1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 4 #include <linux/string.h> 5 #include <linux/bitops.h> 6 #include <linux/smp.h> 7 #include <linux/sched.h> 8 #include <linux/sched/clock.h> 9 #include <linux/thread_info.h> 10 #include <linux/init.h> 11 #include <linux/uaccess.h> 12 13 #include <asm/cpufeature.h> 14 #include <asm/pgtable.h> 15 #include <asm/msr.h> 16 #include <asm/bugs.h> 17 #include <asm/cpu.h> 18 #include <asm/intel-family.h> 19 #include <asm/microcode_intel.h> 20 #include <asm/hwcap2.h> 21 #include <asm/elf.h> 22 23 #ifdef CONFIG_X86_64 24 #include <linux/topology.h> 25 #endif 26 27 #include "cpu.h" 28 29 #ifdef CONFIG_X86_LOCAL_APIC 30 #include <asm/mpspec.h> 31 #include <asm/apic.h> 32 #endif 33 34 /* 35 * Just in case our CPU detection goes bad, or you have a weird system, 36 * allow a way to override the automatic disabling of MPX. 37 */ 38 static int forcempx; 39 40 static int __init forcempx_setup(char *__unused) 41 { 42 forcempx = 1; 43 44 return 1; 45 } 46 __setup("intel-skd-046-workaround=disable", forcempx_setup); 47 48 void check_mpx_erratum(struct cpuinfo_x86 *c) 49 { 50 if (forcempx) 51 return; 52 /* 53 * Turn off the MPX feature on CPUs where SMEP is not 54 * available or disabled. 55 * 56 * Works around Intel Erratum SKD046: "Branch Instructions 57 * May Initialize MPX Bound Registers Incorrectly". 58 * 59 * This might falsely disable MPX on systems without 60 * SMEP, like Atom processors without SMEP. But there 61 * is no such hardware known at the moment. 62 */ 63 if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) { 64 setup_clear_cpu_cap(X86_FEATURE_MPX); 65 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n"); 66 } 67 } 68 69 /* 70 * Processors which have self-snooping capability can handle conflicting 71 * memory type across CPUs by snooping its own cache. However, there exists 72 * CPU models in which having conflicting memory types still leads to 73 * unpredictable behavior, machine check errors, or hangs. Clear this 74 * feature to prevent its use on machines with known erratas. 75 */ 76 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) 77 { 78 switch (c->x86_model) { 79 case INTEL_FAM6_CORE_YONAH: 80 case INTEL_FAM6_CORE2_MEROM: 81 case INTEL_FAM6_CORE2_MEROM_L: 82 case INTEL_FAM6_CORE2_PENRYN: 83 case INTEL_FAM6_CORE2_DUNNINGTON: 84 case INTEL_FAM6_NEHALEM: 85 case INTEL_FAM6_NEHALEM_G: 86 case INTEL_FAM6_NEHALEM_EP: 87 case INTEL_FAM6_NEHALEM_EX: 88 case INTEL_FAM6_WESTMERE: 89 case INTEL_FAM6_WESTMERE_EP: 90 case INTEL_FAM6_SANDYBRIDGE: 91 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); 92 } 93 } 94 95 static bool ring3mwait_disabled __read_mostly; 96 97 static int __init ring3mwait_disable(char *__unused) 98 { 99 ring3mwait_disabled = true; 100 return 0; 101 } 102 __setup("ring3mwait=disable", ring3mwait_disable); 103 104 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 105 { 106 /* 107 * Ring 3 MONITOR/MWAIT feature cannot be detected without 108 * cpu model and family comparison. 109 */ 110 if (c->x86 != 6) 111 return; 112 switch (c->x86_model) { 113 case INTEL_FAM6_XEON_PHI_KNL: 114 case INTEL_FAM6_XEON_PHI_KNM: 115 break; 116 default: 117 return; 118 } 119 120 if (ring3mwait_disabled) 121 return; 122 123 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 124 this_cpu_or(msr_misc_features_shadow, 125 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 126 127 if (c == &boot_cpu_data) 128 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 129 } 130 131 /* 132 * Early microcode releases for the Spectre v2 mitigation were broken. 133 * Information taken from; 134 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf 135 * - https://kb.vmware.com/s/article/52345 136 * - Microcode revisions observed in the wild 137 * - Release note from 20180108 microcode release 138 */ 139 struct sku_microcode { 140 u8 model; 141 u8 stepping; 142 u32 microcode; 143 }; 144 static const struct sku_microcode spectre_bad_microcodes[] = { 145 { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0B, 0x80 }, 146 { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0A, 0x80 }, 147 { INTEL_FAM6_KABYLAKE_DESKTOP, 0x09, 0x80 }, 148 { INTEL_FAM6_KABYLAKE_MOBILE, 0x0A, 0x80 }, 149 { INTEL_FAM6_KABYLAKE_MOBILE, 0x09, 0x80 }, 150 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, 151 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, 152 { INTEL_FAM6_BROADWELL_CORE, 0x04, 0x28 }, 153 { INTEL_FAM6_BROADWELL_GT3E, 0x01, 0x1b }, 154 { INTEL_FAM6_BROADWELL_XEON_D, 0x02, 0x14 }, 155 { INTEL_FAM6_BROADWELL_XEON_D, 0x03, 0x07000011 }, 156 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, 157 { INTEL_FAM6_HASWELL_ULT, 0x01, 0x21 }, 158 { INTEL_FAM6_HASWELL_GT3E, 0x01, 0x18 }, 159 { INTEL_FAM6_HASWELL_CORE, 0x03, 0x23 }, 160 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, 161 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, 162 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, 163 /* Observed in the wild */ 164 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, 165 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, 166 }; 167 168 static bool bad_spectre_microcode(struct cpuinfo_x86 *c) 169 { 170 int i; 171 172 /* 173 * We know that the hypervisor lie to us on the microcode version so 174 * we may as well hope that it is running the correct version. 175 */ 176 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 177 return false; 178 179 if (c->x86 != 6) 180 return false; 181 182 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { 183 if (c->x86_model == spectre_bad_microcodes[i].model && 184 c->x86_stepping == spectre_bad_microcodes[i].stepping) 185 return (c->microcode <= spectre_bad_microcodes[i].microcode); 186 } 187 return false; 188 } 189 190 static void early_init_intel(struct cpuinfo_x86 *c) 191 { 192 u64 misc_enable; 193 194 /* Unmask CPUID levels if masked: */ 195 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 196 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 197 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 198 c->cpuid_level = cpuid_eax(0); 199 get_cpu_cap(c); 200 } 201 } 202 203 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 204 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 205 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 206 207 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 208 c->microcode = intel_get_microcode_revision(); 209 210 /* Now if any of them are set, check the blacklist and clear the lot */ 211 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || 212 cpu_has(c, X86_FEATURE_INTEL_STIBP) || 213 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || 214 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { 215 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); 216 setup_clear_cpu_cap(X86_FEATURE_IBRS); 217 setup_clear_cpu_cap(X86_FEATURE_IBPB); 218 setup_clear_cpu_cap(X86_FEATURE_STIBP); 219 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); 220 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); 221 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); 222 setup_clear_cpu_cap(X86_FEATURE_SSBD); 223 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); 224 } 225 226 /* 227 * Atom erratum AAE44/AAF40/AAG38/AAH41: 228 * 229 * A race condition between speculative fetches and invalidating 230 * a large page. This is worked around in microcode, but we 231 * need the microcode to have already been loaded... so if it is 232 * not, recommend a BIOS update and disable large pages. 233 */ 234 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && 235 c->microcode < 0x20e) { 236 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 237 clear_cpu_cap(c, X86_FEATURE_PSE); 238 } 239 240 #ifdef CONFIG_X86_64 241 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 242 #else 243 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 244 if (c->x86 == 15 && c->x86_cache_alignment == 64) 245 c->x86_cache_alignment = 128; 246 #endif 247 248 /* CPUID workaround for 0F33/0F34 CPU */ 249 if (c->x86 == 0xF && c->x86_model == 0x3 250 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) 251 c->x86_phys_bits = 36; 252 253 /* 254 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 255 * with P/T states and does not stop in deep C-states. 256 * 257 * It is also reliable across cores and sockets. (but not across 258 * cabinets - we turn it off in that case explicitly.) 259 */ 260 if (c->x86_power & (1 << 8)) { 261 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 262 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 263 } 264 265 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 266 if (c->x86 == 6) { 267 switch (c->x86_model) { 268 case 0x27: /* Penwell */ 269 case 0x35: /* Cloverview */ 270 case 0x4a: /* Merrifield */ 271 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 272 break; 273 default: 274 break; 275 } 276 } 277 278 /* 279 * There is a known erratum on Pentium III and Core Solo 280 * and Core Duo CPUs. 281 * " Page with PAT set to WC while associated MTRR is UC 282 * may consolidate to UC " 283 * Because of this erratum, it is better to stick with 284 * setting WC in MTRR rather than using PAT on these CPUs. 285 * 286 * Enable PAT WC only on P4, Core 2 or later CPUs. 287 */ 288 if (c->x86 == 6 && c->x86_model < 15) 289 clear_cpu_cap(c, X86_FEATURE_PAT); 290 291 /* 292 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 293 * clear the fast string and enhanced fast string CPU capabilities. 294 */ 295 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 296 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 297 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 298 pr_info("Disabled fast string operations\n"); 299 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 300 setup_clear_cpu_cap(X86_FEATURE_ERMS); 301 } 302 } 303 304 /* 305 * Intel Quark Core DevMan_001.pdf section 6.4.11 306 * "The operating system also is required to invalidate (i.e., flush) 307 * the TLB when any changes are made to any of the page table entries. 308 * The operating system must reload CR3 to cause the TLB to be flushed" 309 * 310 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 311 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE 312 * to be modified. 313 */ 314 if (c->x86 == 5 && c->x86_model == 9) { 315 pr_info("Disabling PGE capability bit\n"); 316 setup_clear_cpu_cap(X86_FEATURE_PGE); 317 } 318 319 if (c->cpuid_level >= 0x00000001) { 320 u32 eax, ebx, ecx, edx; 321 322 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 323 /* 324 * If HTT (EDX[28]) is set EBX[16:23] contain the number of 325 * apicids which are reserved per package. Store the resulting 326 * shift value for the package management code. 327 */ 328 if (edx & (1U << 28)) 329 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); 330 } 331 332 check_mpx_erratum(c); 333 check_memory_type_self_snoop_errata(c); 334 335 /* 336 * Get the number of SMT siblings early from the extended topology 337 * leaf, if available. Otherwise try the legacy SMT detection. 338 */ 339 if (detect_extended_topology_early(c) < 0) 340 detect_ht_early(c); 341 } 342 343 #ifdef CONFIG_X86_32 344 /* 345 * Early probe support logic for ppro memory erratum #50 346 * 347 * This is called before we do cpu ident work 348 */ 349 350 int ppro_with_ram_bug(void) 351 { 352 /* Uses data from early_cpu_detect now */ 353 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 354 boot_cpu_data.x86 == 6 && 355 boot_cpu_data.x86_model == 1 && 356 boot_cpu_data.x86_stepping < 8) { 357 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 358 return 1; 359 } 360 return 0; 361 } 362 363 static void intel_smp_check(struct cpuinfo_x86 *c) 364 { 365 /* calling is from identify_secondary_cpu() ? */ 366 if (!c->cpu_index) 367 return; 368 369 /* 370 * Mask B, Pentium, but not Pentium MMX 371 */ 372 if (c->x86 == 5 && 373 c->x86_stepping >= 1 && c->x86_stepping <= 4 && 374 c->x86_model <= 3) { 375 /* 376 * Remember we have B step Pentia with bugs 377 */ 378 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 379 "with B stepping processors.\n"); 380 } 381 } 382 383 static int forcepae; 384 static int __init forcepae_setup(char *__unused) 385 { 386 forcepae = 1; 387 return 1; 388 } 389 __setup("forcepae", forcepae_setup); 390 391 static void intel_workarounds(struct cpuinfo_x86 *c) 392 { 393 #ifdef CONFIG_X86_F00F_BUG 394 /* 395 * All models of Pentium and Pentium with MMX technology CPUs 396 * have the F0 0F bug, which lets nonprivileged users lock up the 397 * system. Announce that the fault handler will be checking for it. 398 * The Quark is also family 5, but does not have the same bug. 399 */ 400 clear_cpu_bug(c, X86_BUG_F00F); 401 if (c->x86 == 5 && c->x86_model < 9) { 402 static int f00f_workaround_enabled; 403 404 set_cpu_bug(c, X86_BUG_F00F); 405 if (!f00f_workaround_enabled) { 406 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 407 f00f_workaround_enabled = 1; 408 } 409 } 410 #endif 411 412 /* 413 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 414 * model 3 mask 3 415 */ 416 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) 417 clear_cpu_cap(c, X86_FEATURE_SEP); 418 419 /* 420 * PAE CPUID issue: many Pentium M report no PAE but may have a 421 * functionally usable PAE implementation. 422 * Forcefully enable PAE if kernel parameter "forcepae" is present. 423 */ 424 if (forcepae) { 425 pr_warn("PAE forced!\n"); 426 set_cpu_cap(c, X86_FEATURE_PAE); 427 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 428 } 429 430 /* 431 * P4 Xeon erratum 037 workaround. 432 * Hardware prefetcher may cause stale data to be loaded into the cache. 433 */ 434 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { 435 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 436 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 437 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 438 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 439 } 440 } 441 442 /* 443 * See if we have a good local APIC by checking for buggy Pentia, 444 * i.e. all B steppings and the C2 stepping of P54C when using their 445 * integrated APIC (see 11AP erratum in "Pentium Processor 446 * Specification Update"). 447 */ 448 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 449 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) 450 set_cpu_bug(c, X86_BUG_11AP); 451 452 453 #ifdef CONFIG_X86_INTEL_USERCOPY 454 /* 455 * Set up the preferred alignment for movsl bulk memory moves 456 */ 457 switch (c->x86) { 458 case 4: /* 486: untested */ 459 break; 460 case 5: /* Old Pentia: untested */ 461 break; 462 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 463 movsl_mask.mask = 7; 464 break; 465 case 15: /* P4 is OK down to 8-byte alignment */ 466 movsl_mask.mask = 7; 467 break; 468 } 469 #endif 470 471 intel_smp_check(c); 472 } 473 #else 474 static void intel_workarounds(struct cpuinfo_x86 *c) 475 { 476 } 477 #endif 478 479 static void srat_detect_node(struct cpuinfo_x86 *c) 480 { 481 #ifdef CONFIG_NUMA 482 unsigned node; 483 int cpu = smp_processor_id(); 484 485 /* Don't do the funky fallback heuristics the AMD version employs 486 for now. */ 487 node = numa_cpu_node(cpu); 488 if (node == NUMA_NO_NODE || !node_online(node)) { 489 /* reuse the value from init_cpu_to_node() */ 490 node = cpu_to_node(cpu); 491 } 492 numa_set_node(cpu, node); 493 #endif 494 } 495 496 static void detect_vmx_virtcap(struct cpuinfo_x86 *c) 497 { 498 /* Intel VMX MSR indicated features */ 499 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000 500 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000 501 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000 502 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001 503 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002 504 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020 505 #define x86_VMX_FEATURE_EPT_CAP_AD 0x00200000 506 507 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2; 508 u32 msr_vpid_cap, msr_ept_cap; 509 510 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW); 511 clear_cpu_cap(c, X86_FEATURE_VNMI); 512 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); 513 clear_cpu_cap(c, X86_FEATURE_EPT); 514 clear_cpu_cap(c, X86_FEATURE_VPID); 515 clear_cpu_cap(c, X86_FEATURE_EPT_AD); 516 517 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high); 518 msr_ctl = vmx_msr_high | vmx_msr_low; 519 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW) 520 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW); 521 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI) 522 set_cpu_cap(c, X86_FEATURE_VNMI); 523 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) { 524 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, 525 vmx_msr_low, vmx_msr_high); 526 msr_ctl2 = vmx_msr_high | vmx_msr_low; 527 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) && 528 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)) 529 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); 530 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT) { 531 set_cpu_cap(c, X86_FEATURE_EPT); 532 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, 533 msr_ept_cap, msr_vpid_cap); 534 if (msr_ept_cap & x86_VMX_FEATURE_EPT_CAP_AD) 535 set_cpu_cap(c, X86_FEATURE_EPT_AD); 536 } 537 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID) 538 set_cpu_cap(c, X86_FEATURE_VPID); 539 } 540 } 541 542 #define MSR_IA32_TME_ACTIVATE 0x982 543 544 /* Helpers to access TME_ACTIVATE MSR */ 545 #define TME_ACTIVATE_LOCKED(x) (x & 0x1) 546 #define TME_ACTIVATE_ENABLED(x) (x & 0x2) 547 548 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ 549 #define TME_ACTIVATE_POLICY_AES_XTS_128 0 550 551 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ 552 553 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ 554 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 555 556 /* Values for mktme_status (SW only construct) */ 557 #define MKTME_ENABLED 0 558 #define MKTME_DISABLED 1 559 #define MKTME_UNINITIALIZED 2 560 static int mktme_status = MKTME_UNINITIALIZED; 561 562 static void detect_tme(struct cpuinfo_x86 *c) 563 { 564 u64 tme_activate, tme_policy, tme_crypto_algs; 565 int keyid_bits = 0, nr_keyids = 0; 566 static u64 tme_activate_cpu0 = 0; 567 568 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); 569 570 if (mktme_status != MKTME_UNINITIALIZED) { 571 if (tme_activate != tme_activate_cpu0) { 572 /* Broken BIOS? */ 573 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); 574 pr_err_once("x86/tme: MKTME is not usable\n"); 575 mktme_status = MKTME_DISABLED; 576 577 /* Proceed. We may need to exclude bits from x86_phys_bits. */ 578 } 579 } else { 580 tme_activate_cpu0 = tme_activate; 581 } 582 583 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { 584 pr_info_once("x86/tme: not enabled by BIOS\n"); 585 mktme_status = MKTME_DISABLED; 586 return; 587 } 588 589 if (mktme_status != MKTME_UNINITIALIZED) 590 goto detect_keyid_bits; 591 592 pr_info("x86/tme: enabled by BIOS\n"); 593 594 tme_policy = TME_ACTIVATE_POLICY(tme_activate); 595 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) 596 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); 597 598 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); 599 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { 600 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", 601 tme_crypto_algs); 602 mktme_status = MKTME_DISABLED; 603 } 604 detect_keyid_bits: 605 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); 606 nr_keyids = (1UL << keyid_bits) - 1; 607 if (nr_keyids) { 608 pr_info_once("x86/mktme: enabled by BIOS\n"); 609 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); 610 } else { 611 pr_info_once("x86/mktme: disabled by BIOS\n"); 612 } 613 614 if (mktme_status == MKTME_UNINITIALIZED) { 615 /* MKTME is usable */ 616 mktme_status = MKTME_ENABLED; 617 } 618 619 /* 620 * KeyID bits effectively lower the number of physical address 621 * bits. Update cpuinfo_x86::x86_phys_bits accordingly. 622 */ 623 c->x86_phys_bits -= keyid_bits; 624 } 625 626 static void init_cpuid_fault(struct cpuinfo_x86 *c) 627 { 628 u64 msr; 629 630 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 631 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 632 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 633 } 634 } 635 636 static void init_intel_misc_features(struct cpuinfo_x86 *c) 637 { 638 u64 msr; 639 640 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 641 return; 642 643 /* Clear all MISC features */ 644 this_cpu_write(msr_misc_features_shadow, 0); 645 646 /* Check features and update capabilities and shadow control bits */ 647 init_cpuid_fault(c); 648 probe_xeon_phi_r3mwait(c); 649 650 msr = this_cpu_read(msr_misc_features_shadow); 651 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 652 } 653 654 static void init_intel(struct cpuinfo_x86 *c) 655 { 656 early_init_intel(c); 657 658 intel_workarounds(c); 659 660 /* 661 * Detect the extended topology information if available. This 662 * will reinitialise the initial_apicid which will be used 663 * in init_intel_cacheinfo() 664 */ 665 detect_extended_topology(c); 666 667 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 668 /* 669 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 670 * detection. 671 */ 672 detect_num_cpu_cores(c); 673 #ifdef CONFIG_X86_32 674 detect_ht(c); 675 #endif 676 } 677 678 init_intel_cacheinfo(c); 679 680 if (c->cpuid_level > 9) { 681 unsigned eax = cpuid_eax(10); 682 /* Check for version and the number of counters */ 683 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 684 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 685 } 686 687 if (cpu_has(c, X86_FEATURE_XMM2)) 688 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 689 690 if (boot_cpu_has(X86_FEATURE_DS)) { 691 unsigned int l1, l2; 692 693 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 694 if (!(l1 & (1<<11))) 695 set_cpu_cap(c, X86_FEATURE_BTS); 696 if (!(l1 & (1<<12))) 697 set_cpu_cap(c, X86_FEATURE_PEBS); 698 } 699 700 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 701 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 702 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 703 704 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 705 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 706 set_cpu_bug(c, X86_BUG_MONITOR); 707 708 #ifdef CONFIG_X86_64 709 if (c->x86 == 15) 710 c->x86_cache_alignment = c->x86_clflush_size * 2; 711 if (c->x86 == 6) 712 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 713 #else 714 /* 715 * Names for the Pentium II/Celeron processors 716 * detectable only by also checking the cache size. 717 * Dixon is NOT a Celeron. 718 */ 719 if (c->x86 == 6) { 720 unsigned int l2 = c->x86_cache_size; 721 char *p = NULL; 722 723 switch (c->x86_model) { 724 case 5: 725 if (l2 == 0) 726 p = "Celeron (Covington)"; 727 else if (l2 == 256) 728 p = "Mobile Pentium II (Dixon)"; 729 break; 730 731 case 6: 732 if (l2 == 128) 733 p = "Celeron (Mendocino)"; 734 else if (c->x86_stepping == 0 || c->x86_stepping == 5) 735 p = "Celeron-A"; 736 break; 737 738 case 8: 739 if (l2 == 128) 740 p = "Celeron (Coppermine)"; 741 break; 742 } 743 744 if (p) 745 strcpy(c->x86_model_id, p); 746 } 747 748 if (c->x86 == 15) 749 set_cpu_cap(c, X86_FEATURE_P4); 750 if (c->x86 == 6) 751 set_cpu_cap(c, X86_FEATURE_P3); 752 #endif 753 754 /* Work around errata */ 755 srat_detect_node(c); 756 757 if (cpu_has(c, X86_FEATURE_VMX)) 758 detect_vmx_virtcap(c); 759 760 if (cpu_has(c, X86_FEATURE_TME)) 761 detect_tme(c); 762 763 init_intel_misc_features(c); 764 } 765 766 #ifdef CONFIG_X86_32 767 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 768 { 769 /* 770 * Intel PIII Tualatin. This comes in two flavours. 771 * One has 256kb of cache, the other 512. We have no way 772 * to determine which, so we use a boottime override 773 * for the 512kb model, and assume 256 otherwise. 774 */ 775 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 776 size = 256; 777 778 /* 779 * Intel Quark SoC X1000 contains a 4-way set associative 780 * 16K cache with a 16 byte cache line and 256 lines per tag 781 */ 782 if ((c->x86 == 5) && (c->x86_model == 9)) 783 size = 16; 784 return size; 785 } 786 #endif 787 788 #define TLB_INST_4K 0x01 789 #define TLB_INST_4M 0x02 790 #define TLB_INST_2M_4M 0x03 791 792 #define TLB_INST_ALL 0x05 793 #define TLB_INST_1G 0x06 794 795 #define TLB_DATA_4K 0x11 796 #define TLB_DATA_4M 0x12 797 #define TLB_DATA_2M_4M 0x13 798 #define TLB_DATA_4K_4M 0x14 799 800 #define TLB_DATA_1G 0x16 801 802 #define TLB_DATA0_4K 0x21 803 #define TLB_DATA0_4M 0x22 804 #define TLB_DATA0_2M_4M 0x23 805 806 #define STLB_4K 0x41 807 #define STLB_4K_2M 0x42 808 809 static const struct _tlb_table intel_tlb_table[] = { 810 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 811 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 812 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 813 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 814 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 815 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 816 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" }, 817 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 818 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 819 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 820 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 821 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 822 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 823 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 824 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 825 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 826 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 827 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 828 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 829 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 830 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, 831 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, 832 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, 833 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 834 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 835 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 836 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 837 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 838 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 839 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 840 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 841 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 842 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 843 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 844 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" }, 845 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 846 { 0x00, 0, 0 } 847 }; 848 849 static void intel_tlb_lookup(const unsigned char desc) 850 { 851 unsigned char k; 852 if (desc == 0) 853 return; 854 855 /* look up this descriptor in the table */ 856 for (k = 0; intel_tlb_table[k].descriptor != desc && \ 857 intel_tlb_table[k].descriptor != 0; k++) 858 ; 859 860 if (intel_tlb_table[k].tlb_type == 0) 861 return; 862 863 switch (intel_tlb_table[k].tlb_type) { 864 case STLB_4K: 865 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 866 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 867 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 868 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 869 break; 870 case STLB_4K_2M: 871 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 872 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 873 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 874 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 875 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 876 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 877 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 878 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 879 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 880 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 881 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 882 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 883 break; 884 case TLB_INST_ALL: 885 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 886 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 887 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 888 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 889 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 890 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 891 break; 892 case TLB_INST_4K: 893 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 894 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 895 break; 896 case TLB_INST_4M: 897 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 898 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 899 break; 900 case TLB_INST_2M_4M: 901 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 902 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 903 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 904 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 905 break; 906 case TLB_DATA_4K: 907 case TLB_DATA0_4K: 908 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 909 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 910 break; 911 case TLB_DATA_4M: 912 case TLB_DATA0_4M: 913 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 914 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 915 break; 916 case TLB_DATA_2M_4M: 917 case TLB_DATA0_2M_4M: 918 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 919 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 920 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 921 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 922 break; 923 case TLB_DATA_4K_4M: 924 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 925 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 926 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 927 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 928 break; 929 case TLB_DATA_1G: 930 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 931 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 932 break; 933 } 934 } 935 936 static void intel_detect_tlb(struct cpuinfo_x86 *c) 937 { 938 int i, j, n; 939 unsigned int regs[4]; 940 unsigned char *desc = (unsigned char *)regs; 941 942 if (c->cpuid_level < 2) 943 return; 944 945 /* Number of times to iterate */ 946 n = cpuid_eax(2) & 0xFF; 947 948 for (i = 0 ; i < n ; i++) { 949 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 950 951 /* If bit 31 is set, this is an unknown format */ 952 for (j = 0 ; j < 3 ; j++) 953 if (regs[j] & (1 << 31)) 954 regs[j] = 0; 955 956 /* Byte 0 is level count, not a descriptor */ 957 for (j = 1 ; j < 16 ; j++) 958 intel_tlb_lookup(desc[j]); 959 } 960 } 961 962 static const struct cpu_dev intel_cpu_dev = { 963 .c_vendor = "Intel", 964 .c_ident = { "GenuineIntel" }, 965 #ifdef CONFIG_X86_32 966 .legacy_models = { 967 { .family = 4, .model_names = 968 { 969 [0] = "486 DX-25/33", 970 [1] = "486 DX-50", 971 [2] = "486 SX", 972 [3] = "486 DX/2", 973 [4] = "486 SL", 974 [5] = "486 SX/2", 975 [7] = "486 DX/2-WB", 976 [8] = "486 DX/4", 977 [9] = "486 DX/4-WB" 978 } 979 }, 980 { .family = 5, .model_names = 981 { 982 [0] = "Pentium 60/66 A-step", 983 [1] = "Pentium 60/66", 984 [2] = "Pentium 75 - 200", 985 [3] = "OverDrive PODP5V83", 986 [4] = "Pentium MMX", 987 [7] = "Mobile Pentium 75 - 200", 988 [8] = "Mobile Pentium MMX", 989 [9] = "Quark SoC X1000", 990 } 991 }, 992 { .family = 6, .model_names = 993 { 994 [0] = "Pentium Pro A-step", 995 [1] = "Pentium Pro", 996 [3] = "Pentium II (Klamath)", 997 [4] = "Pentium II (Deschutes)", 998 [5] = "Pentium II (Deschutes)", 999 [6] = "Mobile Pentium II", 1000 [7] = "Pentium III (Katmai)", 1001 [8] = "Pentium III (Coppermine)", 1002 [10] = "Pentium III (Cascades)", 1003 [11] = "Pentium III (Tualatin)", 1004 } 1005 }, 1006 { .family = 15, .model_names = 1007 { 1008 [0] = "Pentium 4 (Unknown)", 1009 [1] = "Pentium 4 (Willamette)", 1010 [2] = "Pentium 4 (Northwood)", 1011 [4] = "Pentium 4 (Foster)", 1012 [5] = "Pentium 4 (Foster)", 1013 } 1014 }, 1015 }, 1016 .legacy_cache_size = intel_size_cache, 1017 #endif 1018 .c_detect_tlb = intel_detect_tlb, 1019 .c_early_init = early_init_intel, 1020 .c_init = init_intel, 1021 .c_x86_vendor = X86_VENDOR_INTEL, 1022 }; 1023 1024 cpu_dev_register(intel_cpu_dev); 1025