xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 4f6cce39)
1 #include <linux/kernel.h>
2 
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/sched/clock.h>
8 #include <linux/thread_info.h>
9 #include <linux/init.h>
10 #include <linux/uaccess.h>
11 
12 #include <asm/cpufeature.h>
13 #include <asm/pgtable.h>
14 #include <asm/msr.h>
15 #include <asm/bugs.h>
16 #include <asm/cpu.h>
17 #include <asm/intel-family.h>
18 #include <asm/microcode_intel.h>
19 #include <asm/hwcap2.h>
20 #include <asm/elf.h>
21 
22 #ifdef CONFIG_X86_64
23 #include <linux/topology.h>
24 #endif
25 
26 #include "cpu.h"
27 
28 #ifdef CONFIG_X86_LOCAL_APIC
29 #include <asm/mpspec.h>
30 #include <asm/apic.h>
31 #endif
32 
33 /*
34  * Just in case our CPU detection goes bad, or you have a weird system,
35  * allow a way to override the automatic disabling of MPX.
36  */
37 static int forcempx;
38 
39 static int __init forcempx_setup(char *__unused)
40 {
41 	forcempx = 1;
42 
43 	return 1;
44 }
45 __setup("intel-skd-046-workaround=disable", forcempx_setup);
46 
47 void check_mpx_erratum(struct cpuinfo_x86 *c)
48 {
49 	if (forcempx)
50 		return;
51 	/*
52 	 * Turn off the MPX feature on CPUs where SMEP is not
53 	 * available or disabled.
54 	 *
55 	 * Works around Intel Erratum SKD046: "Branch Instructions
56 	 * May Initialize MPX Bound Registers Incorrectly".
57 	 *
58 	 * This might falsely disable MPX on systems without
59 	 * SMEP, like Atom processors without SMEP.  But there
60 	 * is no such hardware known at the moment.
61 	 */
62 	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
63 		setup_clear_cpu_cap(X86_FEATURE_MPX);
64 		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
65 	}
66 }
67 
68 static bool ring3mwait_disabled __read_mostly;
69 
70 static int __init ring3mwait_disable(char *__unused)
71 {
72 	ring3mwait_disabled = true;
73 	return 0;
74 }
75 __setup("ring3mwait=disable", ring3mwait_disable);
76 
77 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
78 {
79 	/*
80 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
81 	 * cpu model and family comparison.
82 	 */
83 	if (c->x86 != 6)
84 		return;
85 	switch (c->x86_model) {
86 	case INTEL_FAM6_XEON_PHI_KNL:
87 	case INTEL_FAM6_XEON_PHI_KNM:
88 		break;
89 	default:
90 		return;
91 	}
92 
93 	if (ring3mwait_disabled) {
94 		msr_clear_bit(MSR_MISC_FEATURE_ENABLES,
95 			      MSR_MISC_FEATURE_ENABLES_RING3MWAIT_BIT);
96 		return;
97 	}
98 
99 	msr_set_bit(MSR_MISC_FEATURE_ENABLES,
100 		    MSR_MISC_FEATURE_ENABLES_RING3MWAIT_BIT);
101 
102 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
103 
104 	if (c == &boot_cpu_data)
105 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
106 }
107 
108 static void early_init_intel(struct cpuinfo_x86 *c)
109 {
110 	u64 misc_enable;
111 
112 	/* Unmask CPUID levels if masked: */
113 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
114 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
115 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
116 			c->cpuid_level = cpuid_eax(0);
117 			get_cpu_cap(c);
118 		}
119 	}
120 
121 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
122 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
123 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
124 
125 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
126 		c->microcode = intel_get_microcode_revision();
127 
128 	/*
129 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
130 	 *
131 	 * A race condition between speculative fetches and invalidating
132 	 * a large page.  This is worked around in microcode, but we
133 	 * need the microcode to have already been loaded... so if it is
134 	 * not, recommend a BIOS update and disable large pages.
135 	 */
136 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
137 	    c->microcode < 0x20e) {
138 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
139 		clear_cpu_cap(c, X86_FEATURE_PSE);
140 	}
141 
142 #ifdef CONFIG_X86_64
143 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
144 #else
145 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
146 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
147 		c->x86_cache_alignment = 128;
148 #endif
149 
150 	/* CPUID workaround for 0F33/0F34 CPU */
151 	if (c->x86 == 0xF && c->x86_model == 0x3
152 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
153 		c->x86_phys_bits = 36;
154 
155 	/*
156 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
157 	 * with P/T states and does not stop in deep C-states.
158 	 *
159 	 * It is also reliable across cores and sockets. (but not across
160 	 * cabinets - we turn it off in that case explicitly.)
161 	 */
162 	if (c->x86_power & (1 << 8)) {
163 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
164 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
165 	}
166 
167 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
168 	if (c->x86 == 6) {
169 		switch (c->x86_model) {
170 		case 0x27:	/* Penwell */
171 		case 0x35:	/* Cloverview */
172 		case 0x4a:	/* Merrifield */
173 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
174 			break;
175 		default:
176 			break;
177 		}
178 	}
179 
180 	/*
181 	 * There is a known erratum on Pentium III and Core Solo
182 	 * and Core Duo CPUs.
183 	 * " Page with PAT set to WC while associated MTRR is UC
184 	 *   may consolidate to UC "
185 	 * Because of this erratum, it is better to stick with
186 	 * setting WC in MTRR rather than using PAT on these CPUs.
187 	 *
188 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
189 	 */
190 	if (c->x86 == 6 && c->x86_model < 15)
191 		clear_cpu_cap(c, X86_FEATURE_PAT);
192 
193 #ifdef CONFIG_KMEMCHECK
194 	/*
195 	 * P4s have a "fast strings" feature which causes single-
196 	 * stepping REP instructions to only generate a #DB on
197 	 * cache-line boundaries.
198 	 *
199 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
200 	 * (model 2) with the same problem.
201 	 */
202 	if (c->x86 == 15)
203 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
204 				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
205 			pr_info("kmemcheck: Disabling fast string operations\n");
206 #endif
207 
208 	/*
209 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
210 	 * clear the fast string and enhanced fast string CPU capabilities.
211 	 */
212 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
213 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
214 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
215 			pr_info("Disabled fast string operations\n");
216 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
217 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
218 		}
219 	}
220 
221 	/*
222 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
223 	 * "The operating system also is required to invalidate (i.e., flush)
224 	 *  the TLB when any changes are made to any of the page table entries.
225 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
226 	 *
227 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
228 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
229 	 * to be modified.
230 	 */
231 	if (c->x86 == 5 && c->x86_model == 9) {
232 		pr_info("Disabling PGE capability bit\n");
233 		setup_clear_cpu_cap(X86_FEATURE_PGE);
234 	}
235 
236 	if (c->cpuid_level >= 0x00000001) {
237 		u32 eax, ebx, ecx, edx;
238 
239 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
240 		/*
241 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
242 		 * apicids which are reserved per package. Store the resulting
243 		 * shift value for the package management code.
244 		 */
245 		if (edx & (1U << 28))
246 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
247 	}
248 
249 	check_mpx_erratum(c);
250 }
251 
252 #ifdef CONFIG_X86_32
253 /*
254  *	Early probe support logic for ppro memory erratum #50
255  *
256  *	This is called before we do cpu ident work
257  */
258 
259 int ppro_with_ram_bug(void)
260 {
261 	/* Uses data from early_cpu_detect now */
262 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
263 	    boot_cpu_data.x86 == 6 &&
264 	    boot_cpu_data.x86_model == 1 &&
265 	    boot_cpu_data.x86_mask < 8) {
266 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
267 		return 1;
268 	}
269 	return 0;
270 }
271 
272 static void intel_smp_check(struct cpuinfo_x86 *c)
273 {
274 	/* calling is from identify_secondary_cpu() ? */
275 	if (!c->cpu_index)
276 		return;
277 
278 	/*
279 	 * Mask B, Pentium, but not Pentium MMX
280 	 */
281 	if (c->x86 == 5 &&
282 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
283 	    c->x86_model <= 3) {
284 		/*
285 		 * Remember we have B step Pentia with bugs
286 		 */
287 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
288 				    "with B stepping processors.\n");
289 	}
290 }
291 
292 static int forcepae;
293 static int __init forcepae_setup(char *__unused)
294 {
295 	forcepae = 1;
296 	return 1;
297 }
298 __setup("forcepae", forcepae_setup);
299 
300 static void intel_workarounds(struct cpuinfo_x86 *c)
301 {
302 #ifdef CONFIG_X86_F00F_BUG
303 	/*
304 	 * All models of Pentium and Pentium with MMX technology CPUs
305 	 * have the F0 0F bug, which lets nonprivileged users lock up the
306 	 * system. Announce that the fault handler will be checking for it.
307 	 * The Quark is also family 5, but does not have the same bug.
308 	 */
309 	clear_cpu_bug(c, X86_BUG_F00F);
310 	if (c->x86 == 5 && c->x86_model < 9) {
311 		static int f00f_workaround_enabled;
312 
313 		set_cpu_bug(c, X86_BUG_F00F);
314 		if (!f00f_workaround_enabled) {
315 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
316 			f00f_workaround_enabled = 1;
317 		}
318 	}
319 #endif
320 
321 	/*
322 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
323 	 * model 3 mask 3
324 	 */
325 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
326 		clear_cpu_cap(c, X86_FEATURE_SEP);
327 
328 	/*
329 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
330 	 * functionally usable PAE implementation.
331 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
332 	 */
333 	if (forcepae) {
334 		pr_warn("PAE forced!\n");
335 		set_cpu_cap(c, X86_FEATURE_PAE);
336 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
337 	}
338 
339 	/*
340 	 * P4 Xeon erratum 037 workaround.
341 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
342 	 */
343 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
344 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
345 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
346 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
347 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
348 		}
349 	}
350 
351 	/*
352 	 * See if we have a good local APIC by checking for buggy Pentia,
353 	 * i.e. all B steppings and the C2 stepping of P54C when using their
354 	 * integrated APIC (see 11AP erratum in "Pentium Processor
355 	 * Specification Update").
356 	 */
357 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
358 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
359 		set_cpu_bug(c, X86_BUG_11AP);
360 
361 
362 #ifdef CONFIG_X86_INTEL_USERCOPY
363 	/*
364 	 * Set up the preferred alignment for movsl bulk memory moves
365 	 */
366 	switch (c->x86) {
367 	case 4:		/* 486: untested */
368 		break;
369 	case 5:		/* Old Pentia: untested */
370 		break;
371 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
372 		movsl_mask.mask = 7;
373 		break;
374 	case 15:	/* P4 is OK down to 8-byte alignment */
375 		movsl_mask.mask = 7;
376 		break;
377 	}
378 #endif
379 
380 	intel_smp_check(c);
381 }
382 #else
383 static void intel_workarounds(struct cpuinfo_x86 *c)
384 {
385 }
386 #endif
387 
388 static void srat_detect_node(struct cpuinfo_x86 *c)
389 {
390 #ifdef CONFIG_NUMA
391 	unsigned node;
392 	int cpu = smp_processor_id();
393 
394 	/* Don't do the funky fallback heuristics the AMD version employs
395 	   for now. */
396 	node = numa_cpu_node(cpu);
397 	if (node == NUMA_NO_NODE || !node_online(node)) {
398 		/* reuse the value from init_cpu_to_node() */
399 		node = cpu_to_node(cpu);
400 	}
401 	numa_set_node(cpu, node);
402 #endif
403 }
404 
405 /*
406  * find out the number of processor cores on the die
407  */
408 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
409 {
410 	unsigned int eax, ebx, ecx, edx;
411 
412 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
413 		return 1;
414 
415 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
416 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
417 	if (eax & 0x1f)
418 		return (eax >> 26) + 1;
419 	else
420 		return 1;
421 }
422 
423 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
424 {
425 	/* Intel VMX MSR indicated features */
426 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
427 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
428 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
429 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
430 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
431 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
432 
433 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
434 
435 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
436 	clear_cpu_cap(c, X86_FEATURE_VNMI);
437 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
438 	clear_cpu_cap(c, X86_FEATURE_EPT);
439 	clear_cpu_cap(c, X86_FEATURE_VPID);
440 
441 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
442 	msr_ctl = vmx_msr_high | vmx_msr_low;
443 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
444 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
445 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
446 		set_cpu_cap(c, X86_FEATURE_VNMI);
447 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
448 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
449 		      vmx_msr_low, vmx_msr_high);
450 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
451 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
452 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
453 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
454 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
455 			set_cpu_cap(c, X86_FEATURE_EPT);
456 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
457 			set_cpu_cap(c, X86_FEATURE_VPID);
458 	}
459 }
460 
461 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
462 {
463 	u64 epb;
464 
465 	/*
466 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
467 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
468 	 */
469 	if (!cpu_has(c, X86_FEATURE_EPB))
470 		return;
471 
472 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
473 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
474 		return;
475 
476 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
477 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
478 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
479 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
480 }
481 
482 static void intel_bsp_resume(struct cpuinfo_x86 *c)
483 {
484 	/*
485 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
486 	 * so reinitialize it properly like during bootup:
487 	 */
488 	init_intel_energy_perf(c);
489 }
490 
491 static void init_intel(struct cpuinfo_x86 *c)
492 {
493 	unsigned int l2 = 0;
494 
495 	early_init_intel(c);
496 
497 	intel_workarounds(c);
498 
499 	/*
500 	 * Detect the extended topology information if available. This
501 	 * will reinitialise the initial_apicid which will be used
502 	 * in init_intel_cacheinfo()
503 	 */
504 	detect_extended_topology(c);
505 
506 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
507 		/*
508 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
509 		 * detection.
510 		 */
511 		c->x86_max_cores = intel_num_cpu_cores(c);
512 #ifdef CONFIG_X86_32
513 		detect_ht(c);
514 #endif
515 	}
516 
517 	l2 = init_intel_cacheinfo(c);
518 
519 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
520 	if (l2 == 0) {
521 		cpu_detect_cache_sizes(c);
522 		l2 = c->x86_cache_size;
523 	}
524 
525 	if (c->cpuid_level > 9) {
526 		unsigned eax = cpuid_eax(10);
527 		/* Check for version and the number of counters */
528 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
529 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
530 	}
531 
532 	if (cpu_has(c, X86_FEATURE_XMM2))
533 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
534 
535 	if (boot_cpu_has(X86_FEATURE_DS)) {
536 		unsigned int l1;
537 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
538 		if (!(l1 & (1<<11)))
539 			set_cpu_cap(c, X86_FEATURE_BTS);
540 		if (!(l1 & (1<<12)))
541 			set_cpu_cap(c, X86_FEATURE_PEBS);
542 	}
543 
544 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
545 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
546 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
547 
548 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
549 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
550 		set_cpu_bug(c, X86_BUG_MONITOR);
551 
552 #ifdef CONFIG_X86_64
553 	if (c->x86 == 15)
554 		c->x86_cache_alignment = c->x86_clflush_size * 2;
555 	if (c->x86 == 6)
556 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
557 #else
558 	/*
559 	 * Names for the Pentium II/Celeron processors
560 	 * detectable only by also checking the cache size.
561 	 * Dixon is NOT a Celeron.
562 	 */
563 	if (c->x86 == 6) {
564 		char *p = NULL;
565 
566 		switch (c->x86_model) {
567 		case 5:
568 			if (l2 == 0)
569 				p = "Celeron (Covington)";
570 			else if (l2 == 256)
571 				p = "Mobile Pentium II (Dixon)";
572 			break;
573 
574 		case 6:
575 			if (l2 == 128)
576 				p = "Celeron (Mendocino)";
577 			else if (c->x86_mask == 0 || c->x86_mask == 5)
578 				p = "Celeron-A";
579 			break;
580 
581 		case 8:
582 			if (l2 == 128)
583 				p = "Celeron (Coppermine)";
584 			break;
585 		}
586 
587 		if (p)
588 			strcpy(c->x86_model_id, p);
589 	}
590 
591 	if (c->x86 == 15)
592 		set_cpu_cap(c, X86_FEATURE_P4);
593 	if (c->x86 == 6)
594 		set_cpu_cap(c, X86_FEATURE_P3);
595 #endif
596 
597 	/* Work around errata */
598 	srat_detect_node(c);
599 
600 	if (cpu_has(c, X86_FEATURE_VMX))
601 		detect_vmx_virtcap(c);
602 
603 	init_intel_energy_perf(c);
604 
605 	probe_xeon_phi_r3mwait(c);
606 }
607 
608 #ifdef CONFIG_X86_32
609 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
610 {
611 	/*
612 	 * Intel PIII Tualatin. This comes in two flavours.
613 	 * One has 256kb of cache, the other 512. We have no way
614 	 * to determine which, so we use a boottime override
615 	 * for the 512kb model, and assume 256 otherwise.
616 	 */
617 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
618 		size = 256;
619 
620 	/*
621 	 * Intel Quark SoC X1000 contains a 4-way set associative
622 	 * 16K cache with a 16 byte cache line and 256 lines per tag
623 	 */
624 	if ((c->x86 == 5) && (c->x86_model == 9))
625 		size = 16;
626 	return size;
627 }
628 #endif
629 
630 #define TLB_INST_4K	0x01
631 #define TLB_INST_4M	0x02
632 #define TLB_INST_2M_4M	0x03
633 
634 #define TLB_INST_ALL	0x05
635 #define TLB_INST_1G	0x06
636 
637 #define TLB_DATA_4K	0x11
638 #define TLB_DATA_4M	0x12
639 #define TLB_DATA_2M_4M	0x13
640 #define TLB_DATA_4K_4M	0x14
641 
642 #define TLB_DATA_1G	0x16
643 
644 #define TLB_DATA0_4K	0x21
645 #define TLB_DATA0_4M	0x22
646 #define TLB_DATA0_2M_4M	0x23
647 
648 #define STLB_4K		0x41
649 #define STLB_4K_2M	0x42
650 
651 static const struct _tlb_table intel_tlb_table[] = {
652 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
653 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
654 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
655 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
656 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
657 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
658 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
659 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
660 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
661 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
662 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
663 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
664 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
665 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
666 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
667 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
668 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
669 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
670 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
671 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
672 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
673 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
674 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
675 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
676 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
677 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
678 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
679 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
680 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
681 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
682 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
683 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
684 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
685 	{ 0x00, 0, 0 }
686 };
687 
688 static void intel_tlb_lookup(const unsigned char desc)
689 {
690 	unsigned char k;
691 	if (desc == 0)
692 		return;
693 
694 	/* look up this descriptor in the table */
695 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
696 			intel_tlb_table[k].descriptor != 0; k++)
697 		;
698 
699 	if (intel_tlb_table[k].tlb_type == 0)
700 		return;
701 
702 	switch (intel_tlb_table[k].tlb_type) {
703 	case STLB_4K:
704 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
705 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
706 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
707 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
708 		break;
709 	case STLB_4K_2M:
710 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
711 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
712 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
713 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
714 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
715 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
716 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
717 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
718 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
719 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
720 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
721 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
722 		break;
723 	case TLB_INST_ALL:
724 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
725 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
726 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
727 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
728 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
729 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
730 		break;
731 	case TLB_INST_4K:
732 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
733 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
734 		break;
735 	case TLB_INST_4M:
736 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
737 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
738 		break;
739 	case TLB_INST_2M_4M:
740 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
741 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
742 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
743 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
744 		break;
745 	case TLB_DATA_4K:
746 	case TLB_DATA0_4K:
747 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
748 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
749 		break;
750 	case TLB_DATA_4M:
751 	case TLB_DATA0_4M:
752 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
753 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
754 		break;
755 	case TLB_DATA_2M_4M:
756 	case TLB_DATA0_2M_4M:
757 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
758 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
759 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
760 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
761 		break;
762 	case TLB_DATA_4K_4M:
763 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
764 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
765 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
766 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
767 		break;
768 	case TLB_DATA_1G:
769 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
770 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
771 		break;
772 	}
773 }
774 
775 static void intel_detect_tlb(struct cpuinfo_x86 *c)
776 {
777 	int i, j, n;
778 	unsigned int regs[4];
779 	unsigned char *desc = (unsigned char *)regs;
780 
781 	if (c->cpuid_level < 2)
782 		return;
783 
784 	/* Number of times to iterate */
785 	n = cpuid_eax(2) & 0xFF;
786 
787 	for (i = 0 ; i < n ; i++) {
788 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
789 
790 		/* If bit 31 is set, this is an unknown format */
791 		for (j = 0 ; j < 3 ; j++)
792 			if (regs[j] & (1 << 31))
793 				regs[j] = 0;
794 
795 		/* Byte 0 is level count, not a descriptor */
796 		for (j = 1 ; j < 16 ; j++)
797 			intel_tlb_lookup(desc[j]);
798 	}
799 }
800 
801 static const struct cpu_dev intel_cpu_dev = {
802 	.c_vendor	= "Intel",
803 	.c_ident	= { "GenuineIntel" },
804 #ifdef CONFIG_X86_32
805 	.legacy_models = {
806 		{ .family = 4, .model_names =
807 		  {
808 			  [0] = "486 DX-25/33",
809 			  [1] = "486 DX-50",
810 			  [2] = "486 SX",
811 			  [3] = "486 DX/2",
812 			  [4] = "486 SL",
813 			  [5] = "486 SX/2",
814 			  [7] = "486 DX/2-WB",
815 			  [8] = "486 DX/4",
816 			  [9] = "486 DX/4-WB"
817 		  }
818 		},
819 		{ .family = 5, .model_names =
820 		  {
821 			  [0] = "Pentium 60/66 A-step",
822 			  [1] = "Pentium 60/66",
823 			  [2] = "Pentium 75 - 200",
824 			  [3] = "OverDrive PODP5V83",
825 			  [4] = "Pentium MMX",
826 			  [7] = "Mobile Pentium 75 - 200",
827 			  [8] = "Mobile Pentium MMX",
828 			  [9] = "Quark SoC X1000",
829 		  }
830 		},
831 		{ .family = 6, .model_names =
832 		  {
833 			  [0] = "Pentium Pro A-step",
834 			  [1] = "Pentium Pro",
835 			  [3] = "Pentium II (Klamath)",
836 			  [4] = "Pentium II (Deschutes)",
837 			  [5] = "Pentium II (Deschutes)",
838 			  [6] = "Mobile Pentium II",
839 			  [7] = "Pentium III (Katmai)",
840 			  [8] = "Pentium III (Coppermine)",
841 			  [10] = "Pentium III (Cascades)",
842 			  [11] = "Pentium III (Tualatin)",
843 		  }
844 		},
845 		{ .family = 15, .model_names =
846 		  {
847 			  [0] = "Pentium 4 (Unknown)",
848 			  [1] = "Pentium 4 (Willamette)",
849 			  [2] = "Pentium 4 (Northwood)",
850 			  [4] = "Pentium 4 (Foster)",
851 			  [5] = "Pentium 4 (Foster)",
852 		  }
853 		},
854 	},
855 	.legacy_cache_size = intel_size_cache,
856 #endif
857 	.c_detect_tlb	= intel_detect_tlb,
858 	.c_early_init   = early_init_intel,
859 	.c_init		= init_intel,
860 	.c_bsp_resume	= intel_bsp_resume,
861 	.c_x86_vendor	= X86_VENDOR_INTEL,
862 };
863 
864 cpu_dev_register(intel_cpu_dev);
865 
866