xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision a2cce7a9)
1 #include <linux/kernel.h>
2 
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/processor.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16 
17 #ifdef CONFIG_X86_64
18 #include <linux/topology.h>
19 #endif
20 
21 #include "cpu.h"
22 
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #endif
27 
28 static void early_init_intel(struct cpuinfo_x86 *c)
29 {
30 	u64 misc_enable;
31 
32 	/* Unmask CPUID levels if masked: */
33 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 			c->cpuid_level = cpuid_eax(0);
37 			get_cpu_cap(c);
38 		}
39 	}
40 
41 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
43 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44 
45 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 		unsigned lower_word;
47 
48 		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 		/* Required by the SDM */
50 		sync_core();
51 		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52 	}
53 
54 	/*
55 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56 	 *
57 	 * A race condition between speculative fetches and invalidating
58 	 * a large page.  This is worked around in microcode, but we
59 	 * need the microcode to have already been loaded... so if it is
60 	 * not, recommend a BIOS update and disable large pages.
61 	 */
62 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 	    c->microcode < 0x20e) {
64 		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65 		clear_cpu_cap(c, X86_FEATURE_PSE);
66 	}
67 
68 #ifdef CONFIG_X86_64
69 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70 #else
71 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 		c->x86_cache_alignment = 128;
74 #endif
75 
76 	/* CPUID workaround for 0F33/0F34 CPU */
77 	if (c->x86 == 0xF && c->x86_model == 0x3
78 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 		c->x86_phys_bits = 36;
80 
81 	/*
82 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 	 * with P/T states and does not stop in deep C-states.
84 	 *
85 	 * It is also reliable across cores and sockets. (but not across
86 	 * cabinets - we turn it off in that case explicitly.)
87 	 */
88 	if (c->x86_power & (1 << 8)) {
89 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 		if (!check_tsc_unstable())
92 			set_sched_clock_stable();
93 	}
94 
95 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 	if (c->x86 == 6) {
97 		switch (c->x86_model) {
98 		case 0x27:	/* Penwell */
99 		case 0x35:	/* Cloverview */
100 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
101 			break;
102 		default:
103 			break;
104 		}
105 	}
106 
107 	/*
108 	 * There is a known erratum on Pentium III and Core Solo
109 	 * and Core Duo CPUs.
110 	 * " Page with PAT set to WC while associated MTRR is UC
111 	 *   may consolidate to UC "
112 	 * Because of this erratum, it is better to stick with
113 	 * setting WC in MTRR rather than using PAT on these CPUs.
114 	 *
115 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
116 	 */
117 	if (c->x86 == 6 && c->x86_model < 15)
118 		clear_cpu_cap(c, X86_FEATURE_PAT);
119 
120 #ifdef CONFIG_KMEMCHECK
121 	/*
122 	 * P4s have a "fast strings" feature which causes single-
123 	 * stepping REP instructions to only generate a #DB on
124 	 * cache-line boundaries.
125 	 *
126 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127 	 * (model 2) with the same problem.
128 	 */
129 	if (c->x86 == 15)
130 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
131 				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
132 			pr_info("kmemcheck: Disabling fast string operations\n");
133 #endif
134 
135 	/*
136 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137 	 * clear the fast string and enhanced fast string CPU capabilities.
138 	 */
139 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
140 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
141 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
142 			printk(KERN_INFO "Disabled fast string operations\n");
143 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
144 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
145 		}
146 	}
147 
148 	/*
149 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
150 	 * "The operating system also is required to invalidate (i.e., flush)
151 	 *  the TLB when any changes are made to any of the page table entries.
152 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
153 	 *
154 	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
155 	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
156 	 * to be modified
157 	 */
158 	if (c->x86 == 5 && c->x86_model == 9) {
159 		pr_info("Disabling PGE capability bit\n");
160 		setup_clear_cpu_cap(X86_FEATURE_PGE);
161 	}
162 }
163 
164 #ifdef CONFIG_X86_32
165 /*
166  *	Early probe support logic for ppro memory erratum #50
167  *
168  *	This is called before we do cpu ident work
169  */
170 
171 int ppro_with_ram_bug(void)
172 {
173 	/* Uses data from early_cpu_detect now */
174 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
175 	    boot_cpu_data.x86 == 6 &&
176 	    boot_cpu_data.x86_model == 1 &&
177 	    boot_cpu_data.x86_mask < 8) {
178 		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
179 		return 1;
180 	}
181 	return 0;
182 }
183 
184 static void intel_smp_check(struct cpuinfo_x86 *c)
185 {
186 	/* calling is from identify_secondary_cpu() ? */
187 	if (!c->cpu_index)
188 		return;
189 
190 	/*
191 	 * Mask B, Pentium, but not Pentium MMX
192 	 */
193 	if (c->x86 == 5 &&
194 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
195 	    c->x86_model <= 3) {
196 		/*
197 		 * Remember we have B step Pentia with bugs
198 		 */
199 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
200 				    "with B stepping processors.\n");
201 	}
202 }
203 
204 static int forcepae;
205 static int __init forcepae_setup(char *__unused)
206 {
207 	forcepae = 1;
208 	return 1;
209 }
210 __setup("forcepae", forcepae_setup);
211 
212 static void intel_workarounds(struct cpuinfo_x86 *c)
213 {
214 #ifdef CONFIG_X86_F00F_BUG
215 	/*
216 	 * All models of Pentium and Pentium with MMX technology CPUs
217 	 * have the F0 0F bug, which lets nonprivileged users lock up the
218 	 * system. Announce that the fault handler will be checking for it.
219 	 * The Quark is also family 5, but does not have the same bug.
220 	 */
221 	clear_cpu_bug(c, X86_BUG_F00F);
222 	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
223 		static int f00f_workaround_enabled;
224 
225 		set_cpu_bug(c, X86_BUG_F00F);
226 		if (!f00f_workaround_enabled) {
227 			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
228 			f00f_workaround_enabled = 1;
229 		}
230 	}
231 #endif
232 
233 	/*
234 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
235 	 * model 3 mask 3
236 	 */
237 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
238 		clear_cpu_cap(c, X86_FEATURE_SEP);
239 
240 	/*
241 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
242 	 * functionally usable PAE implementation.
243 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
244 	 */
245 	if (forcepae) {
246 		printk(KERN_WARNING "PAE forced!\n");
247 		set_cpu_cap(c, X86_FEATURE_PAE);
248 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
249 	}
250 
251 	/*
252 	 * P4 Xeon errata 037 workaround.
253 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
254 	 */
255 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
256 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
257 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
258 		    > 0) {
259 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
260 			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
261 		}
262 	}
263 
264 	/*
265 	 * See if we have a good local APIC by checking for buggy Pentia,
266 	 * i.e. all B steppings and the C2 stepping of P54C when using their
267 	 * integrated APIC (see 11AP erratum in "Pentium Processor
268 	 * Specification Update").
269 	 */
270 	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
271 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
272 		set_cpu_bug(c, X86_BUG_11AP);
273 
274 
275 #ifdef CONFIG_X86_INTEL_USERCOPY
276 	/*
277 	 * Set up the preferred alignment for movsl bulk memory moves
278 	 */
279 	switch (c->x86) {
280 	case 4:		/* 486: untested */
281 		break;
282 	case 5:		/* Old Pentia: untested */
283 		break;
284 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
285 		movsl_mask.mask = 7;
286 		break;
287 	case 15:	/* P4 is OK down to 8-byte alignment */
288 		movsl_mask.mask = 7;
289 		break;
290 	}
291 #endif
292 
293 	intel_smp_check(c);
294 }
295 #else
296 static void intel_workarounds(struct cpuinfo_x86 *c)
297 {
298 }
299 #endif
300 
301 static void srat_detect_node(struct cpuinfo_x86 *c)
302 {
303 #ifdef CONFIG_NUMA
304 	unsigned node;
305 	int cpu = smp_processor_id();
306 
307 	/* Don't do the funky fallback heuristics the AMD version employs
308 	   for now. */
309 	node = numa_cpu_node(cpu);
310 	if (node == NUMA_NO_NODE || !node_online(node)) {
311 		/* reuse the value from init_cpu_to_node() */
312 		node = cpu_to_node(cpu);
313 	}
314 	numa_set_node(cpu, node);
315 #endif
316 }
317 
318 /*
319  * find out the number of processor cores on the die
320  */
321 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
322 {
323 	unsigned int eax, ebx, ecx, edx;
324 
325 	if (c->cpuid_level < 4)
326 		return 1;
327 
328 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
329 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
330 	if (eax & 0x1f)
331 		return (eax >> 26) + 1;
332 	else
333 		return 1;
334 }
335 
336 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
337 {
338 	/* Intel VMX MSR indicated features */
339 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
340 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
341 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
342 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
343 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
344 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
345 
346 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
347 
348 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
349 	clear_cpu_cap(c, X86_FEATURE_VNMI);
350 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
351 	clear_cpu_cap(c, X86_FEATURE_EPT);
352 	clear_cpu_cap(c, X86_FEATURE_VPID);
353 
354 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
355 	msr_ctl = vmx_msr_high | vmx_msr_low;
356 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
357 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
358 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
359 		set_cpu_cap(c, X86_FEATURE_VNMI);
360 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
361 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
362 		      vmx_msr_low, vmx_msr_high);
363 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
364 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
365 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
366 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
367 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
368 			set_cpu_cap(c, X86_FEATURE_EPT);
369 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
370 			set_cpu_cap(c, X86_FEATURE_VPID);
371 	}
372 }
373 
374 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
375 {
376 	u64 epb;
377 
378 	/*
379 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
380 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
381 	 */
382 	if (!cpu_has(c, X86_FEATURE_EPB))
383 		return;
384 
385 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
386 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
387 		return;
388 
389 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
390 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
391 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
392 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
393 }
394 
395 static void intel_bsp_resume(struct cpuinfo_x86 *c)
396 {
397 	/*
398 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
399 	 * so reinitialize it properly like during bootup:
400 	 */
401 	init_intel_energy_perf(c);
402 }
403 
404 static void init_intel(struct cpuinfo_x86 *c)
405 {
406 	unsigned int l2 = 0;
407 
408 	early_init_intel(c);
409 
410 	intel_workarounds(c);
411 
412 	/*
413 	 * Detect the extended topology information if available. This
414 	 * will reinitialise the initial_apicid which will be used
415 	 * in init_intel_cacheinfo()
416 	 */
417 	detect_extended_topology(c);
418 
419 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
420 		/*
421 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
422 		 * detection.
423 		 */
424 		c->x86_max_cores = intel_num_cpu_cores(c);
425 #ifdef CONFIG_X86_32
426 		detect_ht(c);
427 #endif
428 	}
429 
430 	l2 = init_intel_cacheinfo(c);
431 
432 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
433 	if (l2 == 0) {
434 		cpu_detect_cache_sizes(c);
435 		l2 = c->x86_cache_size;
436 	}
437 
438 	if (c->cpuid_level > 9) {
439 		unsigned eax = cpuid_eax(10);
440 		/* Check for version and the number of counters */
441 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
442 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
443 	}
444 
445 	if (cpu_has_xmm2)
446 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
447 	if (cpu_has_ds) {
448 		unsigned int l1;
449 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
450 		if (!(l1 & (1<<11)))
451 			set_cpu_cap(c, X86_FEATURE_BTS);
452 		if (!(l1 & (1<<12)))
453 			set_cpu_cap(c, X86_FEATURE_PEBS);
454 	}
455 
456 	if (c->x86 == 6 && cpu_has_clflush &&
457 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
458 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
459 
460 #ifdef CONFIG_X86_64
461 	if (c->x86 == 15)
462 		c->x86_cache_alignment = c->x86_clflush_size * 2;
463 	if (c->x86 == 6)
464 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
465 #else
466 	/*
467 	 * Names for the Pentium II/Celeron processors
468 	 * detectable only by also checking the cache size.
469 	 * Dixon is NOT a Celeron.
470 	 */
471 	if (c->x86 == 6) {
472 		char *p = NULL;
473 
474 		switch (c->x86_model) {
475 		case 5:
476 			if (l2 == 0)
477 				p = "Celeron (Covington)";
478 			else if (l2 == 256)
479 				p = "Mobile Pentium II (Dixon)";
480 			break;
481 
482 		case 6:
483 			if (l2 == 128)
484 				p = "Celeron (Mendocino)";
485 			else if (c->x86_mask == 0 || c->x86_mask == 5)
486 				p = "Celeron-A";
487 			break;
488 
489 		case 8:
490 			if (l2 == 128)
491 				p = "Celeron (Coppermine)";
492 			break;
493 		}
494 
495 		if (p)
496 			strcpy(c->x86_model_id, p);
497 	}
498 
499 	if (c->x86 == 15)
500 		set_cpu_cap(c, X86_FEATURE_P4);
501 	if (c->x86 == 6)
502 		set_cpu_cap(c, X86_FEATURE_P3);
503 #endif
504 
505 	/* Work around errata */
506 	srat_detect_node(c);
507 
508 	if (cpu_has(c, X86_FEATURE_VMX))
509 		detect_vmx_virtcap(c);
510 
511 	init_intel_energy_perf(c);
512 }
513 
514 #ifdef CONFIG_X86_32
515 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
516 {
517 	/*
518 	 * Intel PIII Tualatin. This comes in two flavours.
519 	 * One has 256kb of cache, the other 512. We have no way
520 	 * to determine which, so we use a boottime override
521 	 * for the 512kb model, and assume 256 otherwise.
522 	 */
523 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
524 		size = 256;
525 
526 	/*
527 	 * Intel Quark SoC X1000 contains a 4-way set associative
528 	 * 16K cache with a 16 byte cache line and 256 lines per tag
529 	 */
530 	if ((c->x86 == 5) && (c->x86_model == 9))
531 		size = 16;
532 	return size;
533 }
534 #endif
535 
536 #define TLB_INST_4K	0x01
537 #define TLB_INST_4M	0x02
538 #define TLB_INST_2M_4M	0x03
539 
540 #define TLB_INST_ALL	0x05
541 #define TLB_INST_1G	0x06
542 
543 #define TLB_DATA_4K	0x11
544 #define TLB_DATA_4M	0x12
545 #define TLB_DATA_2M_4M	0x13
546 #define TLB_DATA_4K_4M	0x14
547 
548 #define TLB_DATA_1G	0x16
549 
550 #define TLB_DATA0_4K	0x21
551 #define TLB_DATA0_4M	0x22
552 #define TLB_DATA0_2M_4M	0x23
553 
554 #define STLB_4K		0x41
555 #define STLB_4K_2M	0x42
556 
557 static const struct _tlb_table intel_tlb_table[] = {
558 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
559 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
560 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
561 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
562 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
563 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
564 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
565 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
566 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
567 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
568 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
569 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
570 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
571 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
572 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
573 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
574 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
575 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
576 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
577 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
578 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
579 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
580 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
581 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
582 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
583 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
584 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
585 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
586 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
587 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
588 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
589 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
590 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
591 	{ 0x00, 0, 0 }
592 };
593 
594 static void intel_tlb_lookup(const unsigned char desc)
595 {
596 	unsigned char k;
597 	if (desc == 0)
598 		return;
599 
600 	/* look up this descriptor in the table */
601 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
602 			intel_tlb_table[k].descriptor != 0; k++)
603 		;
604 
605 	if (intel_tlb_table[k].tlb_type == 0)
606 		return;
607 
608 	switch (intel_tlb_table[k].tlb_type) {
609 	case STLB_4K:
610 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
611 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
612 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
613 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
614 		break;
615 	case STLB_4K_2M:
616 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
617 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
618 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
619 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
620 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
621 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
622 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
623 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
624 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
625 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
626 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
627 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
628 		break;
629 	case TLB_INST_ALL:
630 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
631 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
632 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
633 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
634 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
635 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
636 		break;
637 	case TLB_INST_4K:
638 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
639 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
640 		break;
641 	case TLB_INST_4M:
642 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
643 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
644 		break;
645 	case TLB_INST_2M_4M:
646 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
647 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
648 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
649 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
650 		break;
651 	case TLB_DATA_4K:
652 	case TLB_DATA0_4K:
653 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
654 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
655 		break;
656 	case TLB_DATA_4M:
657 	case TLB_DATA0_4M:
658 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
659 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
660 		break;
661 	case TLB_DATA_2M_4M:
662 	case TLB_DATA0_2M_4M:
663 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
664 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
665 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
666 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
667 		break;
668 	case TLB_DATA_4K_4M:
669 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
670 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
671 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
672 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
673 		break;
674 	case TLB_DATA_1G:
675 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
676 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
677 		break;
678 	}
679 }
680 
681 static void intel_detect_tlb(struct cpuinfo_x86 *c)
682 {
683 	int i, j, n;
684 	unsigned int regs[4];
685 	unsigned char *desc = (unsigned char *)regs;
686 
687 	if (c->cpuid_level < 2)
688 		return;
689 
690 	/* Number of times to iterate */
691 	n = cpuid_eax(2) & 0xFF;
692 
693 	for (i = 0 ; i < n ; i++) {
694 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
695 
696 		/* If bit 31 is set, this is an unknown format */
697 		for (j = 0 ; j < 3 ; j++)
698 			if (regs[j] & (1 << 31))
699 				regs[j] = 0;
700 
701 		/* Byte 0 is level count, not a descriptor */
702 		for (j = 1 ; j < 16 ; j++)
703 			intel_tlb_lookup(desc[j]);
704 	}
705 }
706 
707 static const struct cpu_dev intel_cpu_dev = {
708 	.c_vendor	= "Intel",
709 	.c_ident	= { "GenuineIntel" },
710 #ifdef CONFIG_X86_32
711 	.legacy_models = {
712 		{ .family = 4, .model_names =
713 		  {
714 			  [0] = "486 DX-25/33",
715 			  [1] = "486 DX-50",
716 			  [2] = "486 SX",
717 			  [3] = "486 DX/2",
718 			  [4] = "486 SL",
719 			  [5] = "486 SX/2",
720 			  [7] = "486 DX/2-WB",
721 			  [8] = "486 DX/4",
722 			  [9] = "486 DX/4-WB"
723 		  }
724 		},
725 		{ .family = 5, .model_names =
726 		  {
727 			  [0] = "Pentium 60/66 A-step",
728 			  [1] = "Pentium 60/66",
729 			  [2] = "Pentium 75 - 200",
730 			  [3] = "OverDrive PODP5V83",
731 			  [4] = "Pentium MMX",
732 			  [7] = "Mobile Pentium 75 - 200",
733 			  [8] = "Mobile Pentium MMX",
734 			  [9] = "Quark SoC X1000",
735 		  }
736 		},
737 		{ .family = 6, .model_names =
738 		  {
739 			  [0] = "Pentium Pro A-step",
740 			  [1] = "Pentium Pro",
741 			  [3] = "Pentium II (Klamath)",
742 			  [4] = "Pentium II (Deschutes)",
743 			  [5] = "Pentium II (Deschutes)",
744 			  [6] = "Mobile Pentium II",
745 			  [7] = "Pentium III (Katmai)",
746 			  [8] = "Pentium III (Coppermine)",
747 			  [10] = "Pentium III (Cascades)",
748 			  [11] = "Pentium III (Tualatin)",
749 		  }
750 		},
751 		{ .family = 15, .model_names =
752 		  {
753 			  [0] = "Pentium 4 (Unknown)",
754 			  [1] = "Pentium 4 (Willamette)",
755 			  [2] = "Pentium 4 (Northwood)",
756 			  [4] = "Pentium 4 (Foster)",
757 			  [5] = "Pentium 4 (Foster)",
758 		  }
759 		},
760 	},
761 	.legacy_cache_size = intel_size_cache,
762 #endif
763 	.c_detect_tlb	= intel_detect_tlb,
764 	.c_early_init   = early_init_intel,
765 	.c_init		= init_intel,
766 	.c_bsp_resume	= intel_bsp_resume,
767 	.c_x86_vendor	= X86_VENDOR_INTEL,
768 };
769 
770 cpu_dev_register(intel_cpu_dev);
771 
772