hwcap2.h>
22 #include <asm/elf.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/cmdline.h>
25 #include <asm/traps.h>
26 #include <asm/resctrl.h>
27 #include <asm/numa.h>
28 #include <asm/thermal.h>
29 
30 #ifdef CONFIG_X86_64
31 #include <linux/topology.h>
32 #endif
33 
34 #include "cpu.h"
35 
36 #ifdef CONFIG_X86_LOCAL_APIC
37 #include <asm/mpspec.h>
38 #include <asm/apic.h>
39 #endif
40 
41 enum split_lock_detect_state {
42 	sld_off = 0,
43 	sld_warn,
44 	sld_fatal,
45 	sld_ratelimit,
46 };
47 
48 /*
49  * Default to sld_off because most systems do not support split lock detection.
50  * sld_state_setup() will switch this to sld_warn on systems that support
51  * split lock/bus lock detect, unless there is a command line override.
52  */
53 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
54 static u64 msr_test_ctrl_cache __ro_after_init;
55 
56 /*
57  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
58  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
59  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
60  */
61 static bool cpu_model_supports_sld __ro_after_init;
62 
63 /*
64  * Processors which have self-snooping capability can handle conflicting
65  * memory type across CPUs by snooping its own cache. However, there exists
66  * CPU models in which having conflicting memory types still leads to
67  * unpredictable behavior, machine check errors, or hangs. Clear this
68  * feature to prevent its use on machines with known erratas.
69  */
70 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
71 {
72 	switch (c->x86_model) {
73 	case INTEL_FAM6_CORE_YONAH:
74 	case INTEL_FAM6_CORE2_MEROM:
75 	case INTEL_FAM6_CORE2_MEROM_L:
76 	case INTEL_FAM6_CORE2_PENRYN:
77 	case INTEL_FAM6_CORE2_DUNNINGTON:
78 	case INTEL_FAM6_NEHALEM:
79 	case INTEL_FAM6_NEHALEM_G:
80 	case INTEL_FAM6_NEHALEM_EP:
81 	case INTEL_FAM6_NEHALEM_EX:
82 	case INTEL_FAM6_WESTMERE:
83 	case INTEL_FAM6_WESTMERE_EP:
84 	case INTEL_FAM6_SANDYBRIDGE:
85 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
86 	}
87 }
88 
89 static bool ring3mwait_disabled __read_mostly;
90 
91 static int __init ring3mwait_disable(char *__unused)
92 {
93 	ring3mwait_disabled = true;
94 	return 0;
95 }
96 __setup("ring3mwait=disable", ring3mwait_disable);
97 
98 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
99 {
100 	/*
101 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
102 	 * cpu model and family comparison.
103 	 */
104 	if (c->x86 != 6)
105 		return;
106 	switch (c->x86_model) {
107 	case INTEL_FAM6_XEON_PHI_KNL:
108 	case INTEL_FAM6_XEON_PHI_KNM:
109 		break;
110 	default:
111 		return;
112 	}
113 
114 	if (ring3mwait_disabled)
115 		return;
116 
117 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
118 	this_cpu_or(msr_misc_features_shadow,
119 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
120 
121 	if (c == &boot_cpu_data)
122 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
123 }
124 
125 /*
126  * Early microcode releases for the Spectre v2 mitigation were broken.
127  * Information taken from;
128  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
129  * - https://kb.vmware.com/s/article/52345
130  * - Microcode revisions observed in the wild
131  * - Release note from 20180108 microcode release
132  */
133 struct sku_microcode {
134 	u8 model;
135 	u8 stepping;
136 	u32 microcode;
137 };
138 static const struct sku_microcode spectre_bad_microcodes[] = {
139 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
140 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
141 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
142 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
144 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
145 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
146 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
147 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
148 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
149 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
150 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
151 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
152 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
153 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
154 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
155 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
156 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
157 	/* Observed in the wild */
158 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
159 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
160 };
161 
162 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
163 {
164 	int i;
165 
166 	/*
167 	 * We know that the hypervisor lie to us on the microcode version so
168 	 * we may as well hope that it is running the correct version.
169 	 */
170 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
171 		return false;
172 
173 	if (c->x86 != 6)
174 		return false;
175 
176 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
177 		if (c->x86_model == spectre_bad_microcodes[i].model &&
178 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
179 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
180 	}
181 	return false;
182 }
183 
184 static void early_init_intel(struct cpuinfo_x86 *c)
185 {
186 	u64 misc_enable;
187 
188 	/* Unmask CPUID levels if masked: */
189 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
190 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
191 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
192 			c->cpuid_level = cpuid_eax(0);
193 			get_cpu_cap(c);
194 		}
195 	}
196 
197 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
198 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
199 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
200 
201 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
202 		c->microcode = intel_get_microcode_revision();
203 
204 	/* Now if any of them are set, check the blacklist and clear the lot */
205 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
206 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
207 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
208 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
209 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
210 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
211 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
212 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
213 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
214 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
215 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
216 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
217 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
218 	}
219 
220 	/*
221 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
222 	 *
223 	 * A race condition between speculative fetches and invalidating
224 	 * a large page.  This is worked around in microcode, but we
225 	 * need the microcode to have already been loaded... so if it is
226 	 * not, recommend a BIOS update and disable large pages.
227 	 */
228 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
229 	    c->microcode < 0x20e) {
230 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
231 		clear_cpu_cap(c, X86_FEATURE_PSE);
232 	}
233 
234 #ifdef CONFIG_X86_64
235 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
236 #else
237 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
238 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
239 		c->x86_cache_alignment = 128;
240 #endif
241 
242 	/* CPUID workaround for 0F33/0F34 CPU */
243 	if (c->x86 == 0xF && c->x86_model == 0x3
244 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
245 		c->x86_phys_bits = 36;
246 
247 	/*
248 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
249 	 * with P/T states and does not stop in deep C-states.
250 	 *
251 	 * It is also reliable across cores and sockets. (but not across
252 	 * cabinets - we turn it off in that case explicitly.)
253 	 */
254 	if (c->x86_power & (1 << 8)) {
255 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
256 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
257 	}
258 
259 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
260 	if (c->x86 == 6) {
261 		switch (c->x86_model) {
262 		case INTEL_FAM6_ATOM_SALTWELL_MID:
263 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
264 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
265 		case INTEL_FAM6_ATOM_AIRMONT_NP:
266 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
267 			break;
268 		default:
269 			break;
270 		}
271 	}
272 
273 	/*
274 	 * There is a known erratum on Pentium III and Core Solo
275 	 * and Core Duo CPUs.
276 	 * " Page with PAT set to WC while associated MTRR is UC
277 	 *   may consolidate to UC "
278 	 * Because of this erratum, it is better to stick with
279 	 * setting WC in MTRR rather than using PAT on these CPUs.
280 	 *
281 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
282 	 */
283 	if (c->x86 == 6 && c->x86_model < 15)
284 		clear_cpu_cap(c, X86_FEATURE_PAT);
285 
286 	/*
287 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
288 	 * clear the fast string and enhanced fast string CPU capabilities.
289 	 */
290 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
291 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
292 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
293 			pr_info("Disabled fast string operations\n");
294 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
295 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
296 		}
297 	}
298 
299 	/*
300 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
301 	 * "The operating system also is required to invalidate (i.e., flush)
302 	 *  the TLB when any changes are made to any of the page table entries.
303 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
304 	 *
305 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
306 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
307 	 * to be modified.
308 	 */
309 	if (c->x86 == 5 && c->x86_model == 9) {
310 		pr_info("Disabling PGE capability bit\n");
311 		setup_clear_cpu_cap(X86_FEATURE_PGE);
312 	}
313 
314 	if (c->cpuid_level >= 0x00000001) {
315 		u32 eax, ebx, ecx, edx;
316 
317 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
318 		/*
319 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
320 		 * apicids which are reserved per package. Store the resulting
321 		 * shift value for the package management code.
322 		 */
323 		if (edx & (1U << 28))
324 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
325 	}
326 
327 	check_memory_type_self_snoop_errata(c);
328 
329 	/*
330 	 * Get the number of SMT siblings early from the extended topology
331 	 * leaf, if available. Otherwise try the legacy SMT detection.
332 	 */
333 	if (detect_extended_topology_early(c) < 0)
334 		detect_ht_early(c);
335 }
336 
337 static void bsp_init_intel(struct cpuinfo_x86 *c)
338 {
339 	resctrl_cpu_detect(c);
340 }
341 
342 #ifdef CONFIG_X86_32
343 /*
344  *	Early probe support logic for ppro memory erratum #50
345  *
346  *	This is called before we do cpu ident work
347  */
348 
349 int ppro_with_ram_bug(void)
350 {
351 	/* Uses data from early_cpu_detect now */
352 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
353 	    boot_cpu_data.x86 == 6 &&
354 	    boot_cpu_data.x86_model == 1 &&
355 	    boot_cpu_data.x86_stepping < 8) {
356 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
357 		return 1;
358 	}
359 	return 0;
360 }
361 
362 static void intel_smp_check(struct cpuinfo_x86 *c)
363 {
364 	/* calling is from identify_secondary_cpu() ? */
365 	if (!c->cpu_index)
366 		return;
367 
368 	/*
369 	 * Mask B, Pentium, but not Pentium MMX
370 	 */
371 	if (c->x86 == 5 &&
372 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
373 	    c->x86_model <= 3) {
374 		/*
375 		 * Remember we have B step Pentia with bugs
376 		 */
377 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
378 				    "with B stepping processors.\n");
379 	}
380 }
381 
382 static int forcepae;
383 static int __init forcepae_setup(char *__unused)
384 {
385 	forcepae = 1;
386 	return 1;
387 }
388 __setup("forcepae", forcepae_setup);
389 
390 static void intel_workarounds(struct cpuinfo_x86 *c)
391 {
392 #ifdef CONFIG_X86_F00F_BUG
393 	/*
394 	 * All models of Pentium and Pentium with MMX technology CPUs
395 	 * have the F0 0F bug, which lets nonprivileged users lock up the
396 	 * system. Announce that the fault handler will be checking for it.
397 	 * The Quark is also family 5, but does not have the same bug.
398 	 */
399 	clear_cpu_bug(c, X86_BUG_F00F);
400 	if (c->x86 == 5 && c->x86_model < 9) {
401 		static int f00f_workaround_enabled;
402 
403 		set_cpu_bug(c, X86_BUG_F00F);
404 		if (!f00f_workaround_enabled) {
405 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
406 			f00f_workaround_enabled = 1;
407 		}
408 	}
409 #endif
410 
411 	/*
412 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
413 	 * model 3 mask 3
414 	 */
415 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
416 		clear_cpu_cap(c, X86_FEATURE_SEP);
417 
418 	/*
419 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
420 	 * functionally usable PAE implementation.
421 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
422 	 */
423 	if (forcepae) {
424 		pr_warn("PAE forced!\n");
425 		set_cpu_cap(c, X86_FEATURE_PAE);
426 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
427 	}
428 
429 	/*
430 	 * P4 Xeon erratum 037 workaround.
431 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
432 	 */
433 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
434 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
435 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
436 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
437 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
438 		}
439 	}
440 
441 	/*
442 	 * See if we have a good local APIC by checking for buggy Pentia,
443 	 * i.e. all B steppings and the C2 stepping of P54C when using their
444 	 * integrated APIC (see 11AP erratum in "Pentium Processor
445 	 * Specification Update").
446 	 */
447 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
448 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
449 		set_cpu_bug(c, X86_BUG_11AP);
450 
451 
452 #ifdef CONFIG_X86_INTEL_USERCOPY
453 	/*
454 	 * Set up the preferred alignment for movsl bulk memory moves
455 	 */
456 	switch (c->x86) {
457 	case 4:		/* 486: untested */
458 		break;
459 	case 5:		/* Old Pentia: untested */
460 		break;
461 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
462 		movsl_mask.mask = 7;
463 		break;
464 	case 15:	/* P4 is OK down to 8-byte alignment */
465 		movsl_mask.mask = 7;
466 		break;
467 	}
468 #endif
469 
470 	intel_smp_check(c);
471 }
472 #else
473 static void intel_workarounds(struct cpuinfo_x86 *c)
474 {
475 }
476 #endif
477 
478 static void srat_detect_node(struct cpuinfo_x86 *c)
479 {
480 #ifdef CONFIG_NUMA
481 	unsigned node;
482 	int cpu = smp_processor_id();
483 
484 	/* Don't do the funky fallback heuristics the AMD version employs
485 	   for now. */
486 	node = numa_cpu_node(cpu);
487 	if (node == NUMA_NO_NODE || !node_online(node)) {
488 		/* reuse the value from init_cpu_to_node() */
489 		node = cpu_to_node(cpu);
490 	}
491 	numa_set_node(cpu, node);
492 #endif
493 }
494 
495 #define MSR_IA32_TME_ACTIVATE		0x982
496 
497 /* Helpers to access TME_ACTIVATE MSR */
498 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
499 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
500 
501 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
502 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
503 
504 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
505 
506 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
507 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
508 
509 /* Values for mktme_status (SW only construct) */
510 #define MKTME_ENABLED			0
511 #define MKTME_DISABLED			1
512 #define MKTME_UNINITIALIZED		2
513 static int mktme_status = MKTME_UNINITIALIZED;
514 
515 static void detect_tme(struct cpuinfo_x86 *c)
516 {
517 	u64 tme_activate, tme_policy, tme_crypto_algs;
518 	int keyid_bits = 0, nr_keyids = 0;
519 	static u64 tme_activate_cpu0 = 0;
520 
521 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
522 
523 	if (mktme_status != MKTME_UNINITIALIZED) {
524 		if (tme_activate != tme_activate_cpu0) {
525 			/* Broken BIOS? */
526 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
527 			pr_err_once("x86/tme: MKTME is not usable\n");
528 			mktme_status = MKTME_DISABLED;
529 
530 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
531 		}
532 	} else {
533 		tme_activate_cpu0 = tme_activate;
534 	}
535 
536 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
537 		pr_info_once("x86/tme: not enabled by BIOS\n");
538 		mktme_status = MKTME_DISABLED;
539 		return;
540 	}
541 
542 	if (mktme_status != MKTME_UNINITIALIZED)
543 		goto detect_keyid_bits;
544 
545 	pr_info("x86/tme: enabled by BIOS\n");
546 
547 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
548 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
549 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
550 
551 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
552 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
553 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
554 				tme_crypto_algs);
555 		mktme_status = MKTME_DISABLED;
556 	}
557 detect_keyid_bits:
558 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
559 	nr_keyids = (1UL << keyid_bits) - 1;
560 	if (nr_keyids) {
561 		pr_info_once("x86/mktme: enabled by BIOS\n");
562 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
563 	} else {
564 		pr_info_once("x86/mktme: disabled by BIOS\n");
565 	}
566 
567 	if (mktme_status == MKTME_UNINITIALIZED) {
568 		/* MKTME is usable */
569 		mktme_status = MKTME_ENABLED;
570 	}
571 
572 	/*
573 	 * KeyID bits effectively lower the number of physical address
574 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
575 	 */
576 	c->x86_phys_bits -= keyid_bits;
577 }
578 
579 static void init_cpuid_fault(struct cpuinfo_x86 *c)
580 {
581 	u64 msr;
582 
583 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
584 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
585 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
586 	}
587 }
588 
589 static void init_intel_misc_features(struct cpuinfo_x86 *c)
590 {
591 	u64 msr;
592 
593 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
594 		return;
595 
596 	/* Clear all MISC features */
597 	this_cpu_write(msr_misc_features_shadow, 0);
598 
599 	/* Check features and update capabilities and shadow control bits */
600 	init_cpuid_fault(c);
601 	probe_xeon_phi_r3mwait(c);
602 
603 	msr = this_cpu_read(msr_misc_features_shadow);
604 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
605 }
606 
607 static void split_lock_init(void);
608 static void bus_lock_init(void);
609 
610 static void init_intel(struct cpuinfo_x86 *c)
611 {
612 	early_init_intel(c);
613 
614 	intel_workarounds(c);
615 
616 	/*
617 	 * Detect the extended topology information if available. This
618 	 * will reinitialise the initial_apicid which will be used
619 	 * in init_intel_cacheinfo()
620 	 */
621 	detect_extended_topology(c);
622 
623 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
624 		/*
625 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
626 		 * detection.
627 		 */
628 		detect_num_cpu_cores(c);
629 #ifdef CONFIG_X86_32
630 		detect_ht(c);
631 #endif
632 	}
633 
634 	init_intel_cacheinfo(c);
635 
636 	if (c->cpuid_level > 9) {
637 		unsigned eax = cpuid_eax(10);
638 		/* Check for version and the number of counters */
639 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
640 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
641 	}
642 
643 	if (cpu_has(c, X86_FEATURE_XMM2))
644 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
645 
646 	if (boot_cpu_has(X86_FEATURE_DS)) {
647 		unsigned int l1, l2;
648 
649 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
650 		if (!(l1 & (1<<11)))
651 			set_cpu_cap(c, X86_FEATURE_BTS);
652 		if (!(l1 & (1<<12)))
653 			set_cpu_cap(c, X86_FEATURE_PEBS);
654 	}
655 
656 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
657 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
658 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
659 
660 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
661 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
662 		set_cpu_bug(c, X86_BUG_MONITOR);
663 
664 #ifdef CONFIG_X86_64
665 	if (c->x86 == 15)
666 		c->x86_cache_alignment = c->x86_clflush_size * 2;
667 	if (c->x86 == 6)
668 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
669 #else
670 	/*
671 	 * Names for the Pentium II/Celeron processors
672 	 * detectable only by also checking the cache size.
673 	 * Dixon is NOT a Celeron.
674 	 */
675 	if (c->x86 == 6) {
676 		unsigned int l2 = c->x86_cache_size;
677 		char *p = NULL;
678 
679 		switch (c->x86_model) {
680 		case 5:
681 			if (l2 == 0)
682 				p = "Celeron (Covington)";
683 			else if (l2 == 256)
684 				p = "Mobile Pentium II (Dixon)";
685 			break;
686 
687 		case 6:
688 			if (l2 == 128)
689 				p = "Celeron (Mendocino)";
690 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
691 				p = "Celeron-A";
692 			break;
693 
694 		case 8:
695 			if (l2 == 128)
696 				p = "Celeron (Coppermine)";
697 			break;
698 		}
699 
700 		if (p)
701 			strcpy(c->x86_model_id, p);
702 	}
703 
704 	if (c->x86 == 15)
705 		set_cpu_cap(c, X86_FEATURE_P4);
706 	if (c->x86 == 6)
707 		set_cpu_cap(c, X86_FEATURE_P3);
708 #endif
709 
710 	/* Work around errata */
711 	srat_detect_node(c);
712 
713 	init_ia32_feat_ctl(c);
714 
715 	if (cpu_has(c, X86_FEATURE_TME))
716 		detect_tme(c);
717 
718 	init_intel_misc_features(c);
719 
720 	split_lock_init();
721 	bus_lock_init();
722 
723 	intel_init_thermal(c);
724 }
725 
726 #ifdef CONFIG_X86_32
727 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
728 {
729 	/*
730 	 * Intel PIII Tualatin. This comes in two flavours.
731 	 * One has 256kb of cache, the other 512. We have no way
732 	 * to determine which, so we use a boottime override
733 	 * for the 512kb model, and assume 256 otherwise.
734 	 */
735 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
736 		size = 256;
737 
738 	/*
739 	 * Intel Quark SoC X1000 contains a 4-way set associative
740 	 * 16K cache with a 16 byte cache line and 256 lines per tag
741 	 */
742 	if ((c->x86 == 5) && (c->x86_model == 9))
743 		size = 16;
744 	return size;
745 }
746 #endif
747 
748 #define TLB_INST_4K	0x01
749 #define TLB_INST_4M	0x02
750 #define TLB_INST_2M_4M	0x03
751 
752 #define TLB_INST_ALL	0x05
753 #define TLB_INST_1G	0x06
754 
755 #define TLB_DATA_4K	0x11
756 #define TLB_DATA_4M	0x12
757 #define TLB_DATA_2M_4M	0x13
758 #define TLB_DATA_4K_4M	0x14
759 
760 #define TLB_DATA_1G	0x16
761 
762 #define TLB_DATA0_4K	0x21
763 #define TLB_DATA0_4M	0x22
764 #define TLB_DATA0_2M_4M	0x23
765 
766 #define STLB_4K		0x41
767 #define STLB_4K_2M	0x42
768 
769 static const struct _tlb_table intel_tlb_table[] = {
770 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
771 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
772 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
773 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
774 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
775 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
776 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
777 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
778 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
779 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
780 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
781 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
782 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
783 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
784 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
785 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
786 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
787 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
788 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
789 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
790 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
791 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
792 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
793 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
794 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
795 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
796 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
797 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
798 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
799 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
800 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
801 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
802 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
803 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
804 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
805 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
806 	{ 0x00, 0, 0 }
807 };
808 
809 static void intel_tlb_lookup(const unsigned char desc)
810 {
811 	unsigned char k;
812 	if (desc == 0)
813 		return;
814 
815 	/* look up this descriptor in the table */
816 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
817 	     intel_tlb_table[k].descriptor != 0; k++)
818 		;
819 
820 	if (intel_tlb_table[k].tlb_type == 0)
821 		return;
822 
823 	switch (intel_tlb_table[k].tlb_type) {
824 	case STLB_4K:
825 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
826 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
827 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
828 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
829 		break;
830 	case STLB_4K_2M:
831 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
832 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
833 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
834 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
835 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
836 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
837 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
838 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
839 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
840 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
841 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
842 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
843 		break;
844 	case TLB_INST_ALL:
845 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
846 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
847 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
848 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
849 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
850 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
851 		break;
852 	case TLB_INST_4K:
853 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
854 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
855 		break;
856 	case TLB_INST_4M:
857 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
858 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
859 		break;
860 	case TLB_INST_2M_4M:
861 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
862 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
863 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
864 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
865 		break;
866 	case TLB_DATA_4K:
867 	case TLB_DATA0_4K:
868 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
869 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
870 		break;
871 	case TLB_DATA_4M:
872 	case TLB_DATA0_4M:
873 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
874 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
875 		break;
876 	case TLB_DATA_2M_4M:
877 	case TLB_DATA0_2M_4M:
878 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
879 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
880 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
881 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
882 		break;
883 	case TLB_DATA_4K_4M:
884 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
885 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
886 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
887 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
888 		break;
889 	case TLB_DATA_1G:
890 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
891 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
892 		break;
893 	}
894 }
895 
896 static void intel_detect_tlb(struct cpuinfo_x86 *c)
897 {
898 	int i, j, n;
899 	unsigned int regs[4];
900 	unsigned char *desc = (unsigned char *)regs;
901 
902 	if (c->cpuid_level < 2)
903 		return;
904 
905 	/* Number of times to iterate */
906 	n = cpuid_eax(2) & 0xFF;
907 
908 	for (i = 0 ; i < n ; i++) {
909 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
910 
911 		/* If bit 31 is set, this is an unknown format */
912 		for (j = 0 ; j < 3 ; j++)
913 			if (regs[j] & (1 << 31))
914 				regs[j] = 0;
915 
916 		/* Byte 0 is level count, not a descriptor */
917 		for (j = 1 ; j < 16 ; j++)
918 			intel_tlb_lookup(desc[j]);
919 	}
920 }
921 
922 static const struct cpu_dev intel_cpu_dev = {
923 	.c_vendor	= "Intel",
924 	.c_ident	= { "GenuineIntel" },
925 #ifdef CONFIG_X86_32
926 	.legacy_models = {
927 		{ .family = 4, .model_names =
928 		  {
929 			  [0] = "486 DX-25/33",
930 			  [1] = "486 DX-50",
931 			  [2] = "486 SX",
932 			  [3] = "486 DX/2",
933 			  [4] = "486 SL",
934 			  [5] = "486 SX/2",
935 			  [7] = "486 DX/2-WB",
936 			  [8] = "486 DX/4",
937 			  [9] = "486 DX/4-WB"
938 		  }
939 		},
940 		{ .family = 5, .model_names =
941 		  {
942 			  [0] = "Pentium 60/66 A-step",
943 			  [1] = "Pentium 60/66",
944 			  [2] = "Pentium 75 - 200",
945 			  [3] = "OverDrive PODP5V83",
946 			  [4] = "Pentium MMX",
947 			  [7] = "Mobile Pentium 75 - 200",
948 			  [8] = "Mobile Pentium MMX",
949 			  [9] = "Quark SoC X1000",
950 		  }
951 		},
952 		{ .family = 6, .model_names =
953 		  {
954 			  [0] = "Pentium Pro A-step",
955 			  [1] = "Pentium Pro",
956 			  [3] = "Pentium II (Klamath)",
957 			  [4] = "Pentium II (Deschutes)",
958 			  [5] = "Pentium II (Deschutes)",
959 			  [6] = "Mobile Pentium II",
960 			  [7] = "Pentium III (Katmai)",
961 			  [8] = "Pentium III (Coppermine)",
962 			  [10] = "Pentium III (Cascades)",
963 			  [11] = "Pentium III (Tualatin)",
964 		  }
965 		},
966 		{ .family = 15, .model_names =
967 		  {
968 			  [0] = "Pentium 4 (Unknown)",
969 			  [1] = "Pentium 4 (Willamette)",
970 			  [2] = "Pentium 4 (Northwood)",
971 			  [4] = "Pentium 4 (Foster)",
972 			  [5] = "Pentium 4 (Foster)",
973 		  }
974 		},
975 	},
976 	.legacy_cache_size = intel_size_cache,
977 #endif
978 	.c_detect_tlb	= intel_detect_tlb,
979 	.c_early_init   = early_init_intel,
980 	.c_bsp_init	= bsp_init_intel,
981 	.c_init		= init_intel,
982 	.c_x86_vendor	= X86_VENDOR_INTEL,
983 };
984 
985 cpu_dev_register(intel_cpu_dev);
986 
987 #undef pr_fmt
988 #define pr_fmt(fmt) "x86/split lock detection: " fmt
989 
990 static const struct {
991 	const char			*option;
992 	enum split_lock_detect_state	state;
993 } sld_options[] __initconst = {
994 	{ "off",	sld_off   },
995 	{ "warn",	sld_warn  },
996 	{ "fatal",	sld_fatal },
997 	{ "ratelimit:", sld_ratelimit },
998 };
999 
1000 static struct ratelimit_state bld_ratelimit;
1001 
1002 static inline bool match_option(const char *arg, int arglen, const char *opt)
1003 {
1004 	int len = strlen(opt), ratelimit;
1005 
1006 	if (strncmp(arg, opt, len))
1007 		return false;
1008 
1009 	/*
1010 	 * Min ratelimit is 1 bus lock/sec.
1011 	 * Max ratelimit is 1000 bus locks/sec.
1012 	 */
1013 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1014 	    ratelimit > 0 && ratelimit <= 1000) {
1015 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1016 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1017 		return true;
1018 	}
1019 
1020 	return len == arglen;
1021 }
1022 
1023 static bool split_lock_verify_msr(bool on)
1024 {
1025 	u64 ctrl, tmp;
1026 
1027 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1028 		return false;
1029 	if (on)
1030 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1031 	else
1032 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1033 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1034 		return false;
1035 	rdmsrl(MSR_TEST_CTRL, tmp);
1036 	return ctrl == tmp;
1037 }
1038 
1039 static void __init sld_state_setup(void)
1040 {
1041 	enum split_lock_detect_state state = sld_warn;
1042 	char arg[20];
1043 	int i, ret;
1044 
1045 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1046 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1047 		return;
1048 
1049 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1050 				  arg, sizeof(arg));
1051 	if (ret >= 0) {
1052 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1053 			if (match_option(arg, ret, sld_options[i].option)) {
1054 				state = sld_options[i].state;
1055 				break;
1056 			}
1057 		}
1058 	}
1059 	sld_state = state;
1060 }
1061 
1062 static void __init __split_lock_setup(void)
1063 {
1064 	if (!split_lock_verify_msr(false)) {
1065 		pr_info("MSR access failed: Disabled\n");
1066 		return;
1067 	}
1068 
1069 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1070 
1071 	if (!split_lock_verify_msr(true)) {
1072 		pr_info("MSR access failed: Disabled\n");
1073 		return;
1074 	}
1075 
1076 	/* Restore the MSR to its cached value. */
1077 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1078 
1079 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1080 }
1081 
1082 /*
1083  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1084  * is not implemented as one thread could undo the setting of the other
1085  * thread immediately after dropping the lock anyway.
1086  */
1087 static void sld_update_msr(bool on)
1088 {
1089 	u64 test_ctrl_val = msr_test_ctrl_cache;
1090 
1091 	if (on)
1092 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1093 
1094 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1095 }
1096 
1097 static void split_lock_init(void)
1098 {
1099 	/*
1100 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1101 	 * disabled.
1102 	 */
1103 	if (sld_state == sld_ratelimit) {
1104 		split_lock_verify_msr(false);
1105 		return;
1106 	}
1107 
1108 	if (cpu_model_supports_sld)
1109 		split_lock_verify_msr(sld_state != sld_off);
1110 }
1111 
1112 static void split_lock_warn(unsigned long ip)
1113 {
1114 	pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1115 			    current->comm, current->pid, ip);
1116 
1117 	/*
1118 	 * Disable the split lock detection for this task so it can make
1119 	 * progress and set TIF_SLD so the detection is re-enabled via
1120 	 * switch_to_sld() when the task is scheduled out.
1121 	 */
1122 	sld_update_msr(false);
1123 	set_tsk_thread_flag(current, TIF_SLD);
1124 }
1125 
1126 bool handle_guest_split_lock(unsigned long ip)
1127 {
1128 	if (sld_state == sld_warn) {
1129 		split_lock_warn(ip);
1130 		return true;
1131 	}
1132 
1133 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1134 		     current->comm, current->pid,
1135 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1136 
1137 	current->thread.error_code = 0;
1138 	current->thread.trap_nr = X86_TRAP_AC;
1139 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1140 	return false;
1141 }
1142 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1143 
1144 static void bus_lock_init(void)
1145 {
1146 	u64 val;
1147 
1148 	/*
1149 	 * Warn and fatal are handled by #AC for split lock if #AC for
1150 	 * split lock is supported.
1151 	 */
1152 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) ||
1153 	    (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1154 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1155 	    sld_state == sld_off)
1156 		return;
1157 
1158 	/*
1159 	 * Enable #DB for bus lock. All bus locks are handled in #DB except
1160 	 * split locks are handled in #AC in the fatal case.
1161 	 */
1162 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1163 	val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1164 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1165 }
1166 
1167 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1168 {
1169 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1170 		return false;
1171 	split_lock_warn(regs->ip);
1172 	return true;
1173 }
1174 
1175 void handle_bus_lock(struct pt_regs *regs)
1176 {
1177 	switch (sld_state) {
1178 	case sld_off:
1179 		break;
1180 	case sld_ratelimit:
1181 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1182 		while (!__ratelimit(&bld_ratelimit))
1183 			msleep(20);
1184 		/* Warn on the bus lock. */
1185 		fallthrough;
1186 	case sld_warn:
1187 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1188 				    current->comm, current->pid, regs->ip);
1189 		break;
1190 	case sld_fatal:
1191 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1192 		break;
1193 	}
1194 }
1195 
1196 /*
1197  * This function is called only when switching between tasks with
1198  * different split-lock detection modes. It sets the MSR for the
1199  * mode of the new task. This is right most of the time, but since
1200  * the MSR is shared by hyperthreads on a physical core there can
1201  * be glitches when the two threads need different modes.
1202  */
1203 void switch_to_sld(unsigned long tifn)
1204 {
1205 	sld_update_msr(!(tifn & _TIF_SLD));
1206 }
1207 
1208 /*
1209  * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1210  * only be trusted if it is confirmed that a CPU model implements a
1211  * specific feature at a particular bit position.
1212  *
1213  * The possible driver data field values:
1214  *
1215  * - 0: CPU models that are known to have the per-core split-lock detection
1216  *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1217  *
1218  * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1219  *      bit 5 to enumerate the per-core split-lock detection feature.
1220  */
1221 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1222 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
1223 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
1224 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0),
1225 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
1226 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
1227 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
1228 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1),
1229 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1),
1230 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	1),
1231 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		1),
1232 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		1),
1233 	{}
1234 };
1235 
1236 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1237 {
1238 	const struct x86_cpu_id *m;
1239 	u64 ia32_core_caps;
1240 
1241 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1242 		return;
1243 
1244 	m = x86_match_cpu(split_lock_cpu_ids);
1245 	if (!m)
1246 		return;
1247 
1248 	switch (m->driver_data) {
1249 	case 0:
1250 		break;
1251 	case 1:
1252 		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1253 			return;
1254 		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1255 		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1256 			return;
1257 		break;
1258 	default:
1259 		return;
1260 	}
1261 
1262 	cpu_model_supports_sld = true;
1263 	__split_lock_setup();
1264 }
1265 
1266 static void sld_state_show(void)
1267 {
1268 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1269 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1270 		return;
1271 
1272 	switch (sld_state) {
1273 	case sld_off:
1274 		pr_info("disabled\n");
1275 		break;
1276 	case sld_warn:
1277 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1278 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1279 		else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1280 			pr_info("#DB: warning on user-space bus_locks\n");
1281 		break;
1282 	case sld_fatal:
1283 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1284 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1285 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1286 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1287 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1288 				" from non-WB" : "");
1289 		}
1290 		break;
1291 	case sld_ratelimit:
1292 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1293 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1294 		break;
1295 	}
1296 }
1297 
1298 void __init sld_setup(struct cpuinfo_x86 *c)
1299 {
1300 	split_lock_setup(c);
1301 	sld_state_setup();
1302 	sld_state_show();
1303 }
1304 
1305 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1306 
1307 /**
1308  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1309  *
1310  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1311  * a hybrid processor. If the processor is not hybrid, returns 0.
1312  */
1313 u8 get_this_hybrid_cpu_type(void)
1314 {
1315 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1316 		return 0;
1317 
1318 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1319 }
1320