xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 2f828fb2)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/thread_info.h>
10 #include <linux/init.h>
11 #include <linux/uaccess.h>
12 
13 #include <asm/cpufeature.h>
14 #include <asm/pgtable.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode_intel.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22 
23 #ifdef CONFIG_X86_64
24 #include <linux/topology.h>
25 #endif
26 
27 #include "cpu.h"
28 
29 #ifdef CONFIG_X86_LOCAL_APIC
30 #include <asm/mpspec.h>
31 #include <asm/apic.h>
32 #endif
33 
34 /*
35  * Just in case our CPU detection goes bad, or you have a weird system,
36  * allow a way to override the automatic disabling of MPX.
37  */
38 static int forcempx;
39 
40 static int __init forcempx_setup(char *__unused)
41 {
42 	forcempx = 1;
43 
44 	return 1;
45 }
46 __setup("intel-skd-046-workaround=disable", forcempx_setup);
47 
48 void check_mpx_erratum(struct cpuinfo_x86 *c)
49 {
50 	if (forcempx)
51 		return;
52 	/*
53 	 * Turn off the MPX feature on CPUs where SMEP is not
54 	 * available or disabled.
55 	 *
56 	 * Works around Intel Erratum SKD046: "Branch Instructions
57 	 * May Initialize MPX Bound Registers Incorrectly".
58 	 *
59 	 * This might falsely disable MPX on systems without
60 	 * SMEP, like Atom processors without SMEP.  But there
61 	 * is no such hardware known at the moment.
62 	 */
63 	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
64 		setup_clear_cpu_cap(X86_FEATURE_MPX);
65 		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
66 	}
67 }
68 
69 static bool ring3mwait_disabled __read_mostly;
70 
71 static int __init ring3mwait_disable(char *__unused)
72 {
73 	ring3mwait_disabled = true;
74 	return 0;
75 }
76 __setup("ring3mwait=disable", ring3mwait_disable);
77 
78 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
79 {
80 	/*
81 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
82 	 * cpu model and family comparison.
83 	 */
84 	if (c->x86 != 6)
85 		return;
86 	switch (c->x86_model) {
87 	case INTEL_FAM6_XEON_PHI_KNL:
88 	case INTEL_FAM6_XEON_PHI_KNM:
89 		break;
90 	default:
91 		return;
92 	}
93 
94 	if (ring3mwait_disabled)
95 		return;
96 
97 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
98 	this_cpu_or(msr_misc_features_shadow,
99 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
100 
101 	if (c == &boot_cpu_data)
102 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
103 }
104 
105 static void early_init_intel(struct cpuinfo_x86 *c)
106 {
107 	u64 misc_enable;
108 
109 	/* Unmask CPUID levels if masked: */
110 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
111 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
112 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
113 			c->cpuid_level = cpuid_eax(0);
114 			get_cpu_cap(c);
115 		}
116 	}
117 
118 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
119 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
120 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
121 
122 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
123 		c->microcode = intel_get_microcode_revision();
124 
125 	/*
126 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
127 	 *
128 	 * A race condition between speculative fetches and invalidating
129 	 * a large page.  This is worked around in microcode, but we
130 	 * need the microcode to have already been loaded... so if it is
131 	 * not, recommend a BIOS update and disable large pages.
132 	 */
133 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
134 	    c->microcode < 0x20e) {
135 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
136 		clear_cpu_cap(c, X86_FEATURE_PSE);
137 	}
138 
139 #ifdef CONFIG_X86_64
140 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
141 #else
142 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
143 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
144 		c->x86_cache_alignment = 128;
145 #endif
146 
147 	/* CPUID workaround for 0F33/0F34 CPU */
148 	if (c->x86 == 0xF && c->x86_model == 0x3
149 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
150 		c->x86_phys_bits = 36;
151 
152 	/*
153 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
154 	 * with P/T states and does not stop in deep C-states.
155 	 *
156 	 * It is also reliable across cores and sockets. (but not across
157 	 * cabinets - we turn it off in that case explicitly.)
158 	 */
159 	if (c->x86_power & (1 << 8)) {
160 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
161 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
162 	}
163 
164 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
165 	if (c->x86 == 6) {
166 		switch (c->x86_model) {
167 		case 0x27:	/* Penwell */
168 		case 0x35:	/* Cloverview */
169 		case 0x4a:	/* Merrifield */
170 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
171 			break;
172 		default:
173 			break;
174 		}
175 	}
176 
177 	/*
178 	 * There is a known erratum on Pentium III and Core Solo
179 	 * and Core Duo CPUs.
180 	 * " Page with PAT set to WC while associated MTRR is UC
181 	 *   may consolidate to UC "
182 	 * Because of this erratum, it is better to stick with
183 	 * setting WC in MTRR rather than using PAT on these CPUs.
184 	 *
185 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
186 	 */
187 	if (c->x86 == 6 && c->x86_model < 15)
188 		clear_cpu_cap(c, X86_FEATURE_PAT);
189 
190 	/*
191 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
192 	 * clear the fast string and enhanced fast string CPU capabilities.
193 	 */
194 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
195 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
196 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
197 			pr_info("Disabled fast string operations\n");
198 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
199 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
200 		}
201 	}
202 
203 	/*
204 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
205 	 * "The operating system also is required to invalidate (i.e., flush)
206 	 *  the TLB when any changes are made to any of the page table entries.
207 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
208 	 *
209 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
210 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
211 	 * to be modified.
212 	 */
213 	if (c->x86 == 5 && c->x86_model == 9) {
214 		pr_info("Disabling PGE capability bit\n");
215 		setup_clear_cpu_cap(X86_FEATURE_PGE);
216 	}
217 
218 	if (c->cpuid_level >= 0x00000001) {
219 		u32 eax, ebx, ecx, edx;
220 
221 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
222 		/*
223 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
224 		 * apicids which are reserved per package. Store the resulting
225 		 * shift value for the package management code.
226 		 */
227 		if (edx & (1U << 28))
228 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
229 	}
230 
231 	check_mpx_erratum(c);
232 }
233 
234 #ifdef CONFIG_X86_32
235 /*
236  *	Early probe support logic for ppro memory erratum #50
237  *
238  *	This is called before we do cpu ident work
239  */
240 
241 int ppro_with_ram_bug(void)
242 {
243 	/* Uses data from early_cpu_detect now */
244 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
245 	    boot_cpu_data.x86 == 6 &&
246 	    boot_cpu_data.x86_model == 1 &&
247 	    boot_cpu_data.x86_mask < 8) {
248 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
249 		return 1;
250 	}
251 	return 0;
252 }
253 
254 static void intel_smp_check(struct cpuinfo_x86 *c)
255 {
256 	/* calling is from identify_secondary_cpu() ? */
257 	if (!c->cpu_index)
258 		return;
259 
260 	/*
261 	 * Mask B, Pentium, but not Pentium MMX
262 	 */
263 	if (c->x86 == 5 &&
264 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
265 	    c->x86_model <= 3) {
266 		/*
267 		 * Remember we have B step Pentia with bugs
268 		 */
269 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
270 				    "with B stepping processors.\n");
271 	}
272 }
273 
274 static int forcepae;
275 static int __init forcepae_setup(char *__unused)
276 {
277 	forcepae = 1;
278 	return 1;
279 }
280 __setup("forcepae", forcepae_setup);
281 
282 static void intel_workarounds(struct cpuinfo_x86 *c)
283 {
284 #ifdef CONFIG_X86_F00F_BUG
285 	/*
286 	 * All models of Pentium and Pentium with MMX technology CPUs
287 	 * have the F0 0F bug, which lets nonprivileged users lock up the
288 	 * system. Announce that the fault handler will be checking for it.
289 	 * The Quark is also family 5, but does not have the same bug.
290 	 */
291 	clear_cpu_bug(c, X86_BUG_F00F);
292 	if (c->x86 == 5 && c->x86_model < 9) {
293 		static int f00f_workaround_enabled;
294 
295 		set_cpu_bug(c, X86_BUG_F00F);
296 		if (!f00f_workaround_enabled) {
297 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
298 			f00f_workaround_enabled = 1;
299 		}
300 	}
301 #endif
302 
303 	/*
304 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
305 	 * model 3 mask 3
306 	 */
307 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
308 		clear_cpu_cap(c, X86_FEATURE_SEP);
309 
310 	/*
311 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
312 	 * functionally usable PAE implementation.
313 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
314 	 */
315 	if (forcepae) {
316 		pr_warn("PAE forced!\n");
317 		set_cpu_cap(c, X86_FEATURE_PAE);
318 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
319 	}
320 
321 	/*
322 	 * P4 Xeon erratum 037 workaround.
323 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
324 	 */
325 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
326 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
327 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
328 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
329 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
330 		}
331 	}
332 
333 	/*
334 	 * See if we have a good local APIC by checking for buggy Pentia,
335 	 * i.e. all B steppings and the C2 stepping of P54C when using their
336 	 * integrated APIC (see 11AP erratum in "Pentium Processor
337 	 * Specification Update").
338 	 */
339 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
340 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
341 		set_cpu_bug(c, X86_BUG_11AP);
342 
343 
344 #ifdef CONFIG_X86_INTEL_USERCOPY
345 	/*
346 	 * Set up the preferred alignment for movsl bulk memory moves
347 	 */
348 	switch (c->x86) {
349 	case 4:		/* 486: untested */
350 		break;
351 	case 5:		/* Old Pentia: untested */
352 		break;
353 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
354 		movsl_mask.mask = 7;
355 		break;
356 	case 15:	/* P4 is OK down to 8-byte alignment */
357 		movsl_mask.mask = 7;
358 		break;
359 	}
360 #endif
361 
362 	intel_smp_check(c);
363 }
364 #else
365 static void intel_workarounds(struct cpuinfo_x86 *c)
366 {
367 }
368 #endif
369 
370 static void srat_detect_node(struct cpuinfo_x86 *c)
371 {
372 #ifdef CONFIG_NUMA
373 	unsigned node;
374 	int cpu = smp_processor_id();
375 
376 	/* Don't do the funky fallback heuristics the AMD version employs
377 	   for now. */
378 	node = numa_cpu_node(cpu);
379 	if (node == NUMA_NO_NODE || !node_online(node)) {
380 		/* reuse the value from init_cpu_to_node() */
381 		node = cpu_to_node(cpu);
382 	}
383 	numa_set_node(cpu, node);
384 #endif
385 }
386 
387 /*
388  * find out the number of processor cores on the die
389  */
390 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
391 {
392 	unsigned int eax, ebx, ecx, edx;
393 
394 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
395 		return 1;
396 
397 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
398 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
399 	if (eax & 0x1f)
400 		return (eax >> 26) + 1;
401 	else
402 		return 1;
403 }
404 
405 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
406 {
407 	/* Intel VMX MSR indicated features */
408 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
409 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
410 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
411 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
412 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
413 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
414 
415 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
416 
417 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
418 	clear_cpu_cap(c, X86_FEATURE_VNMI);
419 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
420 	clear_cpu_cap(c, X86_FEATURE_EPT);
421 	clear_cpu_cap(c, X86_FEATURE_VPID);
422 
423 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
424 	msr_ctl = vmx_msr_high | vmx_msr_low;
425 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
426 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
427 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
428 		set_cpu_cap(c, X86_FEATURE_VNMI);
429 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
430 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
431 		      vmx_msr_low, vmx_msr_high);
432 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
433 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
434 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
435 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
436 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
437 			set_cpu_cap(c, X86_FEATURE_EPT);
438 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
439 			set_cpu_cap(c, X86_FEATURE_VPID);
440 	}
441 }
442 
443 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
444 {
445 	u64 epb;
446 
447 	/*
448 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
449 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
450 	 */
451 	if (!cpu_has(c, X86_FEATURE_EPB))
452 		return;
453 
454 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
455 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
456 		return;
457 
458 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
459 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
460 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
461 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
462 }
463 
464 static void intel_bsp_resume(struct cpuinfo_x86 *c)
465 {
466 	/*
467 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
468 	 * so reinitialize it properly like during bootup:
469 	 */
470 	init_intel_energy_perf(c);
471 }
472 
473 static void init_cpuid_fault(struct cpuinfo_x86 *c)
474 {
475 	u64 msr;
476 
477 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
478 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
479 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
480 	}
481 }
482 
483 static void init_intel_misc_features(struct cpuinfo_x86 *c)
484 {
485 	u64 msr;
486 
487 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
488 		return;
489 
490 	/* Clear all MISC features */
491 	this_cpu_write(msr_misc_features_shadow, 0);
492 
493 	/* Check features and update capabilities and shadow control bits */
494 	init_cpuid_fault(c);
495 	probe_xeon_phi_r3mwait(c);
496 
497 	msr = this_cpu_read(msr_misc_features_shadow);
498 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
499 }
500 
501 static void init_intel(struct cpuinfo_x86 *c)
502 {
503 	unsigned int l2 = 0;
504 
505 	early_init_intel(c);
506 
507 	intel_workarounds(c);
508 
509 	/*
510 	 * Detect the extended topology information if available. This
511 	 * will reinitialise the initial_apicid which will be used
512 	 * in init_intel_cacheinfo()
513 	 */
514 	detect_extended_topology(c);
515 
516 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
517 		/*
518 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
519 		 * detection.
520 		 */
521 		c->x86_max_cores = intel_num_cpu_cores(c);
522 #ifdef CONFIG_X86_32
523 		detect_ht(c);
524 #endif
525 	}
526 
527 	l2 = init_intel_cacheinfo(c);
528 
529 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
530 	if (l2 == 0) {
531 		cpu_detect_cache_sizes(c);
532 		l2 = c->x86_cache_size;
533 	}
534 
535 	if (c->cpuid_level > 9) {
536 		unsigned eax = cpuid_eax(10);
537 		/* Check for version and the number of counters */
538 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
539 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
540 	}
541 
542 	if (cpu_has(c, X86_FEATURE_XMM2))
543 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
544 
545 	if (boot_cpu_has(X86_FEATURE_DS)) {
546 		unsigned int l1;
547 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
548 		if (!(l1 & (1<<11)))
549 			set_cpu_cap(c, X86_FEATURE_BTS);
550 		if (!(l1 & (1<<12)))
551 			set_cpu_cap(c, X86_FEATURE_PEBS);
552 	}
553 
554 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
555 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
556 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
557 
558 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
559 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
560 		set_cpu_bug(c, X86_BUG_MONITOR);
561 
562 #ifdef CONFIG_X86_64
563 	if (c->x86 == 15)
564 		c->x86_cache_alignment = c->x86_clflush_size * 2;
565 	if (c->x86 == 6)
566 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
567 #else
568 	/*
569 	 * Names for the Pentium II/Celeron processors
570 	 * detectable only by also checking the cache size.
571 	 * Dixon is NOT a Celeron.
572 	 */
573 	if (c->x86 == 6) {
574 		char *p = NULL;
575 
576 		switch (c->x86_model) {
577 		case 5:
578 			if (l2 == 0)
579 				p = "Celeron (Covington)";
580 			else if (l2 == 256)
581 				p = "Mobile Pentium II (Dixon)";
582 			break;
583 
584 		case 6:
585 			if (l2 == 128)
586 				p = "Celeron (Mendocino)";
587 			else if (c->x86_mask == 0 || c->x86_mask == 5)
588 				p = "Celeron-A";
589 			break;
590 
591 		case 8:
592 			if (l2 == 128)
593 				p = "Celeron (Coppermine)";
594 			break;
595 		}
596 
597 		if (p)
598 			strcpy(c->x86_model_id, p);
599 	}
600 
601 	if (c->x86 == 15)
602 		set_cpu_cap(c, X86_FEATURE_P4);
603 	if (c->x86 == 6)
604 		set_cpu_cap(c, X86_FEATURE_P3);
605 #endif
606 
607 	/* Work around errata */
608 	srat_detect_node(c);
609 
610 	if (cpu_has(c, X86_FEATURE_VMX))
611 		detect_vmx_virtcap(c);
612 
613 	init_intel_energy_perf(c);
614 
615 	init_intel_misc_features(c);
616 }
617 
618 #ifdef CONFIG_X86_32
619 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
620 {
621 	/*
622 	 * Intel PIII Tualatin. This comes in two flavours.
623 	 * One has 256kb of cache, the other 512. We have no way
624 	 * to determine which, so we use a boottime override
625 	 * for the 512kb model, and assume 256 otherwise.
626 	 */
627 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
628 		size = 256;
629 
630 	/*
631 	 * Intel Quark SoC X1000 contains a 4-way set associative
632 	 * 16K cache with a 16 byte cache line and 256 lines per tag
633 	 */
634 	if ((c->x86 == 5) && (c->x86_model == 9))
635 		size = 16;
636 	return size;
637 }
638 #endif
639 
640 #define TLB_INST_4K	0x01
641 #define TLB_INST_4M	0x02
642 #define TLB_INST_2M_4M	0x03
643 
644 #define TLB_INST_ALL	0x05
645 #define TLB_INST_1G	0x06
646 
647 #define TLB_DATA_4K	0x11
648 #define TLB_DATA_4M	0x12
649 #define TLB_DATA_2M_4M	0x13
650 #define TLB_DATA_4K_4M	0x14
651 
652 #define TLB_DATA_1G	0x16
653 
654 #define TLB_DATA0_4K	0x21
655 #define TLB_DATA0_4M	0x22
656 #define TLB_DATA0_2M_4M	0x23
657 
658 #define STLB_4K		0x41
659 #define STLB_4K_2M	0x42
660 
661 static const struct _tlb_table intel_tlb_table[] = {
662 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
663 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
664 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
665 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
666 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
667 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
668 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
669 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
670 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
671 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
672 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
673 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
674 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
675 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
676 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
677 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
678 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
679 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
680 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
681 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
682 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
683 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
684 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
685 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
686 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
687 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
688 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
689 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
690 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
691 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
692 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
693 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
694 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
695 	{ 0x00, 0, 0 }
696 };
697 
698 static void intel_tlb_lookup(const unsigned char desc)
699 {
700 	unsigned char k;
701 	if (desc == 0)
702 		return;
703 
704 	/* look up this descriptor in the table */
705 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
706 			intel_tlb_table[k].descriptor != 0; k++)
707 		;
708 
709 	if (intel_tlb_table[k].tlb_type == 0)
710 		return;
711 
712 	switch (intel_tlb_table[k].tlb_type) {
713 	case STLB_4K:
714 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
715 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
716 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
717 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
718 		break;
719 	case STLB_4K_2M:
720 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
721 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
722 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
723 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
724 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
725 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
726 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
727 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
728 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
729 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
730 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
731 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
732 		break;
733 	case TLB_INST_ALL:
734 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
735 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
736 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
737 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
738 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
739 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
740 		break;
741 	case TLB_INST_4K:
742 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
743 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
744 		break;
745 	case TLB_INST_4M:
746 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
747 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
748 		break;
749 	case TLB_INST_2M_4M:
750 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
751 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
752 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
753 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
754 		break;
755 	case TLB_DATA_4K:
756 	case TLB_DATA0_4K:
757 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
758 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
759 		break;
760 	case TLB_DATA_4M:
761 	case TLB_DATA0_4M:
762 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
763 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
764 		break;
765 	case TLB_DATA_2M_4M:
766 	case TLB_DATA0_2M_4M:
767 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
768 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
769 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
770 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
771 		break;
772 	case TLB_DATA_4K_4M:
773 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
774 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
775 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
776 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
777 		break;
778 	case TLB_DATA_1G:
779 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
780 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
781 		break;
782 	}
783 }
784 
785 static void intel_detect_tlb(struct cpuinfo_x86 *c)
786 {
787 	int i, j, n;
788 	unsigned int regs[4];
789 	unsigned char *desc = (unsigned char *)regs;
790 
791 	if (c->cpuid_level < 2)
792 		return;
793 
794 	/* Number of times to iterate */
795 	n = cpuid_eax(2) & 0xFF;
796 
797 	for (i = 0 ; i < n ; i++) {
798 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
799 
800 		/* If bit 31 is set, this is an unknown format */
801 		for (j = 0 ; j < 3 ; j++)
802 			if (regs[j] & (1 << 31))
803 				regs[j] = 0;
804 
805 		/* Byte 0 is level count, not a descriptor */
806 		for (j = 1 ; j < 16 ; j++)
807 			intel_tlb_lookup(desc[j]);
808 	}
809 }
810 
811 static const struct cpu_dev intel_cpu_dev = {
812 	.c_vendor	= "Intel",
813 	.c_ident	= { "GenuineIntel" },
814 #ifdef CONFIG_X86_32
815 	.legacy_models = {
816 		{ .family = 4, .model_names =
817 		  {
818 			  [0] = "486 DX-25/33",
819 			  [1] = "486 DX-50",
820 			  [2] = "486 SX",
821 			  [3] = "486 DX/2",
822 			  [4] = "486 SL",
823 			  [5] = "486 SX/2",
824 			  [7] = "486 DX/2-WB",
825 			  [8] = "486 DX/4",
826 			  [9] = "486 DX/4-WB"
827 		  }
828 		},
829 		{ .family = 5, .model_names =
830 		  {
831 			  [0] = "Pentium 60/66 A-step",
832 			  [1] = "Pentium 60/66",
833 			  [2] = "Pentium 75 - 200",
834 			  [3] = "OverDrive PODP5V83",
835 			  [4] = "Pentium MMX",
836 			  [7] = "Mobile Pentium 75 - 200",
837 			  [8] = "Mobile Pentium MMX",
838 			  [9] = "Quark SoC X1000",
839 		  }
840 		},
841 		{ .family = 6, .model_names =
842 		  {
843 			  [0] = "Pentium Pro A-step",
844 			  [1] = "Pentium Pro",
845 			  [3] = "Pentium II (Klamath)",
846 			  [4] = "Pentium II (Deschutes)",
847 			  [5] = "Pentium II (Deschutes)",
848 			  [6] = "Mobile Pentium II",
849 			  [7] = "Pentium III (Katmai)",
850 			  [8] = "Pentium III (Coppermine)",
851 			  [10] = "Pentium III (Cascades)",
852 			  [11] = "Pentium III (Tualatin)",
853 		  }
854 		},
855 		{ .family = 15, .model_names =
856 		  {
857 			  [0] = "Pentium 4 (Unknown)",
858 			  [1] = "Pentium 4 (Willamette)",
859 			  [2] = "Pentium 4 (Northwood)",
860 			  [4] = "Pentium 4 (Foster)",
861 			  [5] = "Pentium 4 (Foster)",
862 		  }
863 		},
864 	},
865 	.legacy_cache_size = intel_size_cache,
866 #endif
867 	.c_detect_tlb	= intel_detect_tlb,
868 	.c_early_init   = early_init_intel,
869 	.c_init		= init_intel,
870 	.c_bsp_resume	= intel_bsp_resume,
871 	.c_x86_vendor	= X86_VENDOR_INTEL,
872 };
873 
874 cpu_dev_register(intel_cpu_dev);
875 
876