xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 2f190ac2)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode_intel.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32 
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36 
37 #include "cpu.h"
38 
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43 
44 enum split_lock_detect_state {
45 	sld_off = 0,
46 	sld_warn,
47 	sld_fatal,
48 	sld_ratelimit,
49 };
50 
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58 
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65 
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 	switch (c->x86_model) {
76 	case INTEL_FAM6_CORE_YONAH:
77 	case INTEL_FAM6_CORE2_MEROM:
78 	case INTEL_FAM6_CORE2_MEROM_L:
79 	case INTEL_FAM6_CORE2_PENRYN:
80 	case INTEL_FAM6_CORE2_DUNNINGTON:
81 	case INTEL_FAM6_NEHALEM:
82 	case INTEL_FAM6_NEHALEM_G:
83 	case INTEL_FAM6_NEHALEM_EP:
84 	case INTEL_FAM6_NEHALEM_EX:
85 	case INTEL_FAM6_WESTMERE:
86 	case INTEL_FAM6_WESTMERE_EP:
87 	case INTEL_FAM6_SANDYBRIDGE:
88 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 	}
90 }
91 
92 static bool ring3mwait_disabled __read_mostly;
93 
94 static int __init ring3mwait_disable(char *__unused)
95 {
96 	ring3mwait_disabled = true;
97 	return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100 
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 	/*
104 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 	 * cpu model and family comparison.
106 	 */
107 	if (c->x86 != 6)
108 		return;
109 	switch (c->x86_model) {
110 	case INTEL_FAM6_XEON_PHI_KNL:
111 	case INTEL_FAM6_XEON_PHI_KNM:
112 		break;
113 	default:
114 		return;
115 	}
116 
117 	if (ring3mwait_disabled)
118 		return;
119 
120 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 	this_cpu_or(msr_misc_features_shadow,
122 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123 
124 	if (c == &boot_cpu_data)
125 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127 
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137 	u8 model;
138 	u8 stepping;
139 	u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160 	/* Observed in the wild */
161 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163 };
164 
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 	int i;
168 
169 	/*
170 	 * We know that the hypervisor lie to us on the microcode version so
171 	 * we may as well hope that it is running the correct version.
172 	 */
173 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 		return false;
175 
176 	if (c->x86 != 6)
177 		return false;
178 
179 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 		if (c->x86_model == spectre_bad_microcodes[i].model &&
181 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183 	}
184 	return false;
185 }
186 
187 int intel_cpu_collect_info(struct ucode_cpu_info *uci)
188 {
189 	unsigned int val[2];
190 	unsigned int family, model;
191 	struct cpu_signature csig = { 0 };
192 	unsigned int eax, ebx, ecx, edx;
193 
194 	memset(uci, 0, sizeof(*uci));
195 
196 	eax = 0x00000001;
197 	ecx = 0;
198 	native_cpuid(&eax, &ebx, &ecx, &edx);
199 	csig.sig = eax;
200 
201 	family = x86_family(eax);
202 	model  = x86_model(eax);
203 
204 	if (model >= 5 || family > 6) {
205 		/* get processor flags from MSR 0x17 */
206 		native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
207 		csig.pf = 1 << ((val[1] >> 18) & 7);
208 	}
209 
210 	csig.rev = intel_get_microcode_revision();
211 
212 	uci->cpu_sig = csig;
213 	uci->valid = 1;
214 
215 	return 0;
216 }
217 EXPORT_SYMBOL_GPL(intel_cpu_collect_info);
218 
219 static void early_init_intel(struct cpuinfo_x86 *c)
220 {
221 	u64 misc_enable;
222 
223 	/* Unmask CPUID levels if masked: */
224 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
225 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
226 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
227 			c->cpuid_level = cpuid_eax(0);
228 			get_cpu_cap(c);
229 		}
230 	}
231 
232 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
233 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
234 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
235 
236 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
237 		c->microcode = intel_get_microcode_revision();
238 
239 	/* Now if any of them are set, check the blacklist and clear the lot */
240 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
241 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
242 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
243 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
244 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
245 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
246 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
247 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
248 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
249 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
250 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
251 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
252 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
253 	}
254 
255 	/*
256 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
257 	 *
258 	 * A race condition between speculative fetches and invalidating
259 	 * a large page.  This is worked around in microcode, but we
260 	 * need the microcode to have already been loaded... so if it is
261 	 * not, recommend a BIOS update and disable large pages.
262 	 */
263 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
264 	    c->microcode < 0x20e) {
265 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
266 		clear_cpu_cap(c, X86_FEATURE_PSE);
267 	}
268 
269 #ifdef CONFIG_X86_64
270 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
271 #else
272 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
273 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
274 		c->x86_cache_alignment = 128;
275 #endif
276 
277 	/* CPUID workaround for 0F33/0F34 CPU */
278 	if (c->x86 == 0xF && c->x86_model == 0x3
279 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
280 		c->x86_phys_bits = 36;
281 
282 	/*
283 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
284 	 * with P/T states and does not stop in deep C-states.
285 	 *
286 	 * It is also reliable across cores and sockets. (but not across
287 	 * cabinets - we turn it off in that case explicitly.)
288 	 */
289 	if (c->x86_power & (1 << 8)) {
290 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
291 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
292 	}
293 
294 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
295 	if (c->x86 == 6) {
296 		switch (c->x86_model) {
297 		case INTEL_FAM6_ATOM_SALTWELL_MID:
298 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
299 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
300 		case INTEL_FAM6_ATOM_AIRMONT_NP:
301 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
302 			break;
303 		default:
304 			break;
305 		}
306 	}
307 
308 	/*
309 	 * There is a known erratum on Pentium III and Core Solo
310 	 * and Core Duo CPUs.
311 	 * " Page with PAT set to WC while associated MTRR is UC
312 	 *   may consolidate to UC "
313 	 * Because of this erratum, it is better to stick with
314 	 * setting WC in MTRR rather than using PAT on these CPUs.
315 	 *
316 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
317 	 */
318 	if (c->x86 == 6 && c->x86_model < 15)
319 		clear_cpu_cap(c, X86_FEATURE_PAT);
320 
321 	/*
322 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
323 	 * clear the fast string and enhanced fast string CPU capabilities.
324 	 */
325 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
326 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
327 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
328 			pr_info("Disabled fast string operations\n");
329 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
330 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
331 		}
332 	}
333 
334 	/*
335 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
336 	 * "The operating system also is required to invalidate (i.e., flush)
337 	 *  the TLB when any changes are made to any of the page table entries.
338 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
339 	 *
340 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
341 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
342 	 * to be modified.
343 	 */
344 	if (c->x86 == 5 && c->x86_model == 9) {
345 		pr_info("Disabling PGE capability bit\n");
346 		setup_clear_cpu_cap(X86_FEATURE_PGE);
347 	}
348 
349 	if (c->cpuid_level >= 0x00000001) {
350 		u32 eax, ebx, ecx, edx;
351 
352 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
353 		/*
354 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
355 		 * apicids which are reserved per package. Store the resulting
356 		 * shift value for the package management code.
357 		 */
358 		if (edx & (1U << 28))
359 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
360 	}
361 
362 	check_memory_type_self_snoop_errata(c);
363 
364 	/*
365 	 * Get the number of SMT siblings early from the extended topology
366 	 * leaf, if available. Otherwise try the legacy SMT detection.
367 	 */
368 	if (detect_extended_topology_early(c) < 0)
369 		detect_ht_early(c);
370 }
371 
372 static void bsp_init_intel(struct cpuinfo_x86 *c)
373 {
374 	resctrl_cpu_detect(c);
375 }
376 
377 #ifdef CONFIG_X86_32
378 /*
379  *	Early probe support logic for ppro memory erratum #50
380  *
381  *	This is called before we do cpu ident work
382  */
383 
384 int ppro_with_ram_bug(void)
385 {
386 	/* Uses data from early_cpu_detect now */
387 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
388 	    boot_cpu_data.x86 == 6 &&
389 	    boot_cpu_data.x86_model == 1 &&
390 	    boot_cpu_data.x86_stepping < 8) {
391 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
392 		return 1;
393 	}
394 	return 0;
395 }
396 
397 static void intel_smp_check(struct cpuinfo_x86 *c)
398 {
399 	/* calling is from identify_secondary_cpu() ? */
400 	if (!c->cpu_index)
401 		return;
402 
403 	/*
404 	 * Mask B, Pentium, but not Pentium MMX
405 	 */
406 	if (c->x86 == 5 &&
407 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
408 	    c->x86_model <= 3) {
409 		/*
410 		 * Remember we have B step Pentia with bugs
411 		 */
412 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
413 				    "with B stepping processors.\n");
414 	}
415 }
416 
417 static int forcepae;
418 static int __init forcepae_setup(char *__unused)
419 {
420 	forcepae = 1;
421 	return 1;
422 }
423 __setup("forcepae", forcepae_setup);
424 
425 static void intel_workarounds(struct cpuinfo_x86 *c)
426 {
427 #ifdef CONFIG_X86_F00F_BUG
428 	/*
429 	 * All models of Pentium and Pentium with MMX technology CPUs
430 	 * have the F0 0F bug, which lets nonprivileged users lock up the
431 	 * system. Announce that the fault handler will be checking for it.
432 	 * The Quark is also family 5, but does not have the same bug.
433 	 */
434 	clear_cpu_bug(c, X86_BUG_F00F);
435 	if (c->x86 == 5 && c->x86_model < 9) {
436 		static int f00f_workaround_enabled;
437 
438 		set_cpu_bug(c, X86_BUG_F00F);
439 		if (!f00f_workaround_enabled) {
440 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
441 			f00f_workaround_enabled = 1;
442 		}
443 	}
444 #endif
445 
446 	/*
447 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
448 	 * model 3 mask 3
449 	 */
450 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
451 		clear_cpu_cap(c, X86_FEATURE_SEP);
452 
453 	/*
454 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
455 	 * functionally usable PAE implementation.
456 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
457 	 */
458 	if (forcepae) {
459 		pr_warn("PAE forced!\n");
460 		set_cpu_cap(c, X86_FEATURE_PAE);
461 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
462 	}
463 
464 	/*
465 	 * P4 Xeon erratum 037 workaround.
466 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
467 	 */
468 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
469 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
470 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
471 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
472 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
473 		}
474 	}
475 
476 	/*
477 	 * See if we have a good local APIC by checking for buggy Pentia,
478 	 * i.e. all B steppings and the C2 stepping of P54C when using their
479 	 * integrated APIC (see 11AP erratum in "Pentium Processor
480 	 * Specification Update").
481 	 */
482 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
483 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
484 		set_cpu_bug(c, X86_BUG_11AP);
485 
486 
487 #ifdef CONFIG_X86_INTEL_USERCOPY
488 	/*
489 	 * Set up the preferred alignment for movsl bulk memory moves
490 	 */
491 	switch (c->x86) {
492 	case 4:		/* 486: untested */
493 		break;
494 	case 5:		/* Old Pentia: untested */
495 		break;
496 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
497 		movsl_mask.mask = 7;
498 		break;
499 	case 15:	/* P4 is OK down to 8-byte alignment */
500 		movsl_mask.mask = 7;
501 		break;
502 	}
503 #endif
504 
505 	intel_smp_check(c);
506 }
507 #else
508 static void intel_workarounds(struct cpuinfo_x86 *c)
509 {
510 }
511 #endif
512 
513 static void srat_detect_node(struct cpuinfo_x86 *c)
514 {
515 #ifdef CONFIG_NUMA
516 	unsigned node;
517 	int cpu = smp_processor_id();
518 
519 	/* Don't do the funky fallback heuristics the AMD version employs
520 	   for now. */
521 	node = numa_cpu_node(cpu);
522 	if (node == NUMA_NO_NODE || !node_online(node)) {
523 		/* reuse the value from init_cpu_to_node() */
524 		node = cpu_to_node(cpu);
525 	}
526 	numa_set_node(cpu, node);
527 #endif
528 }
529 
530 #define MSR_IA32_TME_ACTIVATE		0x982
531 
532 /* Helpers to access TME_ACTIVATE MSR */
533 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
534 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
535 
536 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
537 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
538 
539 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
540 
541 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
542 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
543 
544 /* Values for mktme_status (SW only construct) */
545 #define MKTME_ENABLED			0
546 #define MKTME_DISABLED			1
547 #define MKTME_UNINITIALIZED		2
548 static int mktme_status = MKTME_UNINITIALIZED;
549 
550 static void detect_tme(struct cpuinfo_x86 *c)
551 {
552 	u64 tme_activate, tme_policy, tme_crypto_algs;
553 	int keyid_bits = 0, nr_keyids = 0;
554 	static u64 tme_activate_cpu0 = 0;
555 
556 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
557 
558 	if (mktme_status != MKTME_UNINITIALIZED) {
559 		if (tme_activate != tme_activate_cpu0) {
560 			/* Broken BIOS? */
561 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
562 			pr_err_once("x86/tme: MKTME is not usable\n");
563 			mktme_status = MKTME_DISABLED;
564 
565 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
566 		}
567 	} else {
568 		tme_activate_cpu0 = tme_activate;
569 	}
570 
571 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
572 		pr_info_once("x86/tme: not enabled by BIOS\n");
573 		mktme_status = MKTME_DISABLED;
574 		return;
575 	}
576 
577 	if (mktme_status != MKTME_UNINITIALIZED)
578 		goto detect_keyid_bits;
579 
580 	pr_info("x86/tme: enabled by BIOS\n");
581 
582 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
583 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
584 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
585 
586 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
587 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
588 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
589 				tme_crypto_algs);
590 		mktme_status = MKTME_DISABLED;
591 	}
592 detect_keyid_bits:
593 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
594 	nr_keyids = (1UL << keyid_bits) - 1;
595 	if (nr_keyids) {
596 		pr_info_once("x86/mktme: enabled by BIOS\n");
597 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
598 	} else {
599 		pr_info_once("x86/mktme: disabled by BIOS\n");
600 	}
601 
602 	if (mktme_status == MKTME_UNINITIALIZED) {
603 		/* MKTME is usable */
604 		mktme_status = MKTME_ENABLED;
605 	}
606 
607 	/*
608 	 * KeyID bits effectively lower the number of physical address
609 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
610 	 */
611 	c->x86_phys_bits -= keyid_bits;
612 }
613 
614 static void init_cpuid_fault(struct cpuinfo_x86 *c)
615 {
616 	u64 msr;
617 
618 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
619 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
620 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
621 	}
622 }
623 
624 static void init_intel_misc_features(struct cpuinfo_x86 *c)
625 {
626 	u64 msr;
627 
628 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
629 		return;
630 
631 	/* Clear all MISC features */
632 	this_cpu_write(msr_misc_features_shadow, 0);
633 
634 	/* Check features and update capabilities and shadow control bits */
635 	init_cpuid_fault(c);
636 	probe_xeon_phi_r3mwait(c);
637 
638 	msr = this_cpu_read(msr_misc_features_shadow);
639 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
640 }
641 
642 static void split_lock_init(void);
643 static void bus_lock_init(void);
644 
645 static void init_intel(struct cpuinfo_x86 *c)
646 {
647 	early_init_intel(c);
648 
649 	intel_workarounds(c);
650 
651 	/*
652 	 * Detect the extended topology information if available. This
653 	 * will reinitialise the initial_apicid which will be used
654 	 * in init_intel_cacheinfo()
655 	 */
656 	detect_extended_topology(c);
657 
658 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
659 		/*
660 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
661 		 * detection.
662 		 */
663 		detect_num_cpu_cores(c);
664 #ifdef CONFIG_X86_32
665 		detect_ht(c);
666 #endif
667 	}
668 
669 	init_intel_cacheinfo(c);
670 
671 	if (c->cpuid_level > 9) {
672 		unsigned eax = cpuid_eax(10);
673 		/* Check for version and the number of counters */
674 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
675 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
676 	}
677 
678 	if (cpu_has(c, X86_FEATURE_XMM2))
679 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
680 
681 	if (boot_cpu_has(X86_FEATURE_DS)) {
682 		unsigned int l1, l2;
683 
684 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
685 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
686 			set_cpu_cap(c, X86_FEATURE_BTS);
687 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
688 			set_cpu_cap(c, X86_FEATURE_PEBS);
689 	}
690 
691 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
692 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
693 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
694 
695 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
696 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
697 		set_cpu_bug(c, X86_BUG_MONITOR);
698 
699 #ifdef CONFIG_X86_64
700 	if (c->x86 == 15)
701 		c->x86_cache_alignment = c->x86_clflush_size * 2;
702 	if (c->x86 == 6)
703 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
704 #else
705 	/*
706 	 * Names for the Pentium II/Celeron processors
707 	 * detectable only by also checking the cache size.
708 	 * Dixon is NOT a Celeron.
709 	 */
710 	if (c->x86 == 6) {
711 		unsigned int l2 = c->x86_cache_size;
712 		char *p = NULL;
713 
714 		switch (c->x86_model) {
715 		case 5:
716 			if (l2 == 0)
717 				p = "Celeron (Covington)";
718 			else if (l2 == 256)
719 				p = "Mobile Pentium II (Dixon)";
720 			break;
721 
722 		case 6:
723 			if (l2 == 128)
724 				p = "Celeron (Mendocino)";
725 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
726 				p = "Celeron-A";
727 			break;
728 
729 		case 8:
730 			if (l2 == 128)
731 				p = "Celeron (Coppermine)";
732 			break;
733 		}
734 
735 		if (p)
736 			strcpy(c->x86_model_id, p);
737 	}
738 
739 	if (c->x86 == 15)
740 		set_cpu_cap(c, X86_FEATURE_P4);
741 	if (c->x86 == 6)
742 		set_cpu_cap(c, X86_FEATURE_P3);
743 #endif
744 
745 	/* Work around errata */
746 	srat_detect_node(c);
747 
748 	init_ia32_feat_ctl(c);
749 
750 	if (cpu_has(c, X86_FEATURE_TME))
751 		detect_tme(c);
752 
753 	init_intel_misc_features(c);
754 
755 	split_lock_init();
756 	bus_lock_init();
757 
758 	intel_init_thermal(c);
759 }
760 
761 #ifdef CONFIG_X86_32
762 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
763 {
764 	/*
765 	 * Intel PIII Tualatin. This comes in two flavours.
766 	 * One has 256kb of cache, the other 512. We have no way
767 	 * to determine which, so we use a boottime override
768 	 * for the 512kb model, and assume 256 otherwise.
769 	 */
770 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
771 		size = 256;
772 
773 	/*
774 	 * Intel Quark SoC X1000 contains a 4-way set associative
775 	 * 16K cache with a 16 byte cache line and 256 lines per tag
776 	 */
777 	if ((c->x86 == 5) && (c->x86_model == 9))
778 		size = 16;
779 	return size;
780 }
781 #endif
782 
783 #define TLB_INST_4K	0x01
784 #define TLB_INST_4M	0x02
785 #define TLB_INST_2M_4M	0x03
786 
787 #define TLB_INST_ALL	0x05
788 #define TLB_INST_1G	0x06
789 
790 #define TLB_DATA_4K	0x11
791 #define TLB_DATA_4M	0x12
792 #define TLB_DATA_2M_4M	0x13
793 #define TLB_DATA_4K_4M	0x14
794 
795 #define TLB_DATA_1G	0x16
796 
797 #define TLB_DATA0_4K	0x21
798 #define TLB_DATA0_4M	0x22
799 #define TLB_DATA0_2M_4M	0x23
800 
801 #define STLB_4K		0x41
802 #define STLB_4K_2M	0x42
803 
804 static const struct _tlb_table intel_tlb_table[] = {
805 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
806 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
807 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
808 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
809 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
810 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
811 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
812 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
813 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
814 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
815 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
816 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
817 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
818 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
819 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
820 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
821 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
822 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
823 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
824 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
825 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
826 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
827 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
828 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
829 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
830 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
831 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
832 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
833 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
834 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
835 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
836 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
837 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
838 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
839 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
840 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
841 	{ 0x00, 0, 0 }
842 };
843 
844 static void intel_tlb_lookup(const unsigned char desc)
845 {
846 	unsigned char k;
847 	if (desc == 0)
848 		return;
849 
850 	/* look up this descriptor in the table */
851 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
852 	     intel_tlb_table[k].descriptor != 0; k++)
853 		;
854 
855 	if (intel_tlb_table[k].tlb_type == 0)
856 		return;
857 
858 	switch (intel_tlb_table[k].tlb_type) {
859 	case STLB_4K:
860 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
861 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
862 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
863 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
864 		break;
865 	case STLB_4K_2M:
866 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
867 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
868 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
869 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
870 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
871 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
872 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
873 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
874 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
875 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
876 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
877 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
878 		break;
879 	case TLB_INST_ALL:
880 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
881 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
882 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
883 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
884 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
885 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
886 		break;
887 	case TLB_INST_4K:
888 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
889 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
890 		break;
891 	case TLB_INST_4M:
892 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
893 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
894 		break;
895 	case TLB_INST_2M_4M:
896 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
897 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
898 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
899 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
900 		break;
901 	case TLB_DATA_4K:
902 	case TLB_DATA0_4K:
903 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
904 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
905 		break;
906 	case TLB_DATA_4M:
907 	case TLB_DATA0_4M:
908 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
909 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
910 		break;
911 	case TLB_DATA_2M_4M:
912 	case TLB_DATA0_2M_4M:
913 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
914 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
915 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
916 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
917 		break;
918 	case TLB_DATA_4K_4M:
919 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
920 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
921 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
922 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
923 		break;
924 	case TLB_DATA_1G:
925 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
926 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
927 		break;
928 	}
929 }
930 
931 static void intel_detect_tlb(struct cpuinfo_x86 *c)
932 {
933 	int i, j, n;
934 	unsigned int regs[4];
935 	unsigned char *desc = (unsigned char *)regs;
936 
937 	if (c->cpuid_level < 2)
938 		return;
939 
940 	/* Number of times to iterate */
941 	n = cpuid_eax(2) & 0xFF;
942 
943 	for (i = 0 ; i < n ; i++) {
944 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
945 
946 		/* If bit 31 is set, this is an unknown format */
947 		for (j = 0 ; j < 3 ; j++)
948 			if (regs[j] & (1 << 31))
949 				regs[j] = 0;
950 
951 		/* Byte 0 is level count, not a descriptor */
952 		for (j = 1 ; j < 16 ; j++)
953 			intel_tlb_lookup(desc[j]);
954 	}
955 }
956 
957 static const struct cpu_dev intel_cpu_dev = {
958 	.c_vendor	= "Intel",
959 	.c_ident	= { "GenuineIntel" },
960 #ifdef CONFIG_X86_32
961 	.legacy_models = {
962 		{ .family = 4, .model_names =
963 		  {
964 			  [0] = "486 DX-25/33",
965 			  [1] = "486 DX-50",
966 			  [2] = "486 SX",
967 			  [3] = "486 DX/2",
968 			  [4] = "486 SL",
969 			  [5] = "486 SX/2",
970 			  [7] = "486 DX/2-WB",
971 			  [8] = "486 DX/4",
972 			  [9] = "486 DX/4-WB"
973 		  }
974 		},
975 		{ .family = 5, .model_names =
976 		  {
977 			  [0] = "Pentium 60/66 A-step",
978 			  [1] = "Pentium 60/66",
979 			  [2] = "Pentium 75 - 200",
980 			  [3] = "OverDrive PODP5V83",
981 			  [4] = "Pentium MMX",
982 			  [7] = "Mobile Pentium 75 - 200",
983 			  [8] = "Mobile Pentium MMX",
984 			  [9] = "Quark SoC X1000",
985 		  }
986 		},
987 		{ .family = 6, .model_names =
988 		  {
989 			  [0] = "Pentium Pro A-step",
990 			  [1] = "Pentium Pro",
991 			  [3] = "Pentium II (Klamath)",
992 			  [4] = "Pentium II (Deschutes)",
993 			  [5] = "Pentium II (Deschutes)",
994 			  [6] = "Mobile Pentium II",
995 			  [7] = "Pentium III (Katmai)",
996 			  [8] = "Pentium III (Coppermine)",
997 			  [10] = "Pentium III (Cascades)",
998 			  [11] = "Pentium III (Tualatin)",
999 		  }
1000 		},
1001 		{ .family = 15, .model_names =
1002 		  {
1003 			  [0] = "Pentium 4 (Unknown)",
1004 			  [1] = "Pentium 4 (Willamette)",
1005 			  [2] = "Pentium 4 (Northwood)",
1006 			  [4] = "Pentium 4 (Foster)",
1007 			  [5] = "Pentium 4 (Foster)",
1008 		  }
1009 		},
1010 	},
1011 	.legacy_cache_size = intel_size_cache,
1012 #endif
1013 	.c_detect_tlb	= intel_detect_tlb,
1014 	.c_early_init   = early_init_intel,
1015 	.c_bsp_init	= bsp_init_intel,
1016 	.c_init		= init_intel,
1017 	.c_x86_vendor	= X86_VENDOR_INTEL,
1018 };
1019 
1020 cpu_dev_register(intel_cpu_dev);
1021 
1022 #undef pr_fmt
1023 #define pr_fmt(fmt) "x86/split lock detection: " fmt
1024 
1025 static const struct {
1026 	const char			*option;
1027 	enum split_lock_detect_state	state;
1028 } sld_options[] __initconst = {
1029 	{ "off",	sld_off   },
1030 	{ "warn",	sld_warn  },
1031 	{ "fatal",	sld_fatal },
1032 	{ "ratelimit:", sld_ratelimit },
1033 };
1034 
1035 static struct ratelimit_state bld_ratelimit;
1036 
1037 static DEFINE_SEMAPHORE(buslock_sem);
1038 
1039 static inline bool match_option(const char *arg, int arglen, const char *opt)
1040 {
1041 	int len = strlen(opt), ratelimit;
1042 
1043 	if (strncmp(arg, opt, len))
1044 		return false;
1045 
1046 	/*
1047 	 * Min ratelimit is 1 bus lock/sec.
1048 	 * Max ratelimit is 1000 bus locks/sec.
1049 	 */
1050 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1051 	    ratelimit > 0 && ratelimit <= 1000) {
1052 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1053 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1054 		return true;
1055 	}
1056 
1057 	return len == arglen;
1058 }
1059 
1060 static bool split_lock_verify_msr(bool on)
1061 {
1062 	u64 ctrl, tmp;
1063 
1064 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1065 		return false;
1066 	if (on)
1067 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1068 	else
1069 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1070 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1071 		return false;
1072 	rdmsrl(MSR_TEST_CTRL, tmp);
1073 	return ctrl == tmp;
1074 }
1075 
1076 static void __init sld_state_setup(void)
1077 {
1078 	enum split_lock_detect_state state = sld_warn;
1079 	char arg[20];
1080 	int i, ret;
1081 
1082 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1083 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1084 		return;
1085 
1086 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1087 				  arg, sizeof(arg));
1088 	if (ret >= 0) {
1089 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1090 			if (match_option(arg, ret, sld_options[i].option)) {
1091 				state = sld_options[i].state;
1092 				break;
1093 			}
1094 		}
1095 	}
1096 	sld_state = state;
1097 }
1098 
1099 static void __init __split_lock_setup(void)
1100 {
1101 	if (!split_lock_verify_msr(false)) {
1102 		pr_info("MSR access failed: Disabled\n");
1103 		return;
1104 	}
1105 
1106 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1107 
1108 	if (!split_lock_verify_msr(true)) {
1109 		pr_info("MSR access failed: Disabled\n");
1110 		return;
1111 	}
1112 
1113 	/* Restore the MSR to its cached value. */
1114 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1115 
1116 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1117 }
1118 
1119 /*
1120  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1121  * is not implemented as one thread could undo the setting of the other
1122  * thread immediately after dropping the lock anyway.
1123  */
1124 static void sld_update_msr(bool on)
1125 {
1126 	u64 test_ctrl_val = msr_test_ctrl_cache;
1127 
1128 	if (on)
1129 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1130 
1131 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1132 }
1133 
1134 static void split_lock_init(void)
1135 {
1136 	/*
1137 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1138 	 * disabled.
1139 	 */
1140 	if (sld_state == sld_ratelimit) {
1141 		split_lock_verify_msr(false);
1142 		return;
1143 	}
1144 
1145 	if (cpu_model_supports_sld)
1146 		split_lock_verify_msr(sld_state != sld_off);
1147 }
1148 
1149 static void __split_lock_reenable(struct work_struct *work)
1150 {
1151 	sld_update_msr(true);
1152 	up(&buslock_sem);
1153 }
1154 
1155 /*
1156  * If a CPU goes offline with pending delayed work to re-enable split lock
1157  * detection then the delayed work will be executed on some other CPU. That
1158  * handles releasing the buslock_sem, but because it executes on a
1159  * different CPU probably won't re-enable split lock detection. This is a
1160  * problem on HT systems since the sibling CPU on the same core may then be
1161  * left running with split lock detection disabled.
1162  *
1163  * Unconditionally re-enable detection here.
1164  */
1165 static int splitlock_cpu_offline(unsigned int cpu)
1166 {
1167 	sld_update_msr(true);
1168 
1169 	return 0;
1170 }
1171 
1172 static DECLARE_DELAYED_WORK(split_lock_reenable, __split_lock_reenable);
1173 
1174 static void split_lock_warn(unsigned long ip)
1175 {
1176 	int cpu;
1177 
1178 	if (!current->reported_split_lock)
1179 		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1180 				    current->comm, current->pid, ip);
1181 	current->reported_split_lock = 1;
1182 
1183 	/* misery factor #1, sleep 10ms before trying to execute split lock */
1184 	if (msleep_interruptible(10) > 0)
1185 		return;
1186 	/* Misery factor #2, only allow one buslocked disabled core at a time */
1187 	if (down_interruptible(&buslock_sem) == -EINTR)
1188 		return;
1189 	cpu = get_cpu();
1190 	schedule_delayed_work_on(cpu, &split_lock_reenable, 2);
1191 
1192 	/* Disable split lock detection on this CPU to make progress */
1193 	sld_update_msr(false);
1194 	put_cpu();
1195 }
1196 
1197 bool handle_guest_split_lock(unsigned long ip)
1198 {
1199 	if (sld_state == sld_warn) {
1200 		split_lock_warn(ip);
1201 		return true;
1202 	}
1203 
1204 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1205 		     current->comm, current->pid,
1206 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1207 
1208 	current->thread.error_code = 0;
1209 	current->thread.trap_nr = X86_TRAP_AC;
1210 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1211 	return false;
1212 }
1213 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1214 
1215 static void bus_lock_init(void)
1216 {
1217 	u64 val;
1218 
1219 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1220 		return;
1221 
1222 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1223 
1224 	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1225 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1226 	    sld_state == sld_off) {
1227 		/*
1228 		 * Warn and fatal are handled by #AC for split lock if #AC for
1229 		 * split lock is supported.
1230 		 */
1231 		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1232 	} else {
1233 		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1234 	}
1235 
1236 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1237 }
1238 
1239 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1240 {
1241 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1242 		return false;
1243 	split_lock_warn(regs->ip);
1244 	return true;
1245 }
1246 
1247 void handle_bus_lock(struct pt_regs *regs)
1248 {
1249 	switch (sld_state) {
1250 	case sld_off:
1251 		break;
1252 	case sld_ratelimit:
1253 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1254 		while (!__ratelimit(&bld_ratelimit))
1255 			msleep(20);
1256 		/* Warn on the bus lock. */
1257 		fallthrough;
1258 	case sld_warn:
1259 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1260 				    current->comm, current->pid, regs->ip);
1261 		break;
1262 	case sld_fatal:
1263 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1264 		break;
1265 	}
1266 }
1267 
1268 /*
1269  * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1270  * only be trusted if it is confirmed that a CPU model implements a
1271  * specific feature at a particular bit position.
1272  *
1273  * The possible driver data field values:
1274  *
1275  * - 0: CPU models that are known to have the per-core split-lock detection
1276  *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1277  *
1278  * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1279  *      bit 5 to enumerate the per-core split-lock detection feature.
1280  */
1281 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1282 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
1283 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
1284 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0),
1285 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
1286 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
1287 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
1288 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1),
1289 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1),
1290 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	1),
1291 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		1),
1292 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		1),
1293 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		1),
1294 	{}
1295 };
1296 
1297 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1298 {
1299 	const struct x86_cpu_id *m;
1300 	u64 ia32_core_caps;
1301 
1302 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1303 		return;
1304 
1305 	m = x86_match_cpu(split_lock_cpu_ids);
1306 	if (!m)
1307 		return;
1308 
1309 	switch (m->driver_data) {
1310 	case 0:
1311 		break;
1312 	case 1:
1313 		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1314 			return;
1315 		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1316 		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1317 			return;
1318 		break;
1319 	default:
1320 		return;
1321 	}
1322 
1323 	cpu_model_supports_sld = true;
1324 	__split_lock_setup();
1325 }
1326 
1327 static void sld_state_show(void)
1328 {
1329 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1330 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1331 		return;
1332 
1333 	switch (sld_state) {
1334 	case sld_off:
1335 		pr_info("disabled\n");
1336 		break;
1337 	case sld_warn:
1338 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1339 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1340 			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1341 					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1342 				pr_warn("No splitlock CPU offline handler\n");
1343 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1344 			pr_info("#DB: warning on user-space bus_locks\n");
1345 		}
1346 		break;
1347 	case sld_fatal:
1348 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1349 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1350 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1351 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1352 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1353 				" from non-WB" : "");
1354 		}
1355 		break;
1356 	case sld_ratelimit:
1357 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1358 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1359 		break;
1360 	}
1361 }
1362 
1363 void __init sld_setup(struct cpuinfo_x86 *c)
1364 {
1365 	split_lock_setup(c);
1366 	sld_state_setup();
1367 	sld_state_show();
1368 }
1369 
1370 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1371 
1372 /**
1373  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1374  *
1375  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1376  * a hybrid processor. If the processor is not hybrid, returns 0.
1377  */
1378 u8 get_this_hybrid_cpu_type(void)
1379 {
1380 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1381 		return 0;
1382 
1383 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1384 }
1385