xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision b866371f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32 
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36 
37 #include "cpu.h"
38 
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43 
44 enum split_lock_detect_state {
45 	sld_off = 0,
46 	sld_warn,
47 	sld_fatal,
48 	sld_ratelimit,
49 };
50 
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58 
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65 
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 	switch (c->x86_model) {
76 	case INTEL_FAM6_CORE_YONAH:
77 	case INTEL_FAM6_CORE2_MEROM:
78 	case INTEL_FAM6_CORE2_MEROM_L:
79 	case INTEL_FAM6_CORE2_PENRYN:
80 	case INTEL_FAM6_CORE2_DUNNINGTON:
81 	case INTEL_FAM6_NEHALEM:
82 	case INTEL_FAM6_NEHALEM_G:
83 	case INTEL_FAM6_NEHALEM_EP:
84 	case INTEL_FAM6_NEHALEM_EX:
85 	case INTEL_FAM6_WESTMERE:
86 	case INTEL_FAM6_WESTMERE_EP:
87 	case INTEL_FAM6_SANDYBRIDGE:
88 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 	}
90 }
91 
92 static bool ring3mwait_disabled __read_mostly;
93 
94 static int __init ring3mwait_disable(char *__unused)
95 {
96 	ring3mwait_disabled = true;
97 	return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100 
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 	/*
104 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 	 * cpu model and family comparison.
106 	 */
107 	if (c->x86 != 6)
108 		return;
109 	switch (c->x86_model) {
110 	case INTEL_FAM6_XEON_PHI_KNL:
111 	case INTEL_FAM6_XEON_PHI_KNM:
112 		break;
113 	default:
114 		return;
115 	}
116 
117 	if (ring3mwait_disabled)
118 		return;
119 
120 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 	this_cpu_or(msr_misc_features_shadow,
122 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123 
124 	if (c == &boot_cpu_data)
125 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127 
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137 	u8 model;
138 	u8 stepping;
139 	u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160 	/* Observed in the wild */
161 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163 };
164 
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 	int i;
168 
169 	/*
170 	 * We know that the hypervisor lie to us on the microcode version so
171 	 * we may as well hope that it is running the correct version.
172 	 */
173 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 		return false;
175 
176 	if (c->x86 != 6)
177 		return false;
178 
179 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 		if (c->x86_model == spectre_bad_microcodes[i].model &&
181 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183 	}
184 	return false;
185 }
186 
187 static void early_init_intel(struct cpuinfo_x86 *c)
188 {
189 	u64 misc_enable;
190 
191 	/* Unmask CPUID levels if masked: */
192 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
193 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
194 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
195 			c->cpuid_level = cpuid_eax(0);
196 			get_cpu_cap(c);
197 		}
198 	}
199 
200 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
201 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
202 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
203 
204 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
205 		c->microcode = intel_get_microcode_revision();
206 
207 	/* Now if any of them are set, check the blacklist and clear the lot */
208 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
209 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
210 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
211 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
212 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
213 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
214 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
215 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
216 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
217 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
218 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
219 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
220 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
221 	}
222 
223 	/*
224 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
225 	 *
226 	 * A race condition between speculative fetches and invalidating
227 	 * a large page.  This is worked around in microcode, but we
228 	 * need the microcode to have already been loaded... so if it is
229 	 * not, recommend a BIOS update and disable large pages.
230 	 */
231 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
232 	    c->microcode < 0x20e) {
233 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
234 		clear_cpu_cap(c, X86_FEATURE_PSE);
235 	}
236 
237 #ifdef CONFIG_X86_64
238 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
239 #else
240 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
241 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
242 		c->x86_cache_alignment = 128;
243 #endif
244 
245 	/* CPUID workaround for 0F33/0F34 CPU */
246 	if (c->x86 == 0xF && c->x86_model == 0x3
247 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
248 		c->x86_phys_bits = 36;
249 
250 	/*
251 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
252 	 * with P/T states and does not stop in deep C-states.
253 	 *
254 	 * It is also reliable across cores and sockets. (but not across
255 	 * cabinets - we turn it off in that case explicitly.)
256 	 */
257 	if (c->x86_power & (1 << 8)) {
258 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
259 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
260 	}
261 
262 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
263 	if (c->x86 == 6) {
264 		switch (c->x86_model) {
265 		case INTEL_FAM6_ATOM_SALTWELL_MID:
266 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
267 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
268 		case INTEL_FAM6_ATOM_AIRMONT_NP:
269 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
270 			break;
271 		default:
272 			break;
273 		}
274 	}
275 
276 	/*
277 	 * There is a known erratum on Pentium III and Core Solo
278 	 * and Core Duo CPUs.
279 	 * " Page with PAT set to WC while associated MTRR is UC
280 	 *   may consolidate to UC "
281 	 * Because of this erratum, it is better to stick with
282 	 * setting WC in MTRR rather than using PAT on these CPUs.
283 	 *
284 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
285 	 */
286 	if (c->x86 == 6 && c->x86_model < 15)
287 		clear_cpu_cap(c, X86_FEATURE_PAT);
288 
289 	/*
290 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
291 	 * clear the fast string and enhanced fast string CPU capabilities.
292 	 */
293 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
294 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
295 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
296 			pr_info("Disabled fast string operations\n");
297 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
298 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
299 		}
300 	}
301 
302 	/*
303 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
304 	 * "The operating system also is required to invalidate (i.e., flush)
305 	 *  the TLB when any changes are made to any of the page table entries.
306 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
307 	 *
308 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
309 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
310 	 * to be modified.
311 	 */
312 	if (c->x86 == 5 && c->x86_model == 9) {
313 		pr_info("Disabling PGE capability bit\n");
314 		setup_clear_cpu_cap(X86_FEATURE_PGE);
315 	}
316 
317 	if (c->cpuid_level >= 0x00000001) {
318 		u32 eax, ebx, ecx, edx;
319 
320 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
321 		/*
322 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
323 		 * apicids which are reserved per package. Store the resulting
324 		 * shift value for the package management code.
325 		 */
326 		if (edx & (1U << 28))
327 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
328 	}
329 
330 	check_memory_type_self_snoop_errata(c);
331 
332 	/*
333 	 * Get the number of SMT siblings early from the extended topology
334 	 * leaf, if available. Otherwise try the legacy SMT detection.
335 	 */
336 	if (detect_extended_topology_early(c) < 0)
337 		detect_ht_early(c);
338 }
339 
340 static void bsp_init_intel(struct cpuinfo_x86 *c)
341 {
342 	resctrl_cpu_detect(c);
343 }
344 
345 #ifdef CONFIG_X86_32
346 /*
347  *	Early probe support logic for ppro memory erratum #50
348  *
349  *	This is called before we do cpu ident work
350  */
351 
352 int ppro_with_ram_bug(void)
353 {
354 	/* Uses data from early_cpu_detect now */
355 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
356 	    boot_cpu_data.x86 == 6 &&
357 	    boot_cpu_data.x86_model == 1 &&
358 	    boot_cpu_data.x86_stepping < 8) {
359 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
360 		return 1;
361 	}
362 	return 0;
363 }
364 
365 static void intel_smp_check(struct cpuinfo_x86 *c)
366 {
367 	/* calling is from identify_secondary_cpu() ? */
368 	if (!c->cpu_index)
369 		return;
370 
371 	/*
372 	 * Mask B, Pentium, but not Pentium MMX
373 	 */
374 	if (c->x86 == 5 &&
375 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
376 	    c->x86_model <= 3) {
377 		/*
378 		 * Remember we have B step Pentia with bugs
379 		 */
380 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
381 				    "with B stepping processors.\n");
382 	}
383 }
384 
385 static int forcepae;
386 static int __init forcepae_setup(char *__unused)
387 {
388 	forcepae = 1;
389 	return 1;
390 }
391 __setup("forcepae", forcepae_setup);
392 
393 static void intel_workarounds(struct cpuinfo_x86 *c)
394 {
395 #ifdef CONFIG_X86_F00F_BUG
396 	/*
397 	 * All models of Pentium and Pentium with MMX technology CPUs
398 	 * have the F0 0F bug, which lets nonprivileged users lock up the
399 	 * system. Announce that the fault handler will be checking for it.
400 	 * The Quark is also family 5, but does not have the same bug.
401 	 */
402 	clear_cpu_bug(c, X86_BUG_F00F);
403 	if (c->x86 == 5 && c->x86_model < 9) {
404 		static int f00f_workaround_enabled;
405 
406 		set_cpu_bug(c, X86_BUG_F00F);
407 		if (!f00f_workaround_enabled) {
408 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
409 			f00f_workaround_enabled = 1;
410 		}
411 	}
412 #endif
413 
414 	/*
415 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
416 	 * model 3 mask 3
417 	 */
418 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
419 		clear_cpu_cap(c, X86_FEATURE_SEP);
420 
421 	/*
422 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
423 	 * functionally usable PAE implementation.
424 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
425 	 */
426 	if (forcepae) {
427 		pr_warn("PAE forced!\n");
428 		set_cpu_cap(c, X86_FEATURE_PAE);
429 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
430 	}
431 
432 	/*
433 	 * P4 Xeon erratum 037 workaround.
434 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
435 	 */
436 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
437 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
438 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
439 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
440 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
441 		}
442 	}
443 
444 	/*
445 	 * See if we have a good local APIC by checking for buggy Pentia,
446 	 * i.e. all B steppings and the C2 stepping of P54C when using their
447 	 * integrated APIC (see 11AP erratum in "Pentium Processor
448 	 * Specification Update").
449 	 */
450 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
451 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
452 		set_cpu_bug(c, X86_BUG_11AP);
453 
454 
455 #ifdef CONFIG_X86_INTEL_USERCOPY
456 	/*
457 	 * Set up the preferred alignment for movsl bulk memory moves
458 	 */
459 	switch (c->x86) {
460 	case 4:		/* 486: untested */
461 		break;
462 	case 5:		/* Old Pentia: untested */
463 		break;
464 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
465 		movsl_mask.mask = 7;
466 		break;
467 	case 15:	/* P4 is OK down to 8-byte alignment */
468 		movsl_mask.mask = 7;
469 		break;
470 	}
471 #endif
472 
473 	intel_smp_check(c);
474 }
475 #else
476 static void intel_workarounds(struct cpuinfo_x86 *c)
477 {
478 }
479 #endif
480 
481 static void srat_detect_node(struct cpuinfo_x86 *c)
482 {
483 #ifdef CONFIG_NUMA
484 	unsigned node;
485 	int cpu = smp_processor_id();
486 
487 	/* Don't do the funky fallback heuristics the AMD version employs
488 	   for now. */
489 	node = numa_cpu_node(cpu);
490 	if (node == NUMA_NO_NODE || !node_online(node)) {
491 		/* reuse the value from init_cpu_to_node() */
492 		node = cpu_to_node(cpu);
493 	}
494 	numa_set_node(cpu, node);
495 #endif
496 }
497 
498 #define MSR_IA32_TME_ACTIVATE		0x982
499 
500 /* Helpers to access TME_ACTIVATE MSR */
501 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
502 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
503 
504 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
505 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
506 
507 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
508 
509 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
510 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
511 
512 /* Values for mktme_status (SW only construct) */
513 #define MKTME_ENABLED			0
514 #define MKTME_DISABLED			1
515 #define MKTME_UNINITIALIZED		2
516 static int mktme_status = MKTME_UNINITIALIZED;
517 
518 static void detect_tme(struct cpuinfo_x86 *c)
519 {
520 	u64 tme_activate, tme_policy, tme_crypto_algs;
521 	int keyid_bits = 0, nr_keyids = 0;
522 	static u64 tme_activate_cpu0 = 0;
523 
524 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
525 
526 	if (mktme_status != MKTME_UNINITIALIZED) {
527 		if (tme_activate != tme_activate_cpu0) {
528 			/* Broken BIOS? */
529 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
530 			pr_err_once("x86/tme: MKTME is not usable\n");
531 			mktme_status = MKTME_DISABLED;
532 
533 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
534 		}
535 	} else {
536 		tme_activate_cpu0 = tme_activate;
537 	}
538 
539 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
540 		pr_info_once("x86/tme: not enabled by BIOS\n");
541 		mktme_status = MKTME_DISABLED;
542 		return;
543 	}
544 
545 	if (mktme_status != MKTME_UNINITIALIZED)
546 		goto detect_keyid_bits;
547 
548 	pr_info("x86/tme: enabled by BIOS\n");
549 
550 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
551 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
552 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
553 
554 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
555 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
556 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
557 				tme_crypto_algs);
558 		mktme_status = MKTME_DISABLED;
559 	}
560 detect_keyid_bits:
561 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
562 	nr_keyids = (1UL << keyid_bits) - 1;
563 	if (nr_keyids) {
564 		pr_info_once("x86/mktme: enabled by BIOS\n");
565 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
566 	} else {
567 		pr_info_once("x86/mktme: disabled by BIOS\n");
568 	}
569 
570 	if (mktme_status == MKTME_UNINITIALIZED) {
571 		/* MKTME is usable */
572 		mktme_status = MKTME_ENABLED;
573 	}
574 
575 	/*
576 	 * KeyID bits effectively lower the number of physical address
577 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
578 	 */
579 	c->x86_phys_bits -= keyid_bits;
580 }
581 
582 static void init_cpuid_fault(struct cpuinfo_x86 *c)
583 {
584 	u64 msr;
585 
586 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
587 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
588 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
589 	}
590 }
591 
592 static void init_intel_misc_features(struct cpuinfo_x86 *c)
593 {
594 	u64 msr;
595 
596 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
597 		return;
598 
599 	/* Clear all MISC features */
600 	this_cpu_write(msr_misc_features_shadow, 0);
601 
602 	/* Check features and update capabilities and shadow control bits */
603 	init_cpuid_fault(c);
604 	probe_xeon_phi_r3mwait(c);
605 
606 	msr = this_cpu_read(msr_misc_features_shadow);
607 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
608 }
609 
610 static void split_lock_init(void);
611 static void bus_lock_init(void);
612 
613 static void init_intel(struct cpuinfo_x86 *c)
614 {
615 	early_init_intel(c);
616 
617 	intel_workarounds(c);
618 
619 	/*
620 	 * Detect the extended topology information if available. This
621 	 * will reinitialise the initial_apicid which will be used
622 	 * in init_intel_cacheinfo()
623 	 */
624 	detect_extended_topology(c);
625 
626 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
627 		/*
628 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
629 		 * detection.
630 		 */
631 		detect_num_cpu_cores(c);
632 #ifdef CONFIG_X86_32
633 		detect_ht(c);
634 #endif
635 	}
636 
637 	init_intel_cacheinfo(c);
638 
639 	if (c->cpuid_level > 9) {
640 		unsigned eax = cpuid_eax(10);
641 		/* Check for version and the number of counters */
642 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
643 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
644 	}
645 
646 	if (cpu_has(c, X86_FEATURE_XMM2))
647 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
648 
649 	if (boot_cpu_has(X86_FEATURE_DS)) {
650 		unsigned int l1, l2;
651 
652 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
653 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
654 			set_cpu_cap(c, X86_FEATURE_BTS);
655 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
656 			set_cpu_cap(c, X86_FEATURE_PEBS);
657 	}
658 
659 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
660 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
661 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
662 
663 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
664 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
665 		set_cpu_bug(c, X86_BUG_MONITOR);
666 
667 #ifdef CONFIG_X86_64
668 	if (c->x86 == 15)
669 		c->x86_cache_alignment = c->x86_clflush_size * 2;
670 	if (c->x86 == 6)
671 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
672 #else
673 	/*
674 	 * Names for the Pentium II/Celeron processors
675 	 * detectable only by also checking the cache size.
676 	 * Dixon is NOT a Celeron.
677 	 */
678 	if (c->x86 == 6) {
679 		unsigned int l2 = c->x86_cache_size;
680 		char *p = NULL;
681 
682 		switch (c->x86_model) {
683 		case 5:
684 			if (l2 == 0)
685 				p = "Celeron (Covington)";
686 			else if (l2 == 256)
687 				p = "Mobile Pentium II (Dixon)";
688 			break;
689 
690 		case 6:
691 			if (l2 == 128)
692 				p = "Celeron (Mendocino)";
693 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
694 				p = "Celeron-A";
695 			break;
696 
697 		case 8:
698 			if (l2 == 128)
699 				p = "Celeron (Coppermine)";
700 			break;
701 		}
702 
703 		if (p)
704 			strcpy(c->x86_model_id, p);
705 	}
706 
707 	if (c->x86 == 15)
708 		set_cpu_cap(c, X86_FEATURE_P4);
709 	if (c->x86 == 6)
710 		set_cpu_cap(c, X86_FEATURE_P3);
711 #endif
712 
713 	/* Work around errata */
714 	srat_detect_node(c);
715 
716 	init_ia32_feat_ctl(c);
717 
718 	if (cpu_has(c, X86_FEATURE_TME))
719 		detect_tme(c);
720 
721 	init_intel_misc_features(c);
722 
723 	split_lock_init();
724 	bus_lock_init();
725 
726 	intel_init_thermal(c);
727 }
728 
729 #ifdef CONFIG_X86_32
730 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
731 {
732 	/*
733 	 * Intel PIII Tualatin. This comes in two flavours.
734 	 * One has 256kb of cache, the other 512. We have no way
735 	 * to determine which, so we use a boottime override
736 	 * for the 512kb model, and assume 256 otherwise.
737 	 */
738 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
739 		size = 256;
740 
741 	/*
742 	 * Intel Quark SoC X1000 contains a 4-way set associative
743 	 * 16K cache with a 16 byte cache line and 256 lines per tag
744 	 */
745 	if ((c->x86 == 5) && (c->x86_model == 9))
746 		size = 16;
747 	return size;
748 }
749 #endif
750 
751 #define TLB_INST_4K	0x01
752 #define TLB_INST_4M	0x02
753 #define TLB_INST_2M_4M	0x03
754 
755 #define TLB_INST_ALL	0x05
756 #define TLB_INST_1G	0x06
757 
758 #define TLB_DATA_4K	0x11
759 #define TLB_DATA_4M	0x12
760 #define TLB_DATA_2M_4M	0x13
761 #define TLB_DATA_4K_4M	0x14
762 
763 #define TLB_DATA_1G	0x16
764 
765 #define TLB_DATA0_4K	0x21
766 #define TLB_DATA0_4M	0x22
767 #define TLB_DATA0_2M_4M	0x23
768 
769 #define STLB_4K		0x41
770 #define STLB_4K_2M	0x42
771 
772 static const struct _tlb_table intel_tlb_table[] = {
773 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
774 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
775 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
776 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
777 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
778 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
779 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
780 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
781 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
782 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
783 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
784 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
785 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
786 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
787 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
788 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
789 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
790 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
791 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
792 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
793 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
794 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
795 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
796 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
797 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
798 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
799 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
800 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
801 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
802 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
803 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
804 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
805 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
806 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
807 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
808 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
809 	{ 0x00, 0, 0 }
810 };
811 
812 static void intel_tlb_lookup(const unsigned char desc)
813 {
814 	unsigned char k;
815 	if (desc == 0)
816 		return;
817 
818 	/* look up this descriptor in the table */
819 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
820 	     intel_tlb_table[k].descriptor != 0; k++)
821 		;
822 
823 	if (intel_tlb_table[k].tlb_type == 0)
824 		return;
825 
826 	switch (intel_tlb_table[k].tlb_type) {
827 	case STLB_4K:
828 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
829 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
830 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
831 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
832 		break;
833 	case STLB_4K_2M:
834 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
835 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
836 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
837 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
838 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
839 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
840 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
841 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
842 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
843 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
844 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
845 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
846 		break;
847 	case TLB_INST_ALL:
848 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
849 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
850 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
851 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
852 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
853 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
854 		break;
855 	case TLB_INST_4K:
856 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
857 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
858 		break;
859 	case TLB_INST_4M:
860 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
861 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
862 		break;
863 	case TLB_INST_2M_4M:
864 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
865 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
866 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
867 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
868 		break;
869 	case TLB_DATA_4K:
870 	case TLB_DATA0_4K:
871 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
872 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
873 		break;
874 	case TLB_DATA_4M:
875 	case TLB_DATA0_4M:
876 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
877 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
878 		break;
879 	case TLB_DATA_2M_4M:
880 	case TLB_DATA0_2M_4M:
881 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
882 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
883 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
884 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
885 		break;
886 	case TLB_DATA_4K_4M:
887 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
888 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
889 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
890 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
891 		break;
892 	case TLB_DATA_1G:
893 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
894 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
895 		break;
896 	}
897 }
898 
899 static void intel_detect_tlb(struct cpuinfo_x86 *c)
900 {
901 	int i, j, n;
902 	unsigned int regs[4];
903 	unsigned char *desc = (unsigned char *)regs;
904 
905 	if (c->cpuid_level < 2)
906 		return;
907 
908 	/* Number of times to iterate */
909 	n = cpuid_eax(2) & 0xFF;
910 
911 	for (i = 0 ; i < n ; i++) {
912 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
913 
914 		/* If bit 31 is set, this is an unknown format */
915 		for (j = 0 ; j < 3 ; j++)
916 			if (regs[j] & (1 << 31))
917 				regs[j] = 0;
918 
919 		/* Byte 0 is level count, not a descriptor */
920 		for (j = 1 ; j < 16 ; j++)
921 			intel_tlb_lookup(desc[j]);
922 	}
923 }
924 
925 static const struct cpu_dev intel_cpu_dev = {
926 	.c_vendor	= "Intel",
927 	.c_ident	= { "GenuineIntel" },
928 #ifdef CONFIG_X86_32
929 	.legacy_models = {
930 		{ .family = 4, .model_names =
931 		  {
932 			  [0] = "486 DX-25/33",
933 			  [1] = "486 DX-50",
934 			  [2] = "486 SX",
935 			  [3] = "486 DX/2",
936 			  [4] = "486 SL",
937 			  [5] = "486 SX/2",
938 			  [7] = "486 DX/2-WB",
939 			  [8] = "486 DX/4",
940 			  [9] = "486 DX/4-WB"
941 		  }
942 		},
943 		{ .family = 5, .model_names =
944 		  {
945 			  [0] = "Pentium 60/66 A-step",
946 			  [1] = "Pentium 60/66",
947 			  [2] = "Pentium 75 - 200",
948 			  [3] = "OverDrive PODP5V83",
949 			  [4] = "Pentium MMX",
950 			  [7] = "Mobile Pentium 75 - 200",
951 			  [8] = "Mobile Pentium MMX",
952 			  [9] = "Quark SoC X1000",
953 		  }
954 		},
955 		{ .family = 6, .model_names =
956 		  {
957 			  [0] = "Pentium Pro A-step",
958 			  [1] = "Pentium Pro",
959 			  [3] = "Pentium II (Klamath)",
960 			  [4] = "Pentium II (Deschutes)",
961 			  [5] = "Pentium II (Deschutes)",
962 			  [6] = "Mobile Pentium II",
963 			  [7] = "Pentium III (Katmai)",
964 			  [8] = "Pentium III (Coppermine)",
965 			  [10] = "Pentium III (Cascades)",
966 			  [11] = "Pentium III (Tualatin)",
967 		  }
968 		},
969 		{ .family = 15, .model_names =
970 		  {
971 			  [0] = "Pentium 4 (Unknown)",
972 			  [1] = "Pentium 4 (Willamette)",
973 			  [2] = "Pentium 4 (Northwood)",
974 			  [4] = "Pentium 4 (Foster)",
975 			  [5] = "Pentium 4 (Foster)",
976 		  }
977 		},
978 	},
979 	.legacy_cache_size = intel_size_cache,
980 #endif
981 	.c_detect_tlb	= intel_detect_tlb,
982 	.c_early_init   = early_init_intel,
983 	.c_bsp_init	= bsp_init_intel,
984 	.c_init		= init_intel,
985 	.c_x86_vendor	= X86_VENDOR_INTEL,
986 };
987 
988 cpu_dev_register(intel_cpu_dev);
989 
990 #undef pr_fmt
991 #define pr_fmt(fmt) "x86/split lock detection: " fmt
992 
993 static const struct {
994 	const char			*option;
995 	enum split_lock_detect_state	state;
996 } sld_options[] __initconst = {
997 	{ "off",	sld_off   },
998 	{ "warn",	sld_warn  },
999 	{ "fatal",	sld_fatal },
1000 	{ "ratelimit:", sld_ratelimit },
1001 };
1002 
1003 static struct ratelimit_state bld_ratelimit;
1004 
1005 static unsigned int sysctl_sld_mitigate = 1;
1006 static DEFINE_SEMAPHORE(buslock_sem, 1);
1007 
1008 #ifdef CONFIG_PROC_SYSCTL
1009 static struct ctl_table sld_sysctls[] = {
1010 	{
1011 		.procname       = "split_lock_mitigate",
1012 		.data           = &sysctl_sld_mitigate,
1013 		.maxlen         = sizeof(unsigned int),
1014 		.mode           = 0644,
1015 		.proc_handler	= proc_douintvec_minmax,
1016 		.extra1         = SYSCTL_ZERO,
1017 		.extra2         = SYSCTL_ONE,
1018 	},
1019 	{}
1020 };
1021 
1022 static int __init sld_mitigate_sysctl_init(void)
1023 {
1024 	register_sysctl_init("kernel", sld_sysctls);
1025 	return 0;
1026 }
1027 
1028 late_initcall(sld_mitigate_sysctl_init);
1029 #endif
1030 
1031 static inline bool match_option(const char *arg, int arglen, const char *opt)
1032 {
1033 	int len = strlen(opt), ratelimit;
1034 
1035 	if (strncmp(arg, opt, len))
1036 		return false;
1037 
1038 	/*
1039 	 * Min ratelimit is 1 bus lock/sec.
1040 	 * Max ratelimit is 1000 bus locks/sec.
1041 	 */
1042 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1043 	    ratelimit > 0 && ratelimit <= 1000) {
1044 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1045 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1046 		return true;
1047 	}
1048 
1049 	return len == arglen;
1050 }
1051 
1052 static bool split_lock_verify_msr(bool on)
1053 {
1054 	u64 ctrl, tmp;
1055 
1056 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1057 		return false;
1058 	if (on)
1059 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1060 	else
1061 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1062 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1063 		return false;
1064 	rdmsrl(MSR_TEST_CTRL, tmp);
1065 	return ctrl == tmp;
1066 }
1067 
1068 static void __init sld_state_setup(void)
1069 {
1070 	enum split_lock_detect_state state = sld_warn;
1071 	char arg[20];
1072 	int i, ret;
1073 
1074 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1075 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1076 		return;
1077 
1078 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1079 				  arg, sizeof(arg));
1080 	if (ret >= 0) {
1081 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1082 			if (match_option(arg, ret, sld_options[i].option)) {
1083 				state = sld_options[i].state;
1084 				break;
1085 			}
1086 		}
1087 	}
1088 	sld_state = state;
1089 }
1090 
1091 static void __init __split_lock_setup(void)
1092 {
1093 	if (!split_lock_verify_msr(false)) {
1094 		pr_info("MSR access failed: Disabled\n");
1095 		return;
1096 	}
1097 
1098 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1099 
1100 	if (!split_lock_verify_msr(true)) {
1101 		pr_info("MSR access failed: Disabled\n");
1102 		return;
1103 	}
1104 
1105 	/* Restore the MSR to its cached value. */
1106 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1107 
1108 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1109 }
1110 
1111 /*
1112  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1113  * is not implemented as one thread could undo the setting of the other
1114  * thread immediately after dropping the lock anyway.
1115  */
1116 static void sld_update_msr(bool on)
1117 {
1118 	u64 test_ctrl_val = msr_test_ctrl_cache;
1119 
1120 	if (on)
1121 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1122 
1123 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1124 }
1125 
1126 static void split_lock_init(void)
1127 {
1128 	/*
1129 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1130 	 * disabled.
1131 	 */
1132 	if (sld_state == sld_ratelimit) {
1133 		split_lock_verify_msr(false);
1134 		return;
1135 	}
1136 
1137 	if (cpu_model_supports_sld)
1138 		split_lock_verify_msr(sld_state != sld_off);
1139 }
1140 
1141 static void __split_lock_reenable_unlock(struct work_struct *work)
1142 {
1143 	sld_update_msr(true);
1144 	up(&buslock_sem);
1145 }
1146 
1147 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1148 
1149 static void __split_lock_reenable(struct work_struct *work)
1150 {
1151 	sld_update_msr(true);
1152 }
1153 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1154 
1155 /*
1156  * If a CPU goes offline with pending delayed work to re-enable split lock
1157  * detection then the delayed work will be executed on some other CPU. That
1158  * handles releasing the buslock_sem, but because it executes on a
1159  * different CPU probably won't re-enable split lock detection. This is a
1160  * problem on HT systems since the sibling CPU on the same core may then be
1161  * left running with split lock detection disabled.
1162  *
1163  * Unconditionally re-enable detection here.
1164  */
1165 static int splitlock_cpu_offline(unsigned int cpu)
1166 {
1167 	sld_update_msr(true);
1168 
1169 	return 0;
1170 }
1171 
1172 static void split_lock_warn(unsigned long ip)
1173 {
1174 	struct delayed_work *work;
1175 	int cpu;
1176 
1177 	if (!current->reported_split_lock)
1178 		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1179 				    current->comm, current->pid, ip);
1180 	current->reported_split_lock = 1;
1181 
1182 	if (sysctl_sld_mitigate) {
1183 		/*
1184 		 * misery factor #1:
1185 		 * sleep 10ms before trying to execute split lock.
1186 		 */
1187 		if (msleep_interruptible(10) > 0)
1188 			return;
1189 		/*
1190 		 * Misery factor #2:
1191 		 * only allow one buslocked disabled core at a time.
1192 		 */
1193 		if (down_interruptible(&buslock_sem) == -EINTR)
1194 			return;
1195 		work = &sl_reenable_unlock;
1196 	} else {
1197 		work = &sl_reenable;
1198 	}
1199 
1200 	cpu = get_cpu();
1201 	schedule_delayed_work_on(cpu, work, 2);
1202 
1203 	/* Disable split lock detection on this CPU to make progress */
1204 	sld_update_msr(false);
1205 	put_cpu();
1206 }
1207 
1208 bool handle_guest_split_lock(unsigned long ip)
1209 {
1210 	if (sld_state == sld_warn) {
1211 		split_lock_warn(ip);
1212 		return true;
1213 	}
1214 
1215 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1216 		     current->comm, current->pid,
1217 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1218 
1219 	current->thread.error_code = 0;
1220 	current->thread.trap_nr = X86_TRAP_AC;
1221 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1222 	return false;
1223 }
1224 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1225 
1226 static void bus_lock_init(void)
1227 {
1228 	u64 val;
1229 
1230 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1231 		return;
1232 
1233 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1234 
1235 	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1236 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1237 	    sld_state == sld_off) {
1238 		/*
1239 		 * Warn and fatal are handled by #AC for split lock if #AC for
1240 		 * split lock is supported.
1241 		 */
1242 		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1243 	} else {
1244 		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1245 	}
1246 
1247 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1248 }
1249 
1250 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1251 {
1252 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1253 		return false;
1254 	split_lock_warn(regs->ip);
1255 	return true;
1256 }
1257 
1258 void handle_bus_lock(struct pt_regs *regs)
1259 {
1260 	switch (sld_state) {
1261 	case sld_off:
1262 		break;
1263 	case sld_ratelimit:
1264 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1265 		while (!__ratelimit(&bld_ratelimit))
1266 			msleep(20);
1267 		/* Warn on the bus lock. */
1268 		fallthrough;
1269 	case sld_warn:
1270 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1271 				    current->comm, current->pid, regs->ip);
1272 		break;
1273 	case sld_fatal:
1274 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1275 		break;
1276 	}
1277 }
1278 
1279 /*
1280  * CPU models that are known to have the per-core split-lock detection
1281  * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1282  */
1283 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1284 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,	0),
1285 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,	0),
1286 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,	0),
1287 	{}
1288 };
1289 
1290 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1291 {
1292 	const struct x86_cpu_id *m;
1293 	u64 ia32_core_caps;
1294 
1295 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1296 		return;
1297 
1298 	/* Check for CPUs that have support but do not enumerate it: */
1299 	m = x86_match_cpu(split_lock_cpu_ids);
1300 	if (m)
1301 		goto supported;
1302 
1303 	if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1304 		return;
1305 
1306 	/*
1307 	 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1308 	 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is.  All CPUs that set
1309 	 * it have split lock detection.
1310 	 */
1311 	rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1312 	if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1313 		goto supported;
1314 
1315 	/* CPU is not in the model list and does not have the MSR bit: */
1316 	return;
1317 
1318 supported:
1319 	cpu_model_supports_sld = true;
1320 	__split_lock_setup();
1321 }
1322 
1323 static void sld_state_show(void)
1324 {
1325 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1326 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1327 		return;
1328 
1329 	switch (sld_state) {
1330 	case sld_off:
1331 		pr_info("disabled\n");
1332 		break;
1333 	case sld_warn:
1334 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1335 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1336 			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1337 					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1338 				pr_warn("No splitlock CPU offline handler\n");
1339 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1340 			pr_info("#DB: warning on user-space bus_locks\n");
1341 		}
1342 		break;
1343 	case sld_fatal:
1344 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1345 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1346 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1347 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1348 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1349 				" from non-WB" : "");
1350 		}
1351 		break;
1352 	case sld_ratelimit:
1353 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1354 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1355 		break;
1356 	}
1357 }
1358 
1359 void __init sld_setup(struct cpuinfo_x86 *c)
1360 {
1361 	split_lock_setup(c);
1362 	sld_state_setup();
1363 	sld_state_show();
1364 }
1365 
1366 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1367 
1368 /**
1369  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1370  *
1371  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1372  * a hybrid processor. If the processor is not hybrid, returns 0.
1373  */
1374 u8 get_this_hybrid_cpu_type(void)
1375 {
1376 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1377 		return 0;
1378 
1379 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1380 }
1381