xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision a8da474e)
1 #include <linux/kernel.h>
2 
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/processor.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16 
17 #ifdef CONFIG_X86_64
18 #include <linux/topology.h>
19 #endif
20 
21 #include "cpu.h"
22 
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #endif
27 
28 static void early_init_intel(struct cpuinfo_x86 *c)
29 {
30 	u64 misc_enable;
31 
32 	/* Unmask CPUID levels if masked: */
33 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 			c->cpuid_level = cpuid_eax(0);
37 			get_cpu_cap(c);
38 		}
39 	}
40 
41 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
43 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44 
45 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 		unsigned lower_word;
47 
48 		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 		/* Required by the SDM */
50 		sync_core();
51 		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52 	}
53 
54 	/*
55 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56 	 *
57 	 * A race condition between speculative fetches and invalidating
58 	 * a large page.  This is worked around in microcode, but we
59 	 * need the microcode to have already been loaded... so if it is
60 	 * not, recommend a BIOS update and disable large pages.
61 	 */
62 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 	    c->microcode < 0x20e) {
64 		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65 		clear_cpu_cap(c, X86_FEATURE_PSE);
66 	}
67 
68 #ifdef CONFIG_X86_64
69 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70 #else
71 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 		c->x86_cache_alignment = 128;
74 #endif
75 
76 	/* CPUID workaround for 0F33/0F34 CPU */
77 	if (c->x86 == 0xF && c->x86_model == 0x3
78 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 		c->x86_phys_bits = 36;
80 
81 	/*
82 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 	 * with P/T states and does not stop in deep C-states.
84 	 *
85 	 * It is also reliable across cores and sockets. (but not across
86 	 * cabinets - we turn it off in that case explicitly.)
87 	 */
88 	if (c->x86_power & (1 << 8)) {
89 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 		if (!check_tsc_unstable())
92 			set_sched_clock_stable();
93 	}
94 
95 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 	if (c->x86 == 6) {
97 		switch (c->x86_model) {
98 		case 0x27:	/* Penwell */
99 		case 0x35:	/* Cloverview */
100 		case 0x4a:	/* Merrifield */
101 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
102 			break;
103 		default:
104 			break;
105 		}
106 	}
107 
108 	/*
109 	 * There is a known erratum on Pentium III and Core Solo
110 	 * and Core Duo CPUs.
111 	 * " Page with PAT set to WC while associated MTRR is UC
112 	 *   may consolidate to UC "
113 	 * Because of this erratum, it is better to stick with
114 	 * setting WC in MTRR rather than using PAT on these CPUs.
115 	 *
116 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
117 	 */
118 	if (c->x86 == 6 && c->x86_model < 15)
119 		clear_cpu_cap(c, X86_FEATURE_PAT);
120 
121 #ifdef CONFIG_KMEMCHECK
122 	/*
123 	 * P4s have a "fast strings" feature which causes single-
124 	 * stepping REP instructions to only generate a #DB on
125 	 * cache-line boundaries.
126 	 *
127 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
128 	 * (model 2) with the same problem.
129 	 */
130 	if (c->x86 == 15)
131 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
132 				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
133 			pr_info("kmemcheck: Disabling fast string operations\n");
134 #endif
135 
136 	/*
137 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
138 	 * clear the fast string and enhanced fast string CPU capabilities.
139 	 */
140 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
141 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
142 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
143 			printk(KERN_INFO "Disabled fast string operations\n");
144 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
145 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
146 		}
147 	}
148 
149 	/*
150 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
151 	 * "The operating system also is required to invalidate (i.e., flush)
152 	 *  the TLB when any changes are made to any of the page table entries.
153 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
154 	 *
155 	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
156 	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
157 	 * to be modified
158 	 */
159 	if (c->x86 == 5 && c->x86_model == 9) {
160 		pr_info("Disabling PGE capability bit\n");
161 		setup_clear_cpu_cap(X86_FEATURE_PGE);
162 	}
163 }
164 
165 #ifdef CONFIG_X86_32
166 /*
167  *	Early probe support logic for ppro memory erratum #50
168  *
169  *	This is called before we do cpu ident work
170  */
171 
172 int ppro_with_ram_bug(void)
173 {
174 	/* Uses data from early_cpu_detect now */
175 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
176 	    boot_cpu_data.x86 == 6 &&
177 	    boot_cpu_data.x86_model == 1 &&
178 	    boot_cpu_data.x86_mask < 8) {
179 		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
180 		return 1;
181 	}
182 	return 0;
183 }
184 
185 static void intel_smp_check(struct cpuinfo_x86 *c)
186 {
187 	/* calling is from identify_secondary_cpu() ? */
188 	if (!c->cpu_index)
189 		return;
190 
191 	/*
192 	 * Mask B, Pentium, but not Pentium MMX
193 	 */
194 	if (c->x86 == 5 &&
195 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
196 	    c->x86_model <= 3) {
197 		/*
198 		 * Remember we have B step Pentia with bugs
199 		 */
200 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
201 				    "with B stepping processors.\n");
202 	}
203 }
204 
205 static int forcepae;
206 static int __init forcepae_setup(char *__unused)
207 {
208 	forcepae = 1;
209 	return 1;
210 }
211 __setup("forcepae", forcepae_setup);
212 
213 static void intel_workarounds(struct cpuinfo_x86 *c)
214 {
215 #ifdef CONFIG_X86_F00F_BUG
216 	/*
217 	 * All models of Pentium and Pentium with MMX technology CPUs
218 	 * have the F0 0F bug, which lets nonprivileged users lock up the
219 	 * system. Announce that the fault handler will be checking for it.
220 	 * The Quark is also family 5, but does not have the same bug.
221 	 */
222 	clear_cpu_bug(c, X86_BUG_F00F);
223 	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
224 		static int f00f_workaround_enabled;
225 
226 		set_cpu_bug(c, X86_BUG_F00F);
227 		if (!f00f_workaround_enabled) {
228 			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
229 			f00f_workaround_enabled = 1;
230 		}
231 	}
232 #endif
233 
234 	/*
235 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
236 	 * model 3 mask 3
237 	 */
238 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
239 		clear_cpu_cap(c, X86_FEATURE_SEP);
240 
241 	/*
242 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
243 	 * functionally usable PAE implementation.
244 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
245 	 */
246 	if (forcepae) {
247 		printk(KERN_WARNING "PAE forced!\n");
248 		set_cpu_cap(c, X86_FEATURE_PAE);
249 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
250 	}
251 
252 	/*
253 	 * P4 Xeon errata 037 workaround.
254 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
255 	 */
256 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
257 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
258 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
259 		    > 0) {
260 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
261 			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
262 		}
263 	}
264 
265 	/*
266 	 * See if we have a good local APIC by checking for buggy Pentia,
267 	 * i.e. all B steppings and the C2 stepping of P54C when using their
268 	 * integrated APIC (see 11AP erratum in "Pentium Processor
269 	 * Specification Update").
270 	 */
271 	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
272 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
273 		set_cpu_bug(c, X86_BUG_11AP);
274 
275 
276 #ifdef CONFIG_X86_INTEL_USERCOPY
277 	/*
278 	 * Set up the preferred alignment for movsl bulk memory moves
279 	 */
280 	switch (c->x86) {
281 	case 4:		/* 486: untested */
282 		break;
283 	case 5:		/* Old Pentia: untested */
284 		break;
285 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
286 		movsl_mask.mask = 7;
287 		break;
288 	case 15:	/* P4 is OK down to 8-byte alignment */
289 		movsl_mask.mask = 7;
290 		break;
291 	}
292 #endif
293 
294 	intel_smp_check(c);
295 }
296 #else
297 static void intel_workarounds(struct cpuinfo_x86 *c)
298 {
299 }
300 #endif
301 
302 static void srat_detect_node(struct cpuinfo_x86 *c)
303 {
304 #ifdef CONFIG_NUMA
305 	unsigned node;
306 	int cpu = smp_processor_id();
307 
308 	/* Don't do the funky fallback heuristics the AMD version employs
309 	   for now. */
310 	node = numa_cpu_node(cpu);
311 	if (node == NUMA_NO_NODE || !node_online(node)) {
312 		/* reuse the value from init_cpu_to_node() */
313 		node = cpu_to_node(cpu);
314 	}
315 	numa_set_node(cpu, node);
316 #endif
317 }
318 
319 /*
320  * find out the number of processor cores on the die
321  */
322 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
323 {
324 	unsigned int eax, ebx, ecx, edx;
325 
326 	if (c->cpuid_level < 4)
327 		return 1;
328 
329 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
330 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
331 	if (eax & 0x1f)
332 		return (eax >> 26) + 1;
333 	else
334 		return 1;
335 }
336 
337 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
338 {
339 	/* Intel VMX MSR indicated features */
340 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
341 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
342 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
343 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
344 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
345 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
346 
347 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
348 
349 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
350 	clear_cpu_cap(c, X86_FEATURE_VNMI);
351 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
352 	clear_cpu_cap(c, X86_FEATURE_EPT);
353 	clear_cpu_cap(c, X86_FEATURE_VPID);
354 
355 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
356 	msr_ctl = vmx_msr_high | vmx_msr_low;
357 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
358 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
359 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
360 		set_cpu_cap(c, X86_FEATURE_VNMI);
361 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
362 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
363 		      vmx_msr_low, vmx_msr_high);
364 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
365 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
366 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
367 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
368 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
369 			set_cpu_cap(c, X86_FEATURE_EPT);
370 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
371 			set_cpu_cap(c, X86_FEATURE_VPID);
372 	}
373 }
374 
375 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
376 {
377 	u64 epb;
378 
379 	/*
380 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
381 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
382 	 */
383 	if (!cpu_has(c, X86_FEATURE_EPB))
384 		return;
385 
386 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
387 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
388 		return;
389 
390 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
391 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
392 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
393 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
394 }
395 
396 static void intel_bsp_resume(struct cpuinfo_x86 *c)
397 {
398 	/*
399 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
400 	 * so reinitialize it properly like during bootup:
401 	 */
402 	init_intel_energy_perf(c);
403 }
404 
405 static void init_intel(struct cpuinfo_x86 *c)
406 {
407 	unsigned int l2 = 0;
408 
409 	early_init_intel(c);
410 
411 	intel_workarounds(c);
412 
413 	/*
414 	 * Detect the extended topology information if available. This
415 	 * will reinitialise the initial_apicid which will be used
416 	 * in init_intel_cacheinfo()
417 	 */
418 	detect_extended_topology(c);
419 
420 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
421 		/*
422 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
423 		 * detection.
424 		 */
425 		c->x86_max_cores = intel_num_cpu_cores(c);
426 #ifdef CONFIG_X86_32
427 		detect_ht(c);
428 #endif
429 	}
430 
431 	l2 = init_intel_cacheinfo(c);
432 
433 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
434 	if (l2 == 0) {
435 		cpu_detect_cache_sizes(c);
436 		l2 = c->x86_cache_size;
437 	}
438 
439 	if (c->cpuid_level > 9) {
440 		unsigned eax = cpuid_eax(10);
441 		/* Check for version and the number of counters */
442 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
443 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
444 	}
445 
446 	if (cpu_has_xmm2)
447 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
448 	if (cpu_has_ds) {
449 		unsigned int l1;
450 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
451 		if (!(l1 & (1<<11)))
452 			set_cpu_cap(c, X86_FEATURE_BTS);
453 		if (!(l1 & (1<<12)))
454 			set_cpu_cap(c, X86_FEATURE_PEBS);
455 	}
456 
457 	if (c->x86 == 6 && cpu_has_clflush &&
458 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
459 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
460 
461 #ifdef CONFIG_X86_64
462 	if (c->x86 == 15)
463 		c->x86_cache_alignment = c->x86_clflush_size * 2;
464 	if (c->x86 == 6)
465 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
466 #else
467 	/*
468 	 * Names for the Pentium II/Celeron processors
469 	 * detectable only by also checking the cache size.
470 	 * Dixon is NOT a Celeron.
471 	 */
472 	if (c->x86 == 6) {
473 		char *p = NULL;
474 
475 		switch (c->x86_model) {
476 		case 5:
477 			if (l2 == 0)
478 				p = "Celeron (Covington)";
479 			else if (l2 == 256)
480 				p = "Mobile Pentium II (Dixon)";
481 			break;
482 
483 		case 6:
484 			if (l2 == 128)
485 				p = "Celeron (Mendocino)";
486 			else if (c->x86_mask == 0 || c->x86_mask == 5)
487 				p = "Celeron-A";
488 			break;
489 
490 		case 8:
491 			if (l2 == 128)
492 				p = "Celeron (Coppermine)";
493 			break;
494 		}
495 
496 		if (p)
497 			strcpy(c->x86_model_id, p);
498 	}
499 
500 	if (c->x86 == 15)
501 		set_cpu_cap(c, X86_FEATURE_P4);
502 	if (c->x86 == 6)
503 		set_cpu_cap(c, X86_FEATURE_P3);
504 #endif
505 
506 	/* Work around errata */
507 	srat_detect_node(c);
508 
509 	if (cpu_has(c, X86_FEATURE_VMX))
510 		detect_vmx_virtcap(c);
511 
512 	init_intel_energy_perf(c);
513 }
514 
515 #ifdef CONFIG_X86_32
516 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
517 {
518 	/*
519 	 * Intel PIII Tualatin. This comes in two flavours.
520 	 * One has 256kb of cache, the other 512. We have no way
521 	 * to determine which, so we use a boottime override
522 	 * for the 512kb model, and assume 256 otherwise.
523 	 */
524 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
525 		size = 256;
526 
527 	/*
528 	 * Intel Quark SoC X1000 contains a 4-way set associative
529 	 * 16K cache with a 16 byte cache line and 256 lines per tag
530 	 */
531 	if ((c->x86 == 5) && (c->x86_model == 9))
532 		size = 16;
533 	return size;
534 }
535 #endif
536 
537 #define TLB_INST_4K	0x01
538 #define TLB_INST_4M	0x02
539 #define TLB_INST_2M_4M	0x03
540 
541 #define TLB_INST_ALL	0x05
542 #define TLB_INST_1G	0x06
543 
544 #define TLB_DATA_4K	0x11
545 #define TLB_DATA_4M	0x12
546 #define TLB_DATA_2M_4M	0x13
547 #define TLB_DATA_4K_4M	0x14
548 
549 #define TLB_DATA_1G	0x16
550 
551 #define TLB_DATA0_4K	0x21
552 #define TLB_DATA0_4M	0x22
553 #define TLB_DATA0_2M_4M	0x23
554 
555 #define STLB_4K		0x41
556 #define STLB_4K_2M	0x42
557 
558 static const struct _tlb_table intel_tlb_table[] = {
559 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
560 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
561 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
562 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
563 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
564 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
565 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
566 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
567 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
568 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
569 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
570 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
571 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
572 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
573 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
574 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
575 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
576 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
577 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
578 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
579 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
580 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
581 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
582 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
583 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
584 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
585 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
586 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
587 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
588 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
589 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
590 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
591 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
592 	{ 0x00, 0, 0 }
593 };
594 
595 static void intel_tlb_lookup(const unsigned char desc)
596 {
597 	unsigned char k;
598 	if (desc == 0)
599 		return;
600 
601 	/* look up this descriptor in the table */
602 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
603 			intel_tlb_table[k].descriptor != 0; k++)
604 		;
605 
606 	if (intel_tlb_table[k].tlb_type == 0)
607 		return;
608 
609 	switch (intel_tlb_table[k].tlb_type) {
610 	case STLB_4K:
611 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
612 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
613 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
614 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
615 		break;
616 	case STLB_4K_2M:
617 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
618 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
619 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
620 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
621 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
622 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
623 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
624 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
625 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
626 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
627 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
628 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
629 		break;
630 	case TLB_INST_ALL:
631 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
632 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
633 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
634 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
635 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
636 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
637 		break;
638 	case TLB_INST_4K:
639 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
640 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
641 		break;
642 	case TLB_INST_4M:
643 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
644 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
645 		break;
646 	case TLB_INST_2M_4M:
647 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
648 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
649 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
650 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
651 		break;
652 	case TLB_DATA_4K:
653 	case TLB_DATA0_4K:
654 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
655 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
656 		break;
657 	case TLB_DATA_4M:
658 	case TLB_DATA0_4M:
659 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
660 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
661 		break;
662 	case TLB_DATA_2M_4M:
663 	case TLB_DATA0_2M_4M:
664 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
665 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
666 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
667 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
668 		break;
669 	case TLB_DATA_4K_4M:
670 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
671 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
672 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
673 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
674 		break;
675 	case TLB_DATA_1G:
676 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
677 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
678 		break;
679 	}
680 }
681 
682 static void intel_detect_tlb(struct cpuinfo_x86 *c)
683 {
684 	int i, j, n;
685 	unsigned int regs[4];
686 	unsigned char *desc = (unsigned char *)regs;
687 
688 	if (c->cpuid_level < 2)
689 		return;
690 
691 	/* Number of times to iterate */
692 	n = cpuid_eax(2) & 0xFF;
693 
694 	for (i = 0 ; i < n ; i++) {
695 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
696 
697 		/* If bit 31 is set, this is an unknown format */
698 		for (j = 0 ; j < 3 ; j++)
699 			if (regs[j] & (1 << 31))
700 				regs[j] = 0;
701 
702 		/* Byte 0 is level count, not a descriptor */
703 		for (j = 1 ; j < 16 ; j++)
704 			intel_tlb_lookup(desc[j]);
705 	}
706 }
707 
708 static const struct cpu_dev intel_cpu_dev = {
709 	.c_vendor	= "Intel",
710 	.c_ident	= { "GenuineIntel" },
711 #ifdef CONFIG_X86_32
712 	.legacy_models = {
713 		{ .family = 4, .model_names =
714 		  {
715 			  [0] = "486 DX-25/33",
716 			  [1] = "486 DX-50",
717 			  [2] = "486 SX",
718 			  [3] = "486 DX/2",
719 			  [4] = "486 SL",
720 			  [5] = "486 SX/2",
721 			  [7] = "486 DX/2-WB",
722 			  [8] = "486 DX/4",
723 			  [9] = "486 DX/4-WB"
724 		  }
725 		},
726 		{ .family = 5, .model_names =
727 		  {
728 			  [0] = "Pentium 60/66 A-step",
729 			  [1] = "Pentium 60/66",
730 			  [2] = "Pentium 75 - 200",
731 			  [3] = "OverDrive PODP5V83",
732 			  [4] = "Pentium MMX",
733 			  [7] = "Mobile Pentium 75 - 200",
734 			  [8] = "Mobile Pentium MMX",
735 			  [9] = "Quark SoC X1000",
736 		  }
737 		},
738 		{ .family = 6, .model_names =
739 		  {
740 			  [0] = "Pentium Pro A-step",
741 			  [1] = "Pentium Pro",
742 			  [3] = "Pentium II (Klamath)",
743 			  [4] = "Pentium II (Deschutes)",
744 			  [5] = "Pentium II (Deschutes)",
745 			  [6] = "Mobile Pentium II",
746 			  [7] = "Pentium III (Katmai)",
747 			  [8] = "Pentium III (Coppermine)",
748 			  [10] = "Pentium III (Cascades)",
749 			  [11] = "Pentium III (Tualatin)",
750 		  }
751 		},
752 		{ .family = 15, .model_names =
753 		  {
754 			  [0] = "Pentium 4 (Unknown)",
755 			  [1] = "Pentium 4 (Willamette)",
756 			  [2] = "Pentium 4 (Northwood)",
757 			  [4] = "Pentium 4 (Foster)",
758 			  [5] = "Pentium 4 (Foster)",
759 		  }
760 		},
761 	},
762 	.legacy_cache_size = intel_size_cache,
763 #endif
764 	.c_detect_tlb	= intel_detect_tlb,
765 	.c_early_init   = early_init_intel,
766 	.c_init		= init_intel,
767 	.c_bsp_resume	= intel_bsp_resume,
768 	.c_x86_vendor	= X86_VENDOR_INTEL,
769 };
770 
771 cpu_dev_register(intel_cpu_dev);
772 
773