xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 8730046c)
1 #include <linux/kernel.h>
2 
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/init.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/cpufeature.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16 #include <asm/intel-family.h>
17 #include <asm/microcode_intel.h>
18 
19 #ifdef CONFIG_X86_64
20 #include <linux/topology.h>
21 #endif
22 
23 #include "cpu.h"
24 
25 #ifdef CONFIG_X86_LOCAL_APIC
26 #include <asm/mpspec.h>
27 #include <asm/apic.h>
28 #endif
29 
30 /*
31  * Just in case our CPU detection goes bad, or you have a weird system,
32  * allow a way to override the automatic disabling of MPX.
33  */
34 static int forcempx;
35 
36 static int __init forcempx_setup(char *__unused)
37 {
38 	forcempx = 1;
39 
40 	return 1;
41 }
42 __setup("intel-skd-046-workaround=disable", forcempx_setup);
43 
44 void check_mpx_erratum(struct cpuinfo_x86 *c)
45 {
46 	if (forcempx)
47 		return;
48 	/*
49 	 * Turn off the MPX feature on CPUs where SMEP is not
50 	 * available or disabled.
51 	 *
52 	 * Works around Intel Erratum SKD046: "Branch Instructions
53 	 * May Initialize MPX Bound Registers Incorrectly".
54 	 *
55 	 * This might falsely disable MPX on systems without
56 	 * SMEP, like Atom processors without SMEP.  But there
57 	 * is no such hardware known at the moment.
58 	 */
59 	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
60 		setup_clear_cpu_cap(X86_FEATURE_MPX);
61 		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
62 	}
63 }
64 
65 static void early_init_intel(struct cpuinfo_x86 *c)
66 {
67 	u64 misc_enable;
68 
69 	/* Unmask CPUID levels if masked: */
70 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
71 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
72 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
73 			c->cpuid_level = cpuid_eax(0);
74 			get_cpu_cap(c);
75 		}
76 	}
77 
78 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
79 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
80 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
81 
82 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
83 		c->microcode = intel_get_microcode_revision();
84 
85 	/*
86 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
87 	 *
88 	 * A race condition between speculative fetches and invalidating
89 	 * a large page.  This is worked around in microcode, but we
90 	 * need the microcode to have already been loaded... so if it is
91 	 * not, recommend a BIOS update and disable large pages.
92 	 */
93 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
94 	    c->microcode < 0x20e) {
95 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
96 		clear_cpu_cap(c, X86_FEATURE_PSE);
97 	}
98 
99 #ifdef CONFIG_X86_64
100 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
101 #else
102 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
103 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
104 		c->x86_cache_alignment = 128;
105 #endif
106 
107 	/* CPUID workaround for 0F33/0F34 CPU */
108 	if (c->x86 == 0xF && c->x86_model == 0x3
109 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
110 		c->x86_phys_bits = 36;
111 
112 	/*
113 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
114 	 * with P/T states and does not stop in deep C-states.
115 	 *
116 	 * It is also reliable across cores and sockets. (but not across
117 	 * cabinets - we turn it off in that case explicitly.)
118 	 */
119 	if (c->x86_power & (1 << 8)) {
120 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
121 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
122 		if (!check_tsc_unstable())
123 			set_sched_clock_stable();
124 	}
125 
126 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
127 	if (c->x86 == 6) {
128 		switch (c->x86_model) {
129 		case 0x27:	/* Penwell */
130 		case 0x35:	/* Cloverview */
131 		case 0x4a:	/* Merrifield */
132 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
133 			break;
134 		default:
135 			break;
136 		}
137 	}
138 
139 	/*
140 	 * There is a known erratum on Pentium III and Core Solo
141 	 * and Core Duo CPUs.
142 	 * " Page with PAT set to WC while associated MTRR is UC
143 	 *   may consolidate to UC "
144 	 * Because of this erratum, it is better to stick with
145 	 * setting WC in MTRR rather than using PAT on these CPUs.
146 	 *
147 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
148 	 */
149 	if (c->x86 == 6 && c->x86_model < 15)
150 		clear_cpu_cap(c, X86_FEATURE_PAT);
151 
152 #ifdef CONFIG_KMEMCHECK
153 	/*
154 	 * P4s have a "fast strings" feature which causes single-
155 	 * stepping REP instructions to only generate a #DB on
156 	 * cache-line boundaries.
157 	 *
158 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
159 	 * (model 2) with the same problem.
160 	 */
161 	if (c->x86 == 15)
162 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
163 				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
164 			pr_info("kmemcheck: Disabling fast string operations\n");
165 #endif
166 
167 	/*
168 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
169 	 * clear the fast string and enhanced fast string CPU capabilities.
170 	 */
171 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
172 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
173 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
174 			pr_info("Disabled fast string operations\n");
175 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
176 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
177 		}
178 	}
179 
180 	/*
181 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
182 	 * "The operating system also is required to invalidate (i.e., flush)
183 	 *  the TLB when any changes are made to any of the page table entries.
184 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
185 	 *
186 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
187 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
188 	 * to be modified.
189 	 */
190 	if (c->x86 == 5 && c->x86_model == 9) {
191 		pr_info("Disabling PGE capability bit\n");
192 		setup_clear_cpu_cap(X86_FEATURE_PGE);
193 	}
194 
195 	if (c->cpuid_level >= 0x00000001) {
196 		u32 eax, ebx, ecx, edx;
197 
198 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
199 		/*
200 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
201 		 * apicids which are reserved per package. Store the resulting
202 		 * shift value for the package management code.
203 		 */
204 		if (edx & (1U << 28))
205 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
206 	}
207 
208 	check_mpx_erratum(c);
209 }
210 
211 #ifdef CONFIG_X86_32
212 /*
213  *	Early probe support logic for ppro memory erratum #50
214  *
215  *	This is called before we do cpu ident work
216  */
217 
218 int ppro_with_ram_bug(void)
219 {
220 	/* Uses data from early_cpu_detect now */
221 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
222 	    boot_cpu_data.x86 == 6 &&
223 	    boot_cpu_data.x86_model == 1 &&
224 	    boot_cpu_data.x86_mask < 8) {
225 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
226 		return 1;
227 	}
228 	return 0;
229 }
230 
231 static void intel_smp_check(struct cpuinfo_x86 *c)
232 {
233 	/* calling is from identify_secondary_cpu() ? */
234 	if (!c->cpu_index)
235 		return;
236 
237 	/*
238 	 * Mask B, Pentium, but not Pentium MMX
239 	 */
240 	if (c->x86 == 5 &&
241 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
242 	    c->x86_model <= 3) {
243 		/*
244 		 * Remember we have B step Pentia with bugs
245 		 */
246 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
247 				    "with B stepping processors.\n");
248 	}
249 }
250 
251 static int forcepae;
252 static int __init forcepae_setup(char *__unused)
253 {
254 	forcepae = 1;
255 	return 1;
256 }
257 __setup("forcepae", forcepae_setup);
258 
259 static void intel_workarounds(struct cpuinfo_x86 *c)
260 {
261 #ifdef CONFIG_X86_F00F_BUG
262 	/*
263 	 * All models of Pentium and Pentium with MMX technology CPUs
264 	 * have the F0 0F bug, which lets nonprivileged users lock up the
265 	 * system. Announce that the fault handler will be checking for it.
266 	 * The Quark is also family 5, but does not have the same bug.
267 	 */
268 	clear_cpu_bug(c, X86_BUG_F00F);
269 	if (c->x86 == 5 && c->x86_model < 9) {
270 		static int f00f_workaround_enabled;
271 
272 		set_cpu_bug(c, X86_BUG_F00F);
273 		if (!f00f_workaround_enabled) {
274 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
275 			f00f_workaround_enabled = 1;
276 		}
277 	}
278 #endif
279 
280 	/*
281 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
282 	 * model 3 mask 3
283 	 */
284 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
285 		clear_cpu_cap(c, X86_FEATURE_SEP);
286 
287 	/*
288 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
289 	 * functionally usable PAE implementation.
290 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
291 	 */
292 	if (forcepae) {
293 		pr_warn("PAE forced!\n");
294 		set_cpu_cap(c, X86_FEATURE_PAE);
295 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
296 	}
297 
298 	/*
299 	 * P4 Xeon erratum 037 workaround.
300 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
301 	 */
302 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
303 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
304 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
305 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
306 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
307 		}
308 	}
309 
310 	/*
311 	 * See if we have a good local APIC by checking for buggy Pentia,
312 	 * i.e. all B steppings and the C2 stepping of P54C when using their
313 	 * integrated APIC (see 11AP erratum in "Pentium Processor
314 	 * Specification Update").
315 	 */
316 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
317 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
318 		set_cpu_bug(c, X86_BUG_11AP);
319 
320 
321 #ifdef CONFIG_X86_INTEL_USERCOPY
322 	/*
323 	 * Set up the preferred alignment for movsl bulk memory moves
324 	 */
325 	switch (c->x86) {
326 	case 4:		/* 486: untested */
327 		break;
328 	case 5:		/* Old Pentia: untested */
329 		break;
330 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
331 		movsl_mask.mask = 7;
332 		break;
333 	case 15:	/* P4 is OK down to 8-byte alignment */
334 		movsl_mask.mask = 7;
335 		break;
336 	}
337 #endif
338 
339 	intel_smp_check(c);
340 }
341 #else
342 static void intel_workarounds(struct cpuinfo_x86 *c)
343 {
344 }
345 #endif
346 
347 static void srat_detect_node(struct cpuinfo_x86 *c)
348 {
349 #ifdef CONFIG_NUMA
350 	unsigned node;
351 	int cpu = smp_processor_id();
352 
353 	/* Don't do the funky fallback heuristics the AMD version employs
354 	   for now. */
355 	node = numa_cpu_node(cpu);
356 	if (node == NUMA_NO_NODE || !node_online(node)) {
357 		/* reuse the value from init_cpu_to_node() */
358 		node = cpu_to_node(cpu);
359 	}
360 	numa_set_node(cpu, node);
361 #endif
362 }
363 
364 /*
365  * find out the number of processor cores on the die
366  */
367 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
368 {
369 	unsigned int eax, ebx, ecx, edx;
370 
371 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
372 		return 1;
373 
374 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
375 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
376 	if (eax & 0x1f)
377 		return (eax >> 26) + 1;
378 	else
379 		return 1;
380 }
381 
382 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
383 {
384 	/* Intel VMX MSR indicated features */
385 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
386 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
387 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
388 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
389 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
390 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
391 
392 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
393 
394 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
395 	clear_cpu_cap(c, X86_FEATURE_VNMI);
396 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
397 	clear_cpu_cap(c, X86_FEATURE_EPT);
398 	clear_cpu_cap(c, X86_FEATURE_VPID);
399 
400 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
401 	msr_ctl = vmx_msr_high | vmx_msr_low;
402 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
403 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
404 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
405 		set_cpu_cap(c, X86_FEATURE_VNMI);
406 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
407 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
408 		      vmx_msr_low, vmx_msr_high);
409 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
410 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
411 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
412 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
413 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
414 			set_cpu_cap(c, X86_FEATURE_EPT);
415 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
416 			set_cpu_cap(c, X86_FEATURE_VPID);
417 	}
418 }
419 
420 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
421 {
422 	u64 epb;
423 
424 	/*
425 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
426 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
427 	 */
428 	if (!cpu_has(c, X86_FEATURE_EPB))
429 		return;
430 
431 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
432 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
433 		return;
434 
435 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
436 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
437 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
438 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
439 }
440 
441 static void intel_bsp_resume(struct cpuinfo_x86 *c)
442 {
443 	/*
444 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
445 	 * so reinitialize it properly like during bootup:
446 	 */
447 	init_intel_energy_perf(c);
448 }
449 
450 static void init_intel(struct cpuinfo_x86 *c)
451 {
452 	unsigned int l2 = 0;
453 
454 	early_init_intel(c);
455 
456 	intel_workarounds(c);
457 
458 	/*
459 	 * Detect the extended topology information if available. This
460 	 * will reinitialise the initial_apicid which will be used
461 	 * in init_intel_cacheinfo()
462 	 */
463 	detect_extended_topology(c);
464 
465 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
466 		/*
467 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
468 		 * detection.
469 		 */
470 		c->x86_max_cores = intel_num_cpu_cores(c);
471 #ifdef CONFIG_X86_32
472 		detect_ht(c);
473 #endif
474 	}
475 
476 	l2 = init_intel_cacheinfo(c);
477 
478 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
479 	if (l2 == 0) {
480 		cpu_detect_cache_sizes(c);
481 		l2 = c->x86_cache_size;
482 	}
483 
484 	if (c->cpuid_level > 9) {
485 		unsigned eax = cpuid_eax(10);
486 		/* Check for version and the number of counters */
487 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
488 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
489 	}
490 
491 	if (cpu_has(c, X86_FEATURE_XMM2))
492 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
493 
494 	if (boot_cpu_has(X86_FEATURE_DS)) {
495 		unsigned int l1;
496 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
497 		if (!(l1 & (1<<11)))
498 			set_cpu_cap(c, X86_FEATURE_BTS);
499 		if (!(l1 & (1<<12)))
500 			set_cpu_cap(c, X86_FEATURE_PEBS);
501 	}
502 
503 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
504 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
505 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
506 
507 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
508 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
509 		set_cpu_bug(c, X86_BUG_MONITOR);
510 
511 #ifdef CONFIG_X86_64
512 	if (c->x86 == 15)
513 		c->x86_cache_alignment = c->x86_clflush_size * 2;
514 	if (c->x86 == 6)
515 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
516 #else
517 	/*
518 	 * Names for the Pentium II/Celeron processors
519 	 * detectable only by also checking the cache size.
520 	 * Dixon is NOT a Celeron.
521 	 */
522 	if (c->x86 == 6) {
523 		char *p = NULL;
524 
525 		switch (c->x86_model) {
526 		case 5:
527 			if (l2 == 0)
528 				p = "Celeron (Covington)";
529 			else if (l2 == 256)
530 				p = "Mobile Pentium II (Dixon)";
531 			break;
532 
533 		case 6:
534 			if (l2 == 128)
535 				p = "Celeron (Mendocino)";
536 			else if (c->x86_mask == 0 || c->x86_mask == 5)
537 				p = "Celeron-A";
538 			break;
539 
540 		case 8:
541 			if (l2 == 128)
542 				p = "Celeron (Coppermine)";
543 			break;
544 		}
545 
546 		if (p)
547 			strcpy(c->x86_model_id, p);
548 	}
549 
550 	if (c->x86 == 15)
551 		set_cpu_cap(c, X86_FEATURE_P4);
552 	if (c->x86 == 6)
553 		set_cpu_cap(c, X86_FEATURE_P3);
554 #endif
555 
556 	/* Work around errata */
557 	srat_detect_node(c);
558 
559 	if (cpu_has(c, X86_FEATURE_VMX))
560 		detect_vmx_virtcap(c);
561 
562 	init_intel_energy_perf(c);
563 }
564 
565 #ifdef CONFIG_X86_32
566 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
567 {
568 	/*
569 	 * Intel PIII Tualatin. This comes in two flavours.
570 	 * One has 256kb of cache, the other 512. We have no way
571 	 * to determine which, so we use a boottime override
572 	 * for the 512kb model, and assume 256 otherwise.
573 	 */
574 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
575 		size = 256;
576 
577 	/*
578 	 * Intel Quark SoC X1000 contains a 4-way set associative
579 	 * 16K cache with a 16 byte cache line and 256 lines per tag
580 	 */
581 	if ((c->x86 == 5) && (c->x86_model == 9))
582 		size = 16;
583 	return size;
584 }
585 #endif
586 
587 #define TLB_INST_4K	0x01
588 #define TLB_INST_4M	0x02
589 #define TLB_INST_2M_4M	0x03
590 
591 #define TLB_INST_ALL	0x05
592 #define TLB_INST_1G	0x06
593 
594 #define TLB_DATA_4K	0x11
595 #define TLB_DATA_4M	0x12
596 #define TLB_DATA_2M_4M	0x13
597 #define TLB_DATA_4K_4M	0x14
598 
599 #define TLB_DATA_1G	0x16
600 
601 #define TLB_DATA0_4K	0x21
602 #define TLB_DATA0_4M	0x22
603 #define TLB_DATA0_2M_4M	0x23
604 
605 #define STLB_4K		0x41
606 #define STLB_4K_2M	0x42
607 
608 static const struct _tlb_table intel_tlb_table[] = {
609 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
610 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
611 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
612 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
613 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
614 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
615 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
616 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
617 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
618 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
619 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
620 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
621 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
622 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
623 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
624 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
625 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
626 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
627 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
628 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
629 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
630 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
631 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
632 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
633 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
634 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
635 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
636 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
637 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
638 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
639 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
640 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
641 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
642 	{ 0x00, 0, 0 }
643 };
644 
645 static void intel_tlb_lookup(const unsigned char desc)
646 {
647 	unsigned char k;
648 	if (desc == 0)
649 		return;
650 
651 	/* look up this descriptor in the table */
652 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
653 			intel_tlb_table[k].descriptor != 0; k++)
654 		;
655 
656 	if (intel_tlb_table[k].tlb_type == 0)
657 		return;
658 
659 	switch (intel_tlb_table[k].tlb_type) {
660 	case STLB_4K:
661 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
662 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
663 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
664 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
665 		break;
666 	case STLB_4K_2M:
667 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
668 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
669 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
670 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
671 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
672 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
673 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
674 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
675 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
676 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
677 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
678 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
679 		break;
680 	case TLB_INST_ALL:
681 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
682 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
683 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
684 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
685 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
686 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
687 		break;
688 	case TLB_INST_4K:
689 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
690 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
691 		break;
692 	case TLB_INST_4M:
693 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
694 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
695 		break;
696 	case TLB_INST_2M_4M:
697 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
698 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
699 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
700 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
701 		break;
702 	case TLB_DATA_4K:
703 	case TLB_DATA0_4K:
704 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
705 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
706 		break;
707 	case TLB_DATA_4M:
708 	case TLB_DATA0_4M:
709 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
710 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
711 		break;
712 	case TLB_DATA_2M_4M:
713 	case TLB_DATA0_2M_4M:
714 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
715 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
716 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
717 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
718 		break;
719 	case TLB_DATA_4K_4M:
720 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
721 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
722 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
723 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
724 		break;
725 	case TLB_DATA_1G:
726 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
727 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
728 		break;
729 	}
730 }
731 
732 static void intel_detect_tlb(struct cpuinfo_x86 *c)
733 {
734 	int i, j, n;
735 	unsigned int regs[4];
736 	unsigned char *desc = (unsigned char *)regs;
737 
738 	if (c->cpuid_level < 2)
739 		return;
740 
741 	/* Number of times to iterate */
742 	n = cpuid_eax(2) & 0xFF;
743 
744 	for (i = 0 ; i < n ; i++) {
745 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
746 
747 		/* If bit 31 is set, this is an unknown format */
748 		for (j = 0 ; j < 3 ; j++)
749 			if (regs[j] & (1 << 31))
750 				regs[j] = 0;
751 
752 		/* Byte 0 is level count, not a descriptor */
753 		for (j = 1 ; j < 16 ; j++)
754 			intel_tlb_lookup(desc[j]);
755 	}
756 }
757 
758 static const struct cpu_dev intel_cpu_dev = {
759 	.c_vendor	= "Intel",
760 	.c_ident	= { "GenuineIntel" },
761 #ifdef CONFIG_X86_32
762 	.legacy_models = {
763 		{ .family = 4, .model_names =
764 		  {
765 			  [0] = "486 DX-25/33",
766 			  [1] = "486 DX-50",
767 			  [2] = "486 SX",
768 			  [3] = "486 DX/2",
769 			  [4] = "486 SL",
770 			  [5] = "486 SX/2",
771 			  [7] = "486 DX/2-WB",
772 			  [8] = "486 DX/4",
773 			  [9] = "486 DX/4-WB"
774 		  }
775 		},
776 		{ .family = 5, .model_names =
777 		  {
778 			  [0] = "Pentium 60/66 A-step",
779 			  [1] = "Pentium 60/66",
780 			  [2] = "Pentium 75 - 200",
781 			  [3] = "OverDrive PODP5V83",
782 			  [4] = "Pentium MMX",
783 			  [7] = "Mobile Pentium 75 - 200",
784 			  [8] = "Mobile Pentium MMX",
785 			  [9] = "Quark SoC X1000",
786 		  }
787 		},
788 		{ .family = 6, .model_names =
789 		  {
790 			  [0] = "Pentium Pro A-step",
791 			  [1] = "Pentium Pro",
792 			  [3] = "Pentium II (Klamath)",
793 			  [4] = "Pentium II (Deschutes)",
794 			  [5] = "Pentium II (Deschutes)",
795 			  [6] = "Mobile Pentium II",
796 			  [7] = "Pentium III (Katmai)",
797 			  [8] = "Pentium III (Coppermine)",
798 			  [10] = "Pentium III (Cascades)",
799 			  [11] = "Pentium III (Tualatin)",
800 		  }
801 		},
802 		{ .family = 15, .model_names =
803 		  {
804 			  [0] = "Pentium 4 (Unknown)",
805 			  [1] = "Pentium 4 (Willamette)",
806 			  [2] = "Pentium 4 (Northwood)",
807 			  [4] = "Pentium 4 (Foster)",
808 			  [5] = "Pentium 4 (Foster)",
809 		  }
810 		},
811 	},
812 	.legacy_cache_size = intel_size_cache,
813 #endif
814 	.c_detect_tlb	= intel_detect_tlb,
815 	.c_early_init   = early_init_intel,
816 	.c_init		= init_intel,
817 	.c_bsp_resume	= intel_bsp_resume,
818 	.c_x86_vendor	= X86_VENDOR_INTEL,
819 };
820 
821 cpu_dev_register(intel_cpu_dev);
822 
823