xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 160b8e75)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/thread_info.h>
10 #include <linux/init.h>
11 #include <linux/uaccess.h>
12 
13 #include <asm/cpufeature.h>
14 #include <asm/pgtable.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode_intel.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22 
23 #ifdef CONFIG_X86_64
24 #include <linux/topology.h>
25 #endif
26 
27 #include "cpu.h"
28 
29 #ifdef CONFIG_X86_LOCAL_APIC
30 #include <asm/mpspec.h>
31 #include <asm/apic.h>
32 #endif
33 
34 /*
35  * Just in case our CPU detection goes bad, or you have a weird system,
36  * allow a way to override the automatic disabling of MPX.
37  */
38 static int forcempx;
39 
40 static int __init forcempx_setup(char *__unused)
41 {
42 	forcempx = 1;
43 
44 	return 1;
45 }
46 __setup("intel-skd-046-workaround=disable", forcempx_setup);
47 
48 void check_mpx_erratum(struct cpuinfo_x86 *c)
49 {
50 	if (forcempx)
51 		return;
52 	/*
53 	 * Turn off the MPX feature on CPUs where SMEP is not
54 	 * available or disabled.
55 	 *
56 	 * Works around Intel Erratum SKD046: "Branch Instructions
57 	 * May Initialize MPX Bound Registers Incorrectly".
58 	 *
59 	 * This might falsely disable MPX on systems without
60 	 * SMEP, like Atom processors without SMEP.  But there
61 	 * is no such hardware known at the moment.
62 	 */
63 	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
64 		setup_clear_cpu_cap(X86_FEATURE_MPX);
65 		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
66 	}
67 }
68 
69 static bool ring3mwait_disabled __read_mostly;
70 
71 static int __init ring3mwait_disable(char *__unused)
72 {
73 	ring3mwait_disabled = true;
74 	return 0;
75 }
76 __setup("ring3mwait=disable", ring3mwait_disable);
77 
78 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
79 {
80 	/*
81 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
82 	 * cpu model and family comparison.
83 	 */
84 	if (c->x86 != 6)
85 		return;
86 	switch (c->x86_model) {
87 	case INTEL_FAM6_XEON_PHI_KNL:
88 	case INTEL_FAM6_XEON_PHI_KNM:
89 		break;
90 	default:
91 		return;
92 	}
93 
94 	if (ring3mwait_disabled)
95 		return;
96 
97 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
98 	this_cpu_or(msr_misc_features_shadow,
99 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
100 
101 	if (c == &boot_cpu_data)
102 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
103 }
104 
105 /*
106  * Early microcode releases for the Spectre v2 mitigation were broken.
107  * Information taken from;
108  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/microcode-update-guidance.pdf
109  * - https://kb.vmware.com/s/article/52345
110  * - Microcode revisions observed in the wild
111  * - Release note from 20180108 microcode release
112  */
113 struct sku_microcode {
114 	u8 model;
115 	u8 stepping;
116 	u32 microcode;
117 };
118 static const struct sku_microcode spectre_bad_microcodes[] = {
119 	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x0B,	0x84 },
120 	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x0A,	0x84 },
121 	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x09,	0x84 },
122 	{ INTEL_FAM6_KABYLAKE_MOBILE,	0x0A,	0x84 },
123 	{ INTEL_FAM6_KABYLAKE_MOBILE,	0x09,	0x84 },
124 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
125 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
126 	{ INTEL_FAM6_SKYLAKE_MOBILE,	0x03,	0xc2 },
127 	{ INTEL_FAM6_SKYLAKE_DESKTOP,	0x03,	0xc2 },
128 	{ INTEL_FAM6_BROADWELL_CORE,	0x04,	0x28 },
129 	{ INTEL_FAM6_BROADWELL_GT3E,	0x01,	0x1b },
130 	{ INTEL_FAM6_BROADWELL_XEON_D,	0x02,	0x14 },
131 	{ INTEL_FAM6_BROADWELL_XEON_D,	0x03,	0x07000011 },
132 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
133 	{ INTEL_FAM6_HASWELL_ULT,	0x01,	0x21 },
134 	{ INTEL_FAM6_HASWELL_GT3E,	0x01,	0x18 },
135 	{ INTEL_FAM6_HASWELL_CORE,	0x03,	0x23 },
136 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
137 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
138 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
139 	/* Updated in the 20180108 release; blacklist until we know otherwise */
140 	{ INTEL_FAM6_ATOM_GEMINI_LAKE,	0x01,	0x22 },
141 	/* Observed in the wild */
142 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
143 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
144 };
145 
146 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
147 {
148 	int i;
149 
150 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
151 		if (c->x86_model == spectre_bad_microcodes[i].model &&
152 		    c->x86_mask == spectre_bad_microcodes[i].stepping)
153 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
154 	}
155 	return false;
156 }
157 
158 static void early_init_intel(struct cpuinfo_x86 *c)
159 {
160 	u64 misc_enable;
161 
162 	/* Unmask CPUID levels if masked: */
163 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
164 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
165 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
166 			c->cpuid_level = cpuid_eax(0);
167 			get_cpu_cap(c);
168 		}
169 	}
170 
171 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
172 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
173 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
174 
175 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
176 		c->microcode = intel_get_microcode_revision();
177 
178 	/* Now if any of them are set, check the blacklist and clear the lot */
179 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
180 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
181 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
182 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
183 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
184 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
185 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
186 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
187 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
188 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
189 	}
190 
191 	/*
192 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
193 	 *
194 	 * A race condition between speculative fetches and invalidating
195 	 * a large page.  This is worked around in microcode, but we
196 	 * need the microcode to have already been loaded... so if it is
197 	 * not, recommend a BIOS update and disable large pages.
198 	 */
199 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
200 	    c->microcode < 0x20e) {
201 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
202 		clear_cpu_cap(c, X86_FEATURE_PSE);
203 	}
204 
205 #ifdef CONFIG_X86_64
206 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
207 #else
208 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
209 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
210 		c->x86_cache_alignment = 128;
211 #endif
212 
213 	/* CPUID workaround for 0F33/0F34 CPU */
214 	if (c->x86 == 0xF && c->x86_model == 0x3
215 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
216 		c->x86_phys_bits = 36;
217 
218 	/*
219 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
220 	 * with P/T states and does not stop in deep C-states.
221 	 *
222 	 * It is also reliable across cores and sockets. (but not across
223 	 * cabinets - we turn it off in that case explicitly.)
224 	 */
225 	if (c->x86_power & (1 << 8)) {
226 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
227 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
228 	}
229 
230 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
231 	if (c->x86 == 6) {
232 		switch (c->x86_model) {
233 		case 0x27:	/* Penwell */
234 		case 0x35:	/* Cloverview */
235 		case 0x4a:	/* Merrifield */
236 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
237 			break;
238 		default:
239 			break;
240 		}
241 	}
242 
243 	/*
244 	 * There is a known erratum on Pentium III and Core Solo
245 	 * and Core Duo CPUs.
246 	 * " Page with PAT set to WC while associated MTRR is UC
247 	 *   may consolidate to UC "
248 	 * Because of this erratum, it is better to stick with
249 	 * setting WC in MTRR rather than using PAT on these CPUs.
250 	 *
251 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
252 	 */
253 	if (c->x86 == 6 && c->x86_model < 15)
254 		clear_cpu_cap(c, X86_FEATURE_PAT);
255 
256 	/*
257 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
258 	 * clear the fast string and enhanced fast string CPU capabilities.
259 	 */
260 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
261 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
262 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
263 			pr_info("Disabled fast string operations\n");
264 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
265 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
266 		}
267 	}
268 
269 	/*
270 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
271 	 * "The operating system also is required to invalidate (i.e., flush)
272 	 *  the TLB when any changes are made to any of the page table entries.
273 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
274 	 *
275 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
276 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
277 	 * to be modified.
278 	 */
279 	if (c->x86 == 5 && c->x86_model == 9) {
280 		pr_info("Disabling PGE capability bit\n");
281 		setup_clear_cpu_cap(X86_FEATURE_PGE);
282 	}
283 
284 	if (c->cpuid_level >= 0x00000001) {
285 		u32 eax, ebx, ecx, edx;
286 
287 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
288 		/*
289 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
290 		 * apicids which are reserved per package. Store the resulting
291 		 * shift value for the package management code.
292 		 */
293 		if (edx & (1U << 28))
294 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
295 	}
296 
297 	check_mpx_erratum(c);
298 }
299 
300 #ifdef CONFIG_X86_32
301 /*
302  *	Early probe support logic for ppro memory erratum #50
303  *
304  *	This is called before we do cpu ident work
305  */
306 
307 int ppro_with_ram_bug(void)
308 {
309 	/* Uses data from early_cpu_detect now */
310 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
311 	    boot_cpu_data.x86 == 6 &&
312 	    boot_cpu_data.x86_model == 1 &&
313 	    boot_cpu_data.x86_mask < 8) {
314 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
315 		return 1;
316 	}
317 	return 0;
318 }
319 
320 static void intel_smp_check(struct cpuinfo_x86 *c)
321 {
322 	/* calling is from identify_secondary_cpu() ? */
323 	if (!c->cpu_index)
324 		return;
325 
326 	/*
327 	 * Mask B, Pentium, but not Pentium MMX
328 	 */
329 	if (c->x86 == 5 &&
330 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
331 	    c->x86_model <= 3) {
332 		/*
333 		 * Remember we have B step Pentia with bugs
334 		 */
335 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
336 				    "with B stepping processors.\n");
337 	}
338 }
339 
340 static int forcepae;
341 static int __init forcepae_setup(char *__unused)
342 {
343 	forcepae = 1;
344 	return 1;
345 }
346 __setup("forcepae", forcepae_setup);
347 
348 static void intel_workarounds(struct cpuinfo_x86 *c)
349 {
350 #ifdef CONFIG_X86_F00F_BUG
351 	/*
352 	 * All models of Pentium and Pentium with MMX technology CPUs
353 	 * have the F0 0F bug, which lets nonprivileged users lock up the
354 	 * system. Announce that the fault handler will be checking for it.
355 	 * The Quark is also family 5, but does not have the same bug.
356 	 */
357 	clear_cpu_bug(c, X86_BUG_F00F);
358 	if (c->x86 == 5 && c->x86_model < 9) {
359 		static int f00f_workaround_enabled;
360 
361 		set_cpu_bug(c, X86_BUG_F00F);
362 		if (!f00f_workaround_enabled) {
363 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
364 			f00f_workaround_enabled = 1;
365 		}
366 	}
367 #endif
368 
369 	/*
370 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
371 	 * model 3 mask 3
372 	 */
373 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
374 		clear_cpu_cap(c, X86_FEATURE_SEP);
375 
376 	/*
377 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
378 	 * functionally usable PAE implementation.
379 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
380 	 */
381 	if (forcepae) {
382 		pr_warn("PAE forced!\n");
383 		set_cpu_cap(c, X86_FEATURE_PAE);
384 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
385 	}
386 
387 	/*
388 	 * P4 Xeon erratum 037 workaround.
389 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
390 	 */
391 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
392 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
393 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
394 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
395 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
396 		}
397 	}
398 
399 	/*
400 	 * See if we have a good local APIC by checking for buggy Pentia,
401 	 * i.e. all B steppings and the C2 stepping of P54C when using their
402 	 * integrated APIC (see 11AP erratum in "Pentium Processor
403 	 * Specification Update").
404 	 */
405 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
406 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
407 		set_cpu_bug(c, X86_BUG_11AP);
408 
409 
410 #ifdef CONFIG_X86_INTEL_USERCOPY
411 	/*
412 	 * Set up the preferred alignment for movsl bulk memory moves
413 	 */
414 	switch (c->x86) {
415 	case 4:		/* 486: untested */
416 		break;
417 	case 5:		/* Old Pentia: untested */
418 		break;
419 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
420 		movsl_mask.mask = 7;
421 		break;
422 	case 15:	/* P4 is OK down to 8-byte alignment */
423 		movsl_mask.mask = 7;
424 		break;
425 	}
426 #endif
427 
428 	intel_smp_check(c);
429 }
430 #else
431 static void intel_workarounds(struct cpuinfo_x86 *c)
432 {
433 }
434 #endif
435 
436 static void srat_detect_node(struct cpuinfo_x86 *c)
437 {
438 #ifdef CONFIG_NUMA
439 	unsigned node;
440 	int cpu = smp_processor_id();
441 
442 	/* Don't do the funky fallback heuristics the AMD version employs
443 	   for now. */
444 	node = numa_cpu_node(cpu);
445 	if (node == NUMA_NO_NODE || !node_online(node)) {
446 		/* reuse the value from init_cpu_to_node() */
447 		node = cpu_to_node(cpu);
448 	}
449 	numa_set_node(cpu, node);
450 #endif
451 }
452 
453 /*
454  * find out the number of processor cores on the die
455  */
456 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
457 {
458 	unsigned int eax, ebx, ecx, edx;
459 
460 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
461 		return 1;
462 
463 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
464 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
465 	if (eax & 0x1f)
466 		return (eax >> 26) + 1;
467 	else
468 		return 1;
469 }
470 
471 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
472 {
473 	/* Intel VMX MSR indicated features */
474 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
475 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
476 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
477 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
478 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
479 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
480 
481 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
482 
483 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
484 	clear_cpu_cap(c, X86_FEATURE_VNMI);
485 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
486 	clear_cpu_cap(c, X86_FEATURE_EPT);
487 	clear_cpu_cap(c, X86_FEATURE_VPID);
488 
489 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
490 	msr_ctl = vmx_msr_high | vmx_msr_low;
491 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
492 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
493 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
494 		set_cpu_cap(c, X86_FEATURE_VNMI);
495 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
496 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
497 		      vmx_msr_low, vmx_msr_high);
498 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
499 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
500 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
501 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
502 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
503 			set_cpu_cap(c, X86_FEATURE_EPT);
504 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
505 			set_cpu_cap(c, X86_FEATURE_VPID);
506 	}
507 }
508 
509 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
510 {
511 	u64 epb;
512 
513 	/*
514 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
515 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
516 	 */
517 	if (!cpu_has(c, X86_FEATURE_EPB))
518 		return;
519 
520 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
521 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
522 		return;
523 
524 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
525 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
526 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
527 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
528 }
529 
530 static void intel_bsp_resume(struct cpuinfo_x86 *c)
531 {
532 	/*
533 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
534 	 * so reinitialize it properly like during bootup:
535 	 */
536 	init_intel_energy_perf(c);
537 }
538 
539 static void init_cpuid_fault(struct cpuinfo_x86 *c)
540 {
541 	u64 msr;
542 
543 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
544 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
545 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
546 	}
547 }
548 
549 static void init_intel_misc_features(struct cpuinfo_x86 *c)
550 {
551 	u64 msr;
552 
553 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
554 		return;
555 
556 	/* Clear all MISC features */
557 	this_cpu_write(msr_misc_features_shadow, 0);
558 
559 	/* Check features and update capabilities and shadow control bits */
560 	init_cpuid_fault(c);
561 	probe_xeon_phi_r3mwait(c);
562 
563 	msr = this_cpu_read(msr_misc_features_shadow);
564 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
565 }
566 
567 static void init_intel(struct cpuinfo_x86 *c)
568 {
569 	unsigned int l2 = 0;
570 
571 	early_init_intel(c);
572 
573 	intel_workarounds(c);
574 
575 	/*
576 	 * Detect the extended topology information if available. This
577 	 * will reinitialise the initial_apicid which will be used
578 	 * in init_intel_cacheinfo()
579 	 */
580 	detect_extended_topology(c);
581 
582 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
583 		/*
584 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
585 		 * detection.
586 		 */
587 		c->x86_max_cores = intel_num_cpu_cores(c);
588 #ifdef CONFIG_X86_32
589 		detect_ht(c);
590 #endif
591 	}
592 
593 	l2 = init_intel_cacheinfo(c);
594 
595 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
596 	if (l2 == 0) {
597 		cpu_detect_cache_sizes(c);
598 		l2 = c->x86_cache_size;
599 	}
600 
601 	if (c->cpuid_level > 9) {
602 		unsigned eax = cpuid_eax(10);
603 		/* Check for version and the number of counters */
604 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
605 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
606 	}
607 
608 	if (cpu_has(c, X86_FEATURE_XMM2))
609 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
610 
611 	if (boot_cpu_has(X86_FEATURE_DS)) {
612 		unsigned int l1;
613 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
614 		if (!(l1 & (1<<11)))
615 			set_cpu_cap(c, X86_FEATURE_BTS);
616 		if (!(l1 & (1<<12)))
617 			set_cpu_cap(c, X86_FEATURE_PEBS);
618 	}
619 
620 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
621 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
622 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
623 
624 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
625 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
626 		set_cpu_bug(c, X86_BUG_MONITOR);
627 
628 #ifdef CONFIG_X86_64
629 	if (c->x86 == 15)
630 		c->x86_cache_alignment = c->x86_clflush_size * 2;
631 	if (c->x86 == 6)
632 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
633 #else
634 	/*
635 	 * Names for the Pentium II/Celeron processors
636 	 * detectable only by also checking the cache size.
637 	 * Dixon is NOT a Celeron.
638 	 */
639 	if (c->x86 == 6) {
640 		char *p = NULL;
641 
642 		switch (c->x86_model) {
643 		case 5:
644 			if (l2 == 0)
645 				p = "Celeron (Covington)";
646 			else if (l2 == 256)
647 				p = "Mobile Pentium II (Dixon)";
648 			break;
649 
650 		case 6:
651 			if (l2 == 128)
652 				p = "Celeron (Mendocino)";
653 			else if (c->x86_mask == 0 || c->x86_mask == 5)
654 				p = "Celeron-A";
655 			break;
656 
657 		case 8:
658 			if (l2 == 128)
659 				p = "Celeron (Coppermine)";
660 			break;
661 		}
662 
663 		if (p)
664 			strcpy(c->x86_model_id, p);
665 	}
666 
667 	if (c->x86 == 15)
668 		set_cpu_cap(c, X86_FEATURE_P4);
669 	if (c->x86 == 6)
670 		set_cpu_cap(c, X86_FEATURE_P3);
671 #endif
672 
673 	/* Work around errata */
674 	srat_detect_node(c);
675 
676 	if (cpu_has(c, X86_FEATURE_VMX))
677 		detect_vmx_virtcap(c);
678 
679 	init_intel_energy_perf(c);
680 
681 	init_intel_misc_features(c);
682 }
683 
684 #ifdef CONFIG_X86_32
685 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
686 {
687 	/*
688 	 * Intel PIII Tualatin. This comes in two flavours.
689 	 * One has 256kb of cache, the other 512. We have no way
690 	 * to determine which, so we use a boottime override
691 	 * for the 512kb model, and assume 256 otherwise.
692 	 */
693 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
694 		size = 256;
695 
696 	/*
697 	 * Intel Quark SoC X1000 contains a 4-way set associative
698 	 * 16K cache with a 16 byte cache line and 256 lines per tag
699 	 */
700 	if ((c->x86 == 5) && (c->x86_model == 9))
701 		size = 16;
702 	return size;
703 }
704 #endif
705 
706 #define TLB_INST_4K	0x01
707 #define TLB_INST_4M	0x02
708 #define TLB_INST_2M_4M	0x03
709 
710 #define TLB_INST_ALL	0x05
711 #define TLB_INST_1G	0x06
712 
713 #define TLB_DATA_4K	0x11
714 #define TLB_DATA_4M	0x12
715 #define TLB_DATA_2M_4M	0x13
716 #define TLB_DATA_4K_4M	0x14
717 
718 #define TLB_DATA_1G	0x16
719 
720 #define TLB_DATA0_4K	0x21
721 #define TLB_DATA0_4M	0x22
722 #define TLB_DATA0_2M_4M	0x23
723 
724 #define STLB_4K		0x41
725 #define STLB_4K_2M	0x42
726 
727 static const struct _tlb_table intel_tlb_table[] = {
728 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
729 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
730 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
731 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
732 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
733 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
734 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
735 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
736 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
737 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
738 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
739 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
740 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
741 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
742 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
743 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
744 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
745 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
746 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
747 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
748 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
749 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
750 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
751 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
752 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
753 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
754 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
755 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
756 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
757 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
758 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
759 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
760 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
761 	{ 0x00, 0, 0 }
762 };
763 
764 static void intel_tlb_lookup(const unsigned char desc)
765 {
766 	unsigned char k;
767 	if (desc == 0)
768 		return;
769 
770 	/* look up this descriptor in the table */
771 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
772 			intel_tlb_table[k].descriptor != 0; k++)
773 		;
774 
775 	if (intel_tlb_table[k].tlb_type == 0)
776 		return;
777 
778 	switch (intel_tlb_table[k].tlb_type) {
779 	case STLB_4K:
780 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
781 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
782 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
783 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
784 		break;
785 	case STLB_4K_2M:
786 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
787 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
788 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
789 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
790 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
791 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
792 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
793 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
794 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
795 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
796 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
797 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
798 		break;
799 	case TLB_INST_ALL:
800 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
801 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
802 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
803 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
804 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
805 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
806 		break;
807 	case TLB_INST_4K:
808 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
809 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
810 		break;
811 	case TLB_INST_4M:
812 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
813 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
814 		break;
815 	case TLB_INST_2M_4M:
816 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
817 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
818 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
819 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
820 		break;
821 	case TLB_DATA_4K:
822 	case TLB_DATA0_4K:
823 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
824 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
825 		break;
826 	case TLB_DATA_4M:
827 	case TLB_DATA0_4M:
828 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
829 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
830 		break;
831 	case TLB_DATA_2M_4M:
832 	case TLB_DATA0_2M_4M:
833 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
834 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
835 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
836 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
837 		break;
838 	case TLB_DATA_4K_4M:
839 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
840 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
841 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
842 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
843 		break;
844 	case TLB_DATA_1G:
845 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
846 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
847 		break;
848 	}
849 }
850 
851 static void intel_detect_tlb(struct cpuinfo_x86 *c)
852 {
853 	int i, j, n;
854 	unsigned int regs[4];
855 	unsigned char *desc = (unsigned char *)regs;
856 
857 	if (c->cpuid_level < 2)
858 		return;
859 
860 	/* Number of times to iterate */
861 	n = cpuid_eax(2) & 0xFF;
862 
863 	for (i = 0 ; i < n ; i++) {
864 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
865 
866 		/* If bit 31 is set, this is an unknown format */
867 		for (j = 0 ; j < 3 ; j++)
868 			if (regs[j] & (1 << 31))
869 				regs[j] = 0;
870 
871 		/* Byte 0 is level count, not a descriptor */
872 		for (j = 1 ; j < 16 ; j++)
873 			intel_tlb_lookup(desc[j]);
874 	}
875 }
876 
877 static const struct cpu_dev intel_cpu_dev = {
878 	.c_vendor	= "Intel",
879 	.c_ident	= { "GenuineIntel" },
880 #ifdef CONFIG_X86_32
881 	.legacy_models = {
882 		{ .family = 4, .model_names =
883 		  {
884 			  [0] = "486 DX-25/33",
885 			  [1] = "486 DX-50",
886 			  [2] = "486 SX",
887 			  [3] = "486 DX/2",
888 			  [4] = "486 SL",
889 			  [5] = "486 SX/2",
890 			  [7] = "486 DX/2-WB",
891 			  [8] = "486 DX/4",
892 			  [9] = "486 DX/4-WB"
893 		  }
894 		},
895 		{ .family = 5, .model_names =
896 		  {
897 			  [0] = "Pentium 60/66 A-step",
898 			  [1] = "Pentium 60/66",
899 			  [2] = "Pentium 75 - 200",
900 			  [3] = "OverDrive PODP5V83",
901 			  [4] = "Pentium MMX",
902 			  [7] = "Mobile Pentium 75 - 200",
903 			  [8] = "Mobile Pentium MMX",
904 			  [9] = "Quark SoC X1000",
905 		  }
906 		},
907 		{ .family = 6, .model_names =
908 		  {
909 			  [0] = "Pentium Pro A-step",
910 			  [1] = "Pentium Pro",
911 			  [3] = "Pentium II (Klamath)",
912 			  [4] = "Pentium II (Deschutes)",
913 			  [5] = "Pentium II (Deschutes)",
914 			  [6] = "Mobile Pentium II",
915 			  [7] = "Pentium III (Katmai)",
916 			  [8] = "Pentium III (Coppermine)",
917 			  [10] = "Pentium III (Cascades)",
918 			  [11] = "Pentium III (Tualatin)",
919 		  }
920 		},
921 		{ .family = 15, .model_names =
922 		  {
923 			  [0] = "Pentium 4 (Unknown)",
924 			  [1] = "Pentium 4 (Willamette)",
925 			  [2] = "Pentium 4 (Northwood)",
926 			  [4] = "Pentium 4 (Foster)",
927 			  [5] = "Pentium 4 (Foster)",
928 		  }
929 		},
930 	},
931 	.legacy_cache_size = intel_size_cache,
932 #endif
933 	.c_detect_tlb	= intel_detect_tlb,
934 	.c_early_init   = early_init_intel,
935 	.c_init		= init_intel,
936 	.c_bsp_resume	= intel_bsp_resume,
937 	.c_x86_vendor	= X86_VENDOR_INTEL,
938 };
939 
940 cpu_dev_register(intel_cpu_dev);
941 
942