1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 4 #include <linux/string.h> 5 #include <linux/bitops.h> 6 #include <linux/smp.h> 7 #include <linux/sched.h> 8 #include <linux/sched/clock.h> 9 #include <linux/thread_info.h> 10 #include <linux/init.h> 11 #include <linux/uaccess.h> 12 13 #include <asm/cpufeature.h> 14 #include <asm/pgtable.h> 15 #include <asm/msr.h> 16 #include <asm/bugs.h> 17 #include <asm/cpu.h> 18 #include <asm/intel-family.h> 19 #include <asm/microcode_intel.h> 20 #include <asm/hwcap2.h> 21 #include <asm/elf.h> 22 23 #ifdef CONFIG_X86_64 24 #include <linux/topology.h> 25 #endif 26 27 #include "cpu.h" 28 29 #ifdef CONFIG_X86_LOCAL_APIC 30 #include <asm/mpspec.h> 31 #include <asm/apic.h> 32 #endif 33 34 /* 35 * Just in case our CPU detection goes bad, or you have a weird system, 36 * allow a way to override the automatic disabling of MPX. 37 */ 38 static int forcempx; 39 40 static int __init forcempx_setup(char *__unused) 41 { 42 forcempx = 1; 43 44 return 1; 45 } 46 __setup("intel-skd-046-workaround=disable", forcempx_setup); 47 48 void check_mpx_erratum(struct cpuinfo_x86 *c) 49 { 50 if (forcempx) 51 return; 52 /* 53 * Turn off the MPX feature on CPUs where SMEP is not 54 * available or disabled. 55 * 56 * Works around Intel Erratum SKD046: "Branch Instructions 57 * May Initialize MPX Bound Registers Incorrectly". 58 * 59 * This might falsely disable MPX on systems without 60 * SMEP, like Atom processors without SMEP. But there 61 * is no such hardware known at the moment. 62 */ 63 if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) { 64 setup_clear_cpu_cap(X86_FEATURE_MPX); 65 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n"); 66 } 67 } 68 69 static bool ring3mwait_disabled __read_mostly; 70 71 static int __init ring3mwait_disable(char *__unused) 72 { 73 ring3mwait_disabled = true; 74 return 0; 75 } 76 __setup("ring3mwait=disable", ring3mwait_disable); 77 78 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 79 { 80 /* 81 * Ring 3 MONITOR/MWAIT feature cannot be detected without 82 * cpu model and family comparison. 83 */ 84 if (c->x86 != 6) 85 return; 86 switch (c->x86_model) { 87 case INTEL_FAM6_XEON_PHI_KNL: 88 case INTEL_FAM6_XEON_PHI_KNM: 89 break; 90 default: 91 return; 92 } 93 94 if (ring3mwait_disabled) 95 return; 96 97 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 98 this_cpu_or(msr_misc_features_shadow, 99 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 100 101 if (c == &boot_cpu_data) 102 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 103 } 104 105 static void early_init_intel(struct cpuinfo_x86 *c) 106 { 107 u64 misc_enable; 108 109 /* Unmask CPUID levels if masked: */ 110 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 111 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 112 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 113 c->cpuid_level = cpuid_eax(0); 114 get_cpu_cap(c); 115 } 116 } 117 118 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 119 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 120 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 121 122 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 123 c->microcode = intel_get_microcode_revision(); 124 125 /* 126 * Atom erratum AAE44/AAF40/AAG38/AAH41: 127 * 128 * A race condition between speculative fetches and invalidating 129 * a large page. This is worked around in microcode, but we 130 * need the microcode to have already been loaded... so if it is 131 * not, recommend a BIOS update and disable large pages. 132 */ 133 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 && 134 c->microcode < 0x20e) { 135 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 136 clear_cpu_cap(c, X86_FEATURE_PSE); 137 } 138 139 #ifdef CONFIG_X86_64 140 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 141 #else 142 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 143 if (c->x86 == 15 && c->x86_cache_alignment == 64) 144 c->x86_cache_alignment = 128; 145 #endif 146 147 /* CPUID workaround for 0F33/0F34 CPU */ 148 if (c->x86 == 0xF && c->x86_model == 0x3 149 && (c->x86_mask == 0x3 || c->x86_mask == 0x4)) 150 c->x86_phys_bits = 36; 151 152 /* 153 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 154 * with P/T states and does not stop in deep C-states. 155 * 156 * It is also reliable across cores and sockets. (but not across 157 * cabinets - we turn it off in that case explicitly.) 158 */ 159 if (c->x86_power & (1 << 8)) { 160 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 161 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 162 } 163 164 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 165 if (c->x86 == 6) { 166 switch (c->x86_model) { 167 case 0x27: /* Penwell */ 168 case 0x35: /* Cloverview */ 169 case 0x4a: /* Merrifield */ 170 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 171 break; 172 default: 173 break; 174 } 175 } 176 177 /* 178 * There is a known erratum on Pentium III and Core Solo 179 * and Core Duo CPUs. 180 * " Page with PAT set to WC while associated MTRR is UC 181 * may consolidate to UC " 182 * Because of this erratum, it is better to stick with 183 * setting WC in MTRR rather than using PAT on these CPUs. 184 * 185 * Enable PAT WC only on P4, Core 2 or later CPUs. 186 */ 187 if (c->x86 == 6 && c->x86_model < 15) 188 clear_cpu_cap(c, X86_FEATURE_PAT); 189 190 /* 191 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 192 * clear the fast string and enhanced fast string CPU capabilities. 193 */ 194 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 195 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 196 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 197 pr_info("Disabled fast string operations\n"); 198 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 199 setup_clear_cpu_cap(X86_FEATURE_ERMS); 200 } 201 } 202 203 /* 204 * Intel Quark Core DevMan_001.pdf section 6.4.11 205 * "The operating system also is required to invalidate (i.e., flush) 206 * the TLB when any changes are made to any of the page table entries. 207 * The operating system must reload CR3 to cause the TLB to be flushed" 208 * 209 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 210 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE 211 * to be modified. 212 */ 213 if (c->x86 == 5 && c->x86_model == 9) { 214 pr_info("Disabling PGE capability bit\n"); 215 setup_clear_cpu_cap(X86_FEATURE_PGE); 216 } 217 218 if (c->cpuid_level >= 0x00000001) { 219 u32 eax, ebx, ecx, edx; 220 221 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 222 /* 223 * If HTT (EDX[28]) is set EBX[16:23] contain the number of 224 * apicids which are reserved per package. Store the resulting 225 * shift value for the package management code. 226 */ 227 if (edx & (1U << 28)) 228 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); 229 } 230 231 check_mpx_erratum(c); 232 } 233 234 #ifdef CONFIG_X86_32 235 /* 236 * Early probe support logic for ppro memory erratum #50 237 * 238 * This is called before we do cpu ident work 239 */ 240 241 int ppro_with_ram_bug(void) 242 { 243 /* Uses data from early_cpu_detect now */ 244 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 245 boot_cpu_data.x86 == 6 && 246 boot_cpu_data.x86_model == 1 && 247 boot_cpu_data.x86_mask < 8) { 248 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 249 return 1; 250 } 251 return 0; 252 } 253 254 static void intel_smp_check(struct cpuinfo_x86 *c) 255 { 256 /* calling is from identify_secondary_cpu() ? */ 257 if (!c->cpu_index) 258 return; 259 260 /* 261 * Mask B, Pentium, but not Pentium MMX 262 */ 263 if (c->x86 == 5 && 264 c->x86_mask >= 1 && c->x86_mask <= 4 && 265 c->x86_model <= 3) { 266 /* 267 * Remember we have B step Pentia with bugs 268 */ 269 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 270 "with B stepping processors.\n"); 271 } 272 } 273 274 static int forcepae; 275 static int __init forcepae_setup(char *__unused) 276 { 277 forcepae = 1; 278 return 1; 279 } 280 __setup("forcepae", forcepae_setup); 281 282 static void intel_workarounds(struct cpuinfo_x86 *c) 283 { 284 #ifdef CONFIG_X86_F00F_BUG 285 /* 286 * All models of Pentium and Pentium with MMX technology CPUs 287 * have the F0 0F bug, which lets nonprivileged users lock up the 288 * system. Announce that the fault handler will be checking for it. 289 * The Quark is also family 5, but does not have the same bug. 290 */ 291 clear_cpu_bug(c, X86_BUG_F00F); 292 if (c->x86 == 5 && c->x86_model < 9) { 293 static int f00f_workaround_enabled; 294 295 set_cpu_bug(c, X86_BUG_F00F); 296 if (!f00f_workaround_enabled) { 297 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 298 f00f_workaround_enabled = 1; 299 } 300 } 301 #endif 302 303 /* 304 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 305 * model 3 mask 3 306 */ 307 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633) 308 clear_cpu_cap(c, X86_FEATURE_SEP); 309 310 /* 311 * PAE CPUID issue: many Pentium M report no PAE but may have a 312 * functionally usable PAE implementation. 313 * Forcefully enable PAE if kernel parameter "forcepae" is present. 314 */ 315 if (forcepae) { 316 pr_warn("PAE forced!\n"); 317 set_cpu_cap(c, X86_FEATURE_PAE); 318 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 319 } 320 321 /* 322 * P4 Xeon erratum 037 workaround. 323 * Hardware prefetcher may cause stale data to be loaded into the cache. 324 */ 325 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) { 326 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 327 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 328 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 329 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 330 } 331 } 332 333 /* 334 * See if we have a good local APIC by checking for buggy Pentia, 335 * i.e. all B steppings and the C2 stepping of P54C when using their 336 * integrated APIC (see 11AP erratum in "Pentium Processor 337 * Specification Update"). 338 */ 339 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 340 (c->x86_mask < 0x6 || c->x86_mask == 0xb)) 341 set_cpu_bug(c, X86_BUG_11AP); 342 343 344 #ifdef CONFIG_X86_INTEL_USERCOPY 345 /* 346 * Set up the preferred alignment for movsl bulk memory moves 347 */ 348 switch (c->x86) { 349 case 4: /* 486: untested */ 350 break; 351 case 5: /* Old Pentia: untested */ 352 break; 353 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 354 movsl_mask.mask = 7; 355 break; 356 case 15: /* P4 is OK down to 8-byte alignment */ 357 movsl_mask.mask = 7; 358 break; 359 } 360 #endif 361 362 intel_smp_check(c); 363 } 364 #else 365 static void intel_workarounds(struct cpuinfo_x86 *c) 366 { 367 } 368 #endif 369 370 static void srat_detect_node(struct cpuinfo_x86 *c) 371 { 372 #ifdef CONFIG_NUMA 373 unsigned node; 374 int cpu = smp_processor_id(); 375 376 /* Don't do the funky fallback heuristics the AMD version employs 377 for now. */ 378 node = numa_cpu_node(cpu); 379 if (node == NUMA_NO_NODE || !node_online(node)) { 380 /* reuse the value from init_cpu_to_node() */ 381 node = cpu_to_node(cpu); 382 } 383 numa_set_node(cpu, node); 384 #endif 385 } 386 387 /* 388 * find out the number of processor cores on the die 389 */ 390 static int intel_num_cpu_cores(struct cpuinfo_x86 *c) 391 { 392 unsigned int eax, ebx, ecx, edx; 393 394 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4) 395 return 1; 396 397 /* Intel has a non-standard dependency on %ecx for this CPUID level. */ 398 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx); 399 if (eax & 0x1f) 400 return (eax >> 26) + 1; 401 else 402 return 1; 403 } 404 405 static void detect_vmx_virtcap(struct cpuinfo_x86 *c) 406 { 407 /* Intel VMX MSR indicated features */ 408 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000 409 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000 410 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000 411 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001 412 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002 413 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020 414 415 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2; 416 417 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW); 418 clear_cpu_cap(c, X86_FEATURE_VNMI); 419 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); 420 clear_cpu_cap(c, X86_FEATURE_EPT); 421 clear_cpu_cap(c, X86_FEATURE_VPID); 422 423 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high); 424 msr_ctl = vmx_msr_high | vmx_msr_low; 425 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW) 426 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW); 427 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI) 428 set_cpu_cap(c, X86_FEATURE_VNMI); 429 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) { 430 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, 431 vmx_msr_low, vmx_msr_high); 432 msr_ctl2 = vmx_msr_high | vmx_msr_low; 433 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) && 434 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)) 435 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); 436 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT) 437 set_cpu_cap(c, X86_FEATURE_EPT); 438 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID) 439 set_cpu_cap(c, X86_FEATURE_VPID); 440 } 441 } 442 443 static void init_intel_energy_perf(struct cpuinfo_x86 *c) 444 { 445 u64 epb; 446 447 /* 448 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized. 449 * (x86_energy_perf_policy(8) is available to change it at run-time.) 450 */ 451 if (!cpu_has(c, X86_FEATURE_EPB)) 452 return; 453 454 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb); 455 if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE) 456 return; 457 458 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n"); 459 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n"); 460 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL; 461 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb); 462 } 463 464 static void intel_bsp_resume(struct cpuinfo_x86 *c) 465 { 466 /* 467 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume, 468 * so reinitialize it properly like during bootup: 469 */ 470 init_intel_energy_perf(c); 471 } 472 473 static void init_cpuid_fault(struct cpuinfo_x86 *c) 474 { 475 u64 msr; 476 477 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 478 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 479 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 480 } 481 } 482 483 static void init_intel_misc_features(struct cpuinfo_x86 *c) 484 { 485 u64 msr; 486 487 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 488 return; 489 490 /* Clear all MISC features */ 491 this_cpu_write(msr_misc_features_shadow, 0); 492 493 /* Check features and update capabilities and shadow control bits */ 494 init_cpuid_fault(c); 495 probe_xeon_phi_r3mwait(c); 496 497 msr = this_cpu_read(msr_misc_features_shadow); 498 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 499 } 500 501 static void init_intel(struct cpuinfo_x86 *c) 502 { 503 unsigned int l2 = 0; 504 505 early_init_intel(c); 506 507 intel_workarounds(c); 508 509 /* 510 * Detect the extended topology information if available. This 511 * will reinitialise the initial_apicid which will be used 512 * in init_intel_cacheinfo() 513 */ 514 detect_extended_topology(c); 515 516 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 517 /* 518 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 519 * detection. 520 */ 521 c->x86_max_cores = intel_num_cpu_cores(c); 522 #ifdef CONFIG_X86_32 523 detect_ht(c); 524 #endif 525 } 526 527 l2 = init_intel_cacheinfo(c); 528 529 /* Detect legacy cache sizes if init_intel_cacheinfo did not */ 530 if (l2 == 0) { 531 cpu_detect_cache_sizes(c); 532 l2 = c->x86_cache_size; 533 } 534 535 if (c->cpuid_level > 9) { 536 unsigned eax = cpuid_eax(10); 537 /* Check for version and the number of counters */ 538 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 539 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 540 } 541 542 if (cpu_has(c, X86_FEATURE_XMM2)) 543 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 544 545 if (boot_cpu_has(X86_FEATURE_DS)) { 546 unsigned int l1; 547 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 548 if (!(l1 & (1<<11))) 549 set_cpu_cap(c, X86_FEATURE_BTS); 550 if (!(l1 & (1<<12))) 551 set_cpu_cap(c, X86_FEATURE_PEBS); 552 } 553 554 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 555 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 556 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 557 558 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 559 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 560 set_cpu_bug(c, X86_BUG_MONITOR); 561 562 #ifdef CONFIG_X86_64 563 if (c->x86 == 15) 564 c->x86_cache_alignment = c->x86_clflush_size * 2; 565 if (c->x86 == 6) 566 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 567 #else 568 /* 569 * Names for the Pentium II/Celeron processors 570 * detectable only by also checking the cache size. 571 * Dixon is NOT a Celeron. 572 */ 573 if (c->x86 == 6) { 574 char *p = NULL; 575 576 switch (c->x86_model) { 577 case 5: 578 if (l2 == 0) 579 p = "Celeron (Covington)"; 580 else if (l2 == 256) 581 p = "Mobile Pentium II (Dixon)"; 582 break; 583 584 case 6: 585 if (l2 == 128) 586 p = "Celeron (Mendocino)"; 587 else if (c->x86_mask == 0 || c->x86_mask == 5) 588 p = "Celeron-A"; 589 break; 590 591 case 8: 592 if (l2 == 128) 593 p = "Celeron (Coppermine)"; 594 break; 595 } 596 597 if (p) 598 strcpy(c->x86_model_id, p); 599 } 600 601 if (c->x86 == 15) 602 set_cpu_cap(c, X86_FEATURE_P4); 603 if (c->x86 == 6) 604 set_cpu_cap(c, X86_FEATURE_P3); 605 #endif 606 607 /* Work around errata */ 608 srat_detect_node(c); 609 610 if (cpu_has(c, X86_FEATURE_VMX)) 611 detect_vmx_virtcap(c); 612 613 init_intel_energy_perf(c); 614 615 init_intel_misc_features(c); 616 } 617 618 #ifdef CONFIG_X86_32 619 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 620 { 621 /* 622 * Intel PIII Tualatin. This comes in two flavours. 623 * One has 256kb of cache, the other 512. We have no way 624 * to determine which, so we use a boottime override 625 * for the 512kb model, and assume 256 otherwise. 626 */ 627 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 628 size = 256; 629 630 /* 631 * Intel Quark SoC X1000 contains a 4-way set associative 632 * 16K cache with a 16 byte cache line and 256 lines per tag 633 */ 634 if ((c->x86 == 5) && (c->x86_model == 9)) 635 size = 16; 636 return size; 637 } 638 #endif 639 640 #define TLB_INST_4K 0x01 641 #define TLB_INST_4M 0x02 642 #define TLB_INST_2M_4M 0x03 643 644 #define TLB_INST_ALL 0x05 645 #define TLB_INST_1G 0x06 646 647 #define TLB_DATA_4K 0x11 648 #define TLB_DATA_4M 0x12 649 #define TLB_DATA_2M_4M 0x13 650 #define TLB_DATA_4K_4M 0x14 651 652 #define TLB_DATA_1G 0x16 653 654 #define TLB_DATA0_4K 0x21 655 #define TLB_DATA0_4M 0x22 656 #define TLB_DATA0_2M_4M 0x23 657 658 #define STLB_4K 0x41 659 #define STLB_4K_2M 0x42 660 661 static const struct _tlb_table intel_tlb_table[] = { 662 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 663 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 664 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 665 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 666 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 667 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 668 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" }, 669 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 670 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 671 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 672 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 673 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 674 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 675 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 676 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 677 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 678 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 679 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 680 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 681 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 682 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 683 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 684 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 685 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 686 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 687 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 688 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 689 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 690 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 691 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 692 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 693 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" }, 694 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 695 { 0x00, 0, 0 } 696 }; 697 698 static void intel_tlb_lookup(const unsigned char desc) 699 { 700 unsigned char k; 701 if (desc == 0) 702 return; 703 704 /* look up this descriptor in the table */ 705 for (k = 0; intel_tlb_table[k].descriptor != desc && \ 706 intel_tlb_table[k].descriptor != 0; k++) 707 ; 708 709 if (intel_tlb_table[k].tlb_type == 0) 710 return; 711 712 switch (intel_tlb_table[k].tlb_type) { 713 case STLB_4K: 714 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 715 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 716 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 717 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 718 break; 719 case STLB_4K_2M: 720 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 721 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 722 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 723 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 724 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 725 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 726 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 727 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 728 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 729 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 730 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 731 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 732 break; 733 case TLB_INST_ALL: 734 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 735 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 736 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 737 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 738 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 739 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 740 break; 741 case TLB_INST_4K: 742 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 743 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 744 break; 745 case TLB_INST_4M: 746 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 747 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 748 break; 749 case TLB_INST_2M_4M: 750 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 751 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 752 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 753 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 754 break; 755 case TLB_DATA_4K: 756 case TLB_DATA0_4K: 757 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 758 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 759 break; 760 case TLB_DATA_4M: 761 case TLB_DATA0_4M: 762 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 763 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 764 break; 765 case TLB_DATA_2M_4M: 766 case TLB_DATA0_2M_4M: 767 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 768 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 769 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 770 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 771 break; 772 case TLB_DATA_4K_4M: 773 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 774 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 775 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 776 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 777 break; 778 case TLB_DATA_1G: 779 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 780 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 781 break; 782 } 783 } 784 785 static void intel_detect_tlb(struct cpuinfo_x86 *c) 786 { 787 int i, j, n; 788 unsigned int regs[4]; 789 unsigned char *desc = (unsigned char *)regs; 790 791 if (c->cpuid_level < 2) 792 return; 793 794 /* Number of times to iterate */ 795 n = cpuid_eax(2) & 0xFF; 796 797 for (i = 0 ; i < n ; i++) { 798 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 799 800 /* If bit 31 is set, this is an unknown format */ 801 for (j = 0 ; j < 3 ; j++) 802 if (regs[j] & (1 << 31)) 803 regs[j] = 0; 804 805 /* Byte 0 is level count, not a descriptor */ 806 for (j = 1 ; j < 16 ; j++) 807 intel_tlb_lookup(desc[j]); 808 } 809 } 810 811 static const struct cpu_dev intel_cpu_dev = { 812 .c_vendor = "Intel", 813 .c_ident = { "GenuineIntel" }, 814 #ifdef CONFIG_X86_32 815 .legacy_models = { 816 { .family = 4, .model_names = 817 { 818 [0] = "486 DX-25/33", 819 [1] = "486 DX-50", 820 [2] = "486 SX", 821 [3] = "486 DX/2", 822 [4] = "486 SL", 823 [5] = "486 SX/2", 824 [7] = "486 DX/2-WB", 825 [8] = "486 DX/4", 826 [9] = "486 DX/4-WB" 827 } 828 }, 829 { .family = 5, .model_names = 830 { 831 [0] = "Pentium 60/66 A-step", 832 [1] = "Pentium 60/66", 833 [2] = "Pentium 75 - 200", 834 [3] = "OverDrive PODP5V83", 835 [4] = "Pentium MMX", 836 [7] = "Mobile Pentium 75 - 200", 837 [8] = "Mobile Pentium MMX", 838 [9] = "Quark SoC X1000", 839 } 840 }, 841 { .family = 6, .model_names = 842 { 843 [0] = "Pentium Pro A-step", 844 [1] = "Pentium Pro", 845 [3] = "Pentium II (Klamath)", 846 [4] = "Pentium II (Deschutes)", 847 [5] = "Pentium II (Deschutes)", 848 [6] = "Mobile Pentium II", 849 [7] = "Pentium III (Katmai)", 850 [8] = "Pentium III (Coppermine)", 851 [10] = "Pentium III (Cascades)", 852 [11] = "Pentium III (Tualatin)", 853 } 854 }, 855 { .family = 15, .model_names = 856 { 857 [0] = "Pentium 4 (Unknown)", 858 [1] = "Pentium 4 (Willamette)", 859 [2] = "Pentium 4 (Northwood)", 860 [4] = "Pentium 4 (Foster)", 861 [5] = "Pentium 4 (Foster)", 862 } 863 }, 864 }, 865 .legacy_cache_size = intel_size_cache, 866 #endif 867 .c_detect_tlb = intel_detect_tlb, 868 .c_early_init = early_init_intel, 869 .c_init = init_intel, 870 .c_bsp_resume = intel_bsp_resume, 871 .c_x86_vendor = X86_VENDOR_INTEL, 872 }; 873 874 cpu_dev_register(intel_cpu_dev); 875 876