1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 4 #include <linux/string.h> 5 #include <linux/bitops.h> 6 #include <linux/smp.h> 7 #include <linux/sched.h> 8 #include <linux/sched/clock.h> 9 #include <linux/thread_info.h> 10 #include <linux/init.h> 11 #include <linux/uaccess.h> 12 13 #include <asm/cpufeature.h> 14 #include <asm/pgtable.h> 15 #include <asm/msr.h> 16 #include <asm/bugs.h> 17 #include <asm/cpu.h> 18 #include <asm/intel-family.h> 19 #include <asm/microcode_intel.h> 20 #include <asm/hwcap2.h> 21 #include <asm/elf.h> 22 23 #ifdef CONFIG_X86_64 24 #include <linux/topology.h> 25 #endif 26 27 #include "cpu.h" 28 29 #ifdef CONFIG_X86_LOCAL_APIC 30 #include <asm/mpspec.h> 31 #include <asm/apic.h> 32 #endif 33 34 /* 35 * Just in case our CPU detection goes bad, or you have a weird system, 36 * allow a way to override the automatic disabling of MPX. 37 */ 38 static int forcempx; 39 40 static int __init forcempx_setup(char *__unused) 41 { 42 forcempx = 1; 43 44 return 1; 45 } 46 __setup("intel-skd-046-workaround=disable", forcempx_setup); 47 48 void check_mpx_erratum(struct cpuinfo_x86 *c) 49 { 50 if (forcempx) 51 return; 52 /* 53 * Turn off the MPX feature on CPUs where SMEP is not 54 * available or disabled. 55 * 56 * Works around Intel Erratum SKD046: "Branch Instructions 57 * May Initialize MPX Bound Registers Incorrectly". 58 * 59 * This might falsely disable MPX on systems without 60 * SMEP, like Atom processors without SMEP. But there 61 * is no such hardware known at the moment. 62 */ 63 if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) { 64 setup_clear_cpu_cap(X86_FEATURE_MPX); 65 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n"); 66 } 67 } 68 69 /* 70 * Processors which have self-snooping capability can handle conflicting 71 * memory type across CPUs by snooping its own cache. However, there exists 72 * CPU models in which having conflicting memory types still leads to 73 * unpredictable behavior, machine check errors, or hangs. Clear this 74 * feature to prevent its use on machines with known erratas. 75 */ 76 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) 77 { 78 switch (c->x86_model) { 79 case INTEL_FAM6_CORE_YONAH: 80 case INTEL_FAM6_CORE2_MEROM: 81 case INTEL_FAM6_CORE2_MEROM_L: 82 case INTEL_FAM6_CORE2_PENRYN: 83 case INTEL_FAM6_CORE2_DUNNINGTON: 84 case INTEL_FAM6_NEHALEM: 85 case INTEL_FAM6_NEHALEM_G: 86 case INTEL_FAM6_NEHALEM_EP: 87 case INTEL_FAM6_NEHALEM_EX: 88 case INTEL_FAM6_WESTMERE: 89 case INTEL_FAM6_WESTMERE_EP: 90 case INTEL_FAM6_SANDYBRIDGE: 91 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); 92 } 93 } 94 95 static bool ring3mwait_disabled __read_mostly; 96 97 static int __init ring3mwait_disable(char *__unused) 98 { 99 ring3mwait_disabled = true; 100 return 0; 101 } 102 __setup("ring3mwait=disable", ring3mwait_disable); 103 104 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 105 { 106 /* 107 * Ring 3 MONITOR/MWAIT feature cannot be detected without 108 * cpu model and family comparison. 109 */ 110 if (c->x86 != 6) 111 return; 112 switch (c->x86_model) { 113 case INTEL_FAM6_XEON_PHI_KNL: 114 case INTEL_FAM6_XEON_PHI_KNM: 115 break; 116 default: 117 return; 118 } 119 120 if (ring3mwait_disabled) 121 return; 122 123 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 124 this_cpu_or(msr_misc_features_shadow, 125 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 126 127 if (c == &boot_cpu_data) 128 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 129 } 130 131 /* 132 * Early microcode releases for the Spectre v2 mitigation were broken. 133 * Information taken from; 134 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf 135 * - https://kb.vmware.com/s/article/52345 136 * - Microcode revisions observed in the wild 137 * - Release note from 20180108 microcode release 138 */ 139 struct sku_microcode { 140 u8 model; 141 u8 stepping; 142 u32 microcode; 143 }; 144 static const struct sku_microcode spectre_bad_microcodes[] = { 145 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 }, 146 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 }, 147 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 }, 148 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 }, 149 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 }, 150 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, 151 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, 152 { INTEL_FAM6_BROADWELL, 0x04, 0x28 }, 153 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b }, 154 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 }, 155 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 }, 156 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, 157 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 }, 158 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 }, 159 { INTEL_FAM6_HASWELL, 0x03, 0x23 }, 160 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, 161 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, 162 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, 163 /* Observed in the wild */ 164 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, 165 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, 166 }; 167 168 static bool bad_spectre_microcode(struct cpuinfo_x86 *c) 169 { 170 int i; 171 172 /* 173 * We know that the hypervisor lie to us on the microcode version so 174 * we may as well hope that it is running the correct version. 175 */ 176 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 177 return false; 178 179 if (c->x86 != 6) 180 return false; 181 182 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { 183 if (c->x86_model == spectre_bad_microcodes[i].model && 184 c->x86_stepping == spectre_bad_microcodes[i].stepping) 185 return (c->microcode <= spectre_bad_microcodes[i].microcode); 186 } 187 return false; 188 } 189 190 static void early_init_intel(struct cpuinfo_x86 *c) 191 { 192 u64 misc_enable; 193 194 /* Unmask CPUID levels if masked: */ 195 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 196 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 197 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 198 c->cpuid_level = cpuid_eax(0); 199 get_cpu_cap(c); 200 } 201 } 202 203 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 204 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 205 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 206 207 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 208 c->microcode = intel_get_microcode_revision(); 209 210 /* Now if any of them are set, check the blacklist and clear the lot */ 211 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || 212 cpu_has(c, X86_FEATURE_INTEL_STIBP) || 213 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || 214 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { 215 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); 216 setup_clear_cpu_cap(X86_FEATURE_IBRS); 217 setup_clear_cpu_cap(X86_FEATURE_IBPB); 218 setup_clear_cpu_cap(X86_FEATURE_STIBP); 219 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); 220 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); 221 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); 222 setup_clear_cpu_cap(X86_FEATURE_SSBD); 223 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); 224 } 225 226 /* 227 * Atom erratum AAE44/AAF40/AAG38/AAH41: 228 * 229 * A race condition between speculative fetches and invalidating 230 * a large page. This is worked around in microcode, but we 231 * need the microcode to have already been loaded... so if it is 232 * not, recommend a BIOS update and disable large pages. 233 */ 234 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && 235 c->microcode < 0x20e) { 236 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 237 clear_cpu_cap(c, X86_FEATURE_PSE); 238 } 239 240 #ifdef CONFIG_X86_64 241 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 242 #else 243 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 244 if (c->x86 == 15 && c->x86_cache_alignment == 64) 245 c->x86_cache_alignment = 128; 246 #endif 247 248 /* CPUID workaround for 0F33/0F34 CPU */ 249 if (c->x86 == 0xF && c->x86_model == 0x3 250 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) 251 c->x86_phys_bits = 36; 252 253 /* 254 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 255 * with P/T states and does not stop in deep C-states. 256 * 257 * It is also reliable across cores and sockets. (but not across 258 * cabinets - we turn it off in that case explicitly.) 259 */ 260 if (c->x86_power & (1 << 8)) { 261 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 262 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 263 } 264 265 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 266 if (c->x86 == 6) { 267 switch (c->x86_model) { 268 case INTEL_FAM6_ATOM_SALTWELL_MID: 269 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 270 case INTEL_FAM6_ATOM_SILVERMONT_MID: 271 case INTEL_FAM6_ATOM_AIRMONT_NP: 272 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 273 break; 274 default: 275 break; 276 } 277 } 278 279 /* 280 * There is a known erratum on Pentium III and Core Solo 281 * and Core Duo CPUs. 282 * " Page with PAT set to WC while associated MTRR is UC 283 * may consolidate to UC " 284 * Because of this erratum, it is better to stick with 285 * setting WC in MTRR rather than using PAT on these CPUs. 286 * 287 * Enable PAT WC only on P4, Core 2 or later CPUs. 288 */ 289 if (c->x86 == 6 && c->x86_model < 15) 290 clear_cpu_cap(c, X86_FEATURE_PAT); 291 292 /* 293 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 294 * clear the fast string and enhanced fast string CPU capabilities. 295 */ 296 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 297 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 298 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 299 pr_info("Disabled fast string operations\n"); 300 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 301 setup_clear_cpu_cap(X86_FEATURE_ERMS); 302 } 303 } 304 305 /* 306 * Intel Quark Core DevMan_001.pdf section 6.4.11 307 * "The operating system also is required to invalidate (i.e., flush) 308 * the TLB when any changes are made to any of the page table entries. 309 * The operating system must reload CR3 to cause the TLB to be flushed" 310 * 311 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 312 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE 313 * to be modified. 314 */ 315 if (c->x86 == 5 && c->x86_model == 9) { 316 pr_info("Disabling PGE capability bit\n"); 317 setup_clear_cpu_cap(X86_FEATURE_PGE); 318 } 319 320 if (c->cpuid_level >= 0x00000001) { 321 u32 eax, ebx, ecx, edx; 322 323 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 324 /* 325 * If HTT (EDX[28]) is set EBX[16:23] contain the number of 326 * apicids which are reserved per package. Store the resulting 327 * shift value for the package management code. 328 */ 329 if (edx & (1U << 28)) 330 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); 331 } 332 333 check_mpx_erratum(c); 334 check_memory_type_self_snoop_errata(c); 335 336 /* 337 * Get the number of SMT siblings early from the extended topology 338 * leaf, if available. Otherwise try the legacy SMT detection. 339 */ 340 if (detect_extended_topology_early(c) < 0) 341 detect_ht_early(c); 342 } 343 344 #ifdef CONFIG_X86_32 345 /* 346 * Early probe support logic for ppro memory erratum #50 347 * 348 * This is called before we do cpu ident work 349 */ 350 351 int ppro_with_ram_bug(void) 352 { 353 /* Uses data from early_cpu_detect now */ 354 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 355 boot_cpu_data.x86 == 6 && 356 boot_cpu_data.x86_model == 1 && 357 boot_cpu_data.x86_stepping < 8) { 358 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 359 return 1; 360 } 361 return 0; 362 } 363 364 static void intel_smp_check(struct cpuinfo_x86 *c) 365 { 366 /* calling is from identify_secondary_cpu() ? */ 367 if (!c->cpu_index) 368 return; 369 370 /* 371 * Mask B, Pentium, but not Pentium MMX 372 */ 373 if (c->x86 == 5 && 374 c->x86_stepping >= 1 && c->x86_stepping <= 4 && 375 c->x86_model <= 3) { 376 /* 377 * Remember we have B step Pentia with bugs 378 */ 379 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 380 "with B stepping processors.\n"); 381 } 382 } 383 384 static int forcepae; 385 static int __init forcepae_setup(char *__unused) 386 { 387 forcepae = 1; 388 return 1; 389 } 390 __setup("forcepae", forcepae_setup); 391 392 static void intel_workarounds(struct cpuinfo_x86 *c) 393 { 394 #ifdef CONFIG_X86_F00F_BUG 395 /* 396 * All models of Pentium and Pentium with MMX technology CPUs 397 * have the F0 0F bug, which lets nonprivileged users lock up the 398 * system. Announce that the fault handler will be checking for it. 399 * The Quark is also family 5, but does not have the same bug. 400 */ 401 clear_cpu_bug(c, X86_BUG_F00F); 402 if (c->x86 == 5 && c->x86_model < 9) { 403 static int f00f_workaround_enabled; 404 405 set_cpu_bug(c, X86_BUG_F00F); 406 if (!f00f_workaround_enabled) { 407 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 408 f00f_workaround_enabled = 1; 409 } 410 } 411 #endif 412 413 /* 414 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 415 * model 3 mask 3 416 */ 417 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) 418 clear_cpu_cap(c, X86_FEATURE_SEP); 419 420 /* 421 * PAE CPUID issue: many Pentium M report no PAE but may have a 422 * functionally usable PAE implementation. 423 * Forcefully enable PAE if kernel parameter "forcepae" is present. 424 */ 425 if (forcepae) { 426 pr_warn("PAE forced!\n"); 427 set_cpu_cap(c, X86_FEATURE_PAE); 428 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 429 } 430 431 /* 432 * P4 Xeon erratum 037 workaround. 433 * Hardware prefetcher may cause stale data to be loaded into the cache. 434 */ 435 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { 436 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 437 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 438 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 439 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 440 } 441 } 442 443 /* 444 * See if we have a good local APIC by checking for buggy Pentia, 445 * i.e. all B steppings and the C2 stepping of P54C when using their 446 * integrated APIC (see 11AP erratum in "Pentium Processor 447 * Specification Update"). 448 */ 449 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 450 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) 451 set_cpu_bug(c, X86_BUG_11AP); 452 453 454 #ifdef CONFIG_X86_INTEL_USERCOPY 455 /* 456 * Set up the preferred alignment for movsl bulk memory moves 457 */ 458 switch (c->x86) { 459 case 4: /* 486: untested */ 460 break; 461 case 5: /* Old Pentia: untested */ 462 break; 463 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 464 movsl_mask.mask = 7; 465 break; 466 case 15: /* P4 is OK down to 8-byte alignment */ 467 movsl_mask.mask = 7; 468 break; 469 } 470 #endif 471 472 intel_smp_check(c); 473 } 474 #else 475 static void intel_workarounds(struct cpuinfo_x86 *c) 476 { 477 } 478 #endif 479 480 static void srat_detect_node(struct cpuinfo_x86 *c) 481 { 482 #ifdef CONFIG_NUMA 483 unsigned node; 484 int cpu = smp_processor_id(); 485 486 /* Don't do the funky fallback heuristics the AMD version employs 487 for now. */ 488 node = numa_cpu_node(cpu); 489 if (node == NUMA_NO_NODE || !node_online(node)) { 490 /* reuse the value from init_cpu_to_node() */ 491 node = cpu_to_node(cpu); 492 } 493 numa_set_node(cpu, node); 494 #endif 495 } 496 497 #define MSR_IA32_TME_ACTIVATE 0x982 498 499 /* Helpers to access TME_ACTIVATE MSR */ 500 #define TME_ACTIVATE_LOCKED(x) (x & 0x1) 501 #define TME_ACTIVATE_ENABLED(x) (x & 0x2) 502 503 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ 504 #define TME_ACTIVATE_POLICY_AES_XTS_128 0 505 506 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ 507 508 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ 509 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 510 511 /* Values for mktme_status (SW only construct) */ 512 #define MKTME_ENABLED 0 513 #define MKTME_DISABLED 1 514 #define MKTME_UNINITIALIZED 2 515 static int mktme_status = MKTME_UNINITIALIZED; 516 517 static void detect_tme(struct cpuinfo_x86 *c) 518 { 519 u64 tme_activate, tme_policy, tme_crypto_algs; 520 int keyid_bits = 0, nr_keyids = 0; 521 static u64 tme_activate_cpu0 = 0; 522 523 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); 524 525 if (mktme_status != MKTME_UNINITIALIZED) { 526 if (tme_activate != tme_activate_cpu0) { 527 /* Broken BIOS? */ 528 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); 529 pr_err_once("x86/tme: MKTME is not usable\n"); 530 mktme_status = MKTME_DISABLED; 531 532 /* Proceed. We may need to exclude bits from x86_phys_bits. */ 533 } 534 } else { 535 tme_activate_cpu0 = tme_activate; 536 } 537 538 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { 539 pr_info_once("x86/tme: not enabled by BIOS\n"); 540 mktme_status = MKTME_DISABLED; 541 return; 542 } 543 544 if (mktme_status != MKTME_UNINITIALIZED) 545 goto detect_keyid_bits; 546 547 pr_info("x86/tme: enabled by BIOS\n"); 548 549 tme_policy = TME_ACTIVATE_POLICY(tme_activate); 550 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) 551 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); 552 553 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); 554 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { 555 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", 556 tme_crypto_algs); 557 mktme_status = MKTME_DISABLED; 558 } 559 detect_keyid_bits: 560 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); 561 nr_keyids = (1UL << keyid_bits) - 1; 562 if (nr_keyids) { 563 pr_info_once("x86/mktme: enabled by BIOS\n"); 564 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); 565 } else { 566 pr_info_once("x86/mktme: disabled by BIOS\n"); 567 } 568 569 if (mktme_status == MKTME_UNINITIALIZED) { 570 /* MKTME is usable */ 571 mktme_status = MKTME_ENABLED; 572 } 573 574 /* 575 * KeyID bits effectively lower the number of physical address 576 * bits. Update cpuinfo_x86::x86_phys_bits accordingly. 577 */ 578 c->x86_phys_bits -= keyid_bits; 579 } 580 581 static void init_cpuid_fault(struct cpuinfo_x86 *c) 582 { 583 u64 msr; 584 585 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 586 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 587 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 588 } 589 } 590 591 static void init_intel_misc_features(struct cpuinfo_x86 *c) 592 { 593 u64 msr; 594 595 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 596 return; 597 598 /* Clear all MISC features */ 599 this_cpu_write(msr_misc_features_shadow, 0); 600 601 /* Check features and update capabilities and shadow control bits */ 602 init_cpuid_fault(c); 603 probe_xeon_phi_r3mwait(c); 604 605 msr = this_cpu_read(msr_misc_features_shadow); 606 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 607 } 608 609 static void init_intel(struct cpuinfo_x86 *c) 610 { 611 early_init_intel(c); 612 613 intel_workarounds(c); 614 615 /* 616 * Detect the extended topology information if available. This 617 * will reinitialise the initial_apicid which will be used 618 * in init_intel_cacheinfo() 619 */ 620 detect_extended_topology(c); 621 622 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 623 /* 624 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 625 * detection. 626 */ 627 detect_num_cpu_cores(c); 628 #ifdef CONFIG_X86_32 629 detect_ht(c); 630 #endif 631 } 632 633 init_intel_cacheinfo(c); 634 635 if (c->cpuid_level > 9) { 636 unsigned eax = cpuid_eax(10); 637 /* Check for version and the number of counters */ 638 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 639 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 640 } 641 642 if (cpu_has(c, X86_FEATURE_XMM2)) 643 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 644 645 if (boot_cpu_has(X86_FEATURE_DS)) { 646 unsigned int l1, l2; 647 648 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 649 if (!(l1 & (1<<11))) 650 set_cpu_cap(c, X86_FEATURE_BTS); 651 if (!(l1 & (1<<12))) 652 set_cpu_cap(c, X86_FEATURE_PEBS); 653 } 654 655 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 656 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 657 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 658 659 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 660 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 661 set_cpu_bug(c, X86_BUG_MONITOR); 662 663 #ifdef CONFIG_X86_64 664 if (c->x86 == 15) 665 c->x86_cache_alignment = c->x86_clflush_size * 2; 666 if (c->x86 == 6) 667 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 668 #else 669 /* 670 * Names for the Pentium II/Celeron processors 671 * detectable only by also checking the cache size. 672 * Dixon is NOT a Celeron. 673 */ 674 if (c->x86 == 6) { 675 unsigned int l2 = c->x86_cache_size; 676 char *p = NULL; 677 678 switch (c->x86_model) { 679 case 5: 680 if (l2 == 0) 681 p = "Celeron (Covington)"; 682 else if (l2 == 256) 683 p = "Mobile Pentium II (Dixon)"; 684 break; 685 686 case 6: 687 if (l2 == 128) 688 p = "Celeron (Mendocino)"; 689 else if (c->x86_stepping == 0 || c->x86_stepping == 5) 690 p = "Celeron-A"; 691 break; 692 693 case 8: 694 if (l2 == 128) 695 p = "Celeron (Coppermine)"; 696 break; 697 } 698 699 if (p) 700 strcpy(c->x86_model_id, p); 701 } 702 703 if (c->x86 == 15) 704 set_cpu_cap(c, X86_FEATURE_P4); 705 if (c->x86 == 6) 706 set_cpu_cap(c, X86_FEATURE_P3); 707 #endif 708 709 /* Work around errata */ 710 srat_detect_node(c); 711 712 init_ia32_feat_ctl(c); 713 714 if (cpu_has(c, X86_FEATURE_TME)) 715 detect_tme(c); 716 717 init_intel_misc_features(c); 718 719 if (tsx_ctrl_state == TSX_CTRL_ENABLE) 720 tsx_enable(); 721 if (tsx_ctrl_state == TSX_CTRL_DISABLE) 722 tsx_disable(); 723 } 724 725 #ifdef CONFIG_X86_32 726 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 727 { 728 /* 729 * Intel PIII Tualatin. This comes in two flavours. 730 * One has 256kb of cache, the other 512. We have no way 731 * to determine which, so we use a boottime override 732 * for the 512kb model, and assume 256 otherwise. 733 */ 734 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 735 size = 256; 736 737 /* 738 * Intel Quark SoC X1000 contains a 4-way set associative 739 * 16K cache with a 16 byte cache line and 256 lines per tag 740 */ 741 if ((c->x86 == 5) && (c->x86_model == 9)) 742 size = 16; 743 return size; 744 } 745 #endif 746 747 #define TLB_INST_4K 0x01 748 #define TLB_INST_4M 0x02 749 #define TLB_INST_2M_4M 0x03 750 751 #define TLB_INST_ALL 0x05 752 #define TLB_INST_1G 0x06 753 754 #define TLB_DATA_4K 0x11 755 #define TLB_DATA_4M 0x12 756 #define TLB_DATA_2M_4M 0x13 757 #define TLB_DATA_4K_4M 0x14 758 759 #define TLB_DATA_1G 0x16 760 761 #define TLB_DATA0_4K 0x21 762 #define TLB_DATA0_4M 0x22 763 #define TLB_DATA0_2M_4M 0x23 764 765 #define STLB_4K 0x41 766 #define STLB_4K_2M 0x42 767 768 static const struct _tlb_table intel_tlb_table[] = { 769 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 770 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 771 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 772 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 773 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 774 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 775 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" }, 776 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 777 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 778 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 779 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 780 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 781 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 782 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 783 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 784 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 785 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 786 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 787 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 788 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 789 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, 790 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, 791 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, 792 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 793 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 794 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 795 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 796 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 797 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 798 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 799 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 800 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 801 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 802 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 803 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, 804 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 805 { 0x00, 0, 0 } 806 }; 807 808 static void intel_tlb_lookup(const unsigned char desc) 809 { 810 unsigned char k; 811 if (desc == 0) 812 return; 813 814 /* look up this descriptor in the table */ 815 for (k = 0; intel_tlb_table[k].descriptor != desc && 816 intel_tlb_table[k].descriptor != 0; k++) 817 ; 818 819 if (intel_tlb_table[k].tlb_type == 0) 820 return; 821 822 switch (intel_tlb_table[k].tlb_type) { 823 case STLB_4K: 824 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 825 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 826 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 827 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 828 break; 829 case STLB_4K_2M: 830 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 831 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 832 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 833 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 834 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 835 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 836 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 837 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 838 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 839 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 840 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 841 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 842 break; 843 case TLB_INST_ALL: 844 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 845 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 846 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 847 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 848 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 849 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 850 break; 851 case TLB_INST_4K: 852 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 853 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 854 break; 855 case TLB_INST_4M: 856 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 857 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 858 break; 859 case TLB_INST_2M_4M: 860 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 861 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 862 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 863 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 864 break; 865 case TLB_DATA_4K: 866 case TLB_DATA0_4K: 867 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 868 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 869 break; 870 case TLB_DATA_4M: 871 case TLB_DATA0_4M: 872 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 873 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 874 break; 875 case TLB_DATA_2M_4M: 876 case TLB_DATA0_2M_4M: 877 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 878 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 879 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 880 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 881 break; 882 case TLB_DATA_4K_4M: 883 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 884 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 885 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 886 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 887 break; 888 case TLB_DATA_1G: 889 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 890 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 891 break; 892 } 893 } 894 895 static void intel_detect_tlb(struct cpuinfo_x86 *c) 896 { 897 int i, j, n; 898 unsigned int regs[4]; 899 unsigned char *desc = (unsigned char *)regs; 900 901 if (c->cpuid_level < 2) 902 return; 903 904 /* Number of times to iterate */ 905 n = cpuid_eax(2) & 0xFF; 906 907 for (i = 0 ; i < n ; i++) { 908 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 909 910 /* If bit 31 is set, this is an unknown format */ 911 for (j = 0 ; j < 3 ; j++) 912 if (regs[j] & (1 << 31)) 913 regs[j] = 0; 914 915 /* Byte 0 is level count, not a descriptor */ 916 for (j = 1 ; j < 16 ; j++) 917 intel_tlb_lookup(desc[j]); 918 } 919 } 920 921 static const struct cpu_dev intel_cpu_dev = { 922 .c_vendor = "Intel", 923 .c_ident = { "GenuineIntel" }, 924 #ifdef CONFIG_X86_32 925 .legacy_models = { 926 { .family = 4, .model_names = 927 { 928 [0] = "486 DX-25/33", 929 [1] = "486 DX-50", 930 [2] = "486 SX", 931 [3] = "486 DX/2", 932 [4] = "486 SL", 933 [5] = "486 SX/2", 934 [7] = "486 DX/2-WB", 935 [8] = "486 DX/4", 936 [9] = "486 DX/4-WB" 937 } 938 }, 939 { .family = 5, .model_names = 940 { 941 [0] = "Pentium 60/66 A-step", 942 [1] = "Pentium 60/66", 943 [2] = "Pentium 75 - 200", 944 [3] = "OverDrive PODP5V83", 945 [4] = "Pentium MMX", 946 [7] = "Mobile Pentium 75 - 200", 947 [8] = "Mobile Pentium MMX", 948 [9] = "Quark SoC X1000", 949 } 950 }, 951 { .family = 6, .model_names = 952 { 953 [0] = "Pentium Pro A-step", 954 [1] = "Pentium Pro", 955 [3] = "Pentium II (Klamath)", 956 [4] = "Pentium II (Deschutes)", 957 [5] = "Pentium II (Deschutes)", 958 [6] = "Mobile Pentium II", 959 [7] = "Pentium III (Katmai)", 960 [8] = "Pentium III (Coppermine)", 961 [10] = "Pentium III (Cascades)", 962 [11] = "Pentium III (Tualatin)", 963 } 964 }, 965 { .family = 15, .model_names = 966 { 967 [0] = "Pentium 4 (Unknown)", 968 [1] = "Pentium 4 (Willamette)", 969 [2] = "Pentium 4 (Northwood)", 970 [4] = "Pentium 4 (Foster)", 971 [5] = "Pentium 4 (Foster)", 972 } 973 }, 974 }, 975 .legacy_cache_size = intel_size_cache, 976 #endif 977 .c_detect_tlb = intel_detect_tlb, 978 .c_early_init = early_init_intel, 979 .c_init = init_intel, 980 .c_x86_vendor = X86_VENDOR_INTEL, 981 }; 982 983 cpu_dev_register(intel_cpu_dev); 984