xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision 110e6f26)
1 #include <linux/kernel.h>
2 
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/cpufeature.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16 
17 #ifdef CONFIG_X86_64
18 #include <linux/topology.h>
19 #endif
20 
21 #include "cpu.h"
22 
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #endif
27 
28 static void early_init_intel(struct cpuinfo_x86 *c)
29 {
30 	u64 misc_enable;
31 
32 	/* Unmask CPUID levels if masked: */
33 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 			c->cpuid_level = cpuid_eax(0);
37 			get_cpu_cap(c);
38 		}
39 	}
40 
41 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
43 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44 
45 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 		unsigned lower_word;
47 
48 		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 		/* Required by the SDM */
50 		sync_core();
51 		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52 	}
53 
54 	/*
55 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56 	 *
57 	 * A race condition between speculative fetches and invalidating
58 	 * a large page.  This is worked around in microcode, but we
59 	 * need the microcode to have already been loaded... so if it is
60 	 * not, recommend a BIOS update and disable large pages.
61 	 */
62 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 	    c->microcode < 0x20e) {
64 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
65 		clear_cpu_cap(c, X86_FEATURE_PSE);
66 	}
67 
68 #ifdef CONFIG_X86_64
69 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70 #else
71 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 		c->x86_cache_alignment = 128;
74 #endif
75 
76 	/* CPUID workaround for 0F33/0F34 CPU */
77 	if (c->x86 == 0xF && c->x86_model == 0x3
78 	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 		c->x86_phys_bits = 36;
80 
81 	/*
82 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 	 * with P/T states and does not stop in deep C-states.
84 	 *
85 	 * It is also reliable across cores and sockets. (but not across
86 	 * cabinets - we turn it off in that case explicitly.)
87 	 */
88 	if (c->x86_power & (1 << 8)) {
89 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 		if (!check_tsc_unstable())
92 			set_sched_clock_stable();
93 	}
94 
95 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 	if (c->x86 == 6) {
97 		switch (c->x86_model) {
98 		case 0x27:	/* Penwell */
99 		case 0x35:	/* Cloverview */
100 		case 0x4a:	/* Merrifield */
101 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
102 			break;
103 		default:
104 			break;
105 		}
106 	}
107 
108 	/*
109 	 * There is a known erratum on Pentium III and Core Solo
110 	 * and Core Duo CPUs.
111 	 * " Page with PAT set to WC while associated MTRR is UC
112 	 *   may consolidate to UC "
113 	 * Because of this erratum, it is better to stick with
114 	 * setting WC in MTRR rather than using PAT on these CPUs.
115 	 *
116 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
117 	 */
118 	if (c->x86 == 6 && c->x86_model < 15)
119 		clear_cpu_cap(c, X86_FEATURE_PAT);
120 
121 #ifdef CONFIG_KMEMCHECK
122 	/*
123 	 * P4s have a "fast strings" feature which causes single-
124 	 * stepping REP instructions to only generate a #DB on
125 	 * cache-line boundaries.
126 	 *
127 	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
128 	 * (model 2) with the same problem.
129 	 */
130 	if (c->x86 == 15)
131 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
132 				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
133 			pr_info("kmemcheck: Disabling fast string operations\n");
134 #endif
135 
136 	/*
137 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
138 	 * clear the fast string and enhanced fast string CPU capabilities.
139 	 */
140 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
141 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
142 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
143 			pr_info("Disabled fast string operations\n");
144 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
145 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
146 		}
147 	}
148 
149 	/*
150 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
151 	 * "The operating system also is required to invalidate (i.e., flush)
152 	 *  the TLB when any changes are made to any of the page table entries.
153 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
154 	 *
155 	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
156 	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
157 	 * to be modified
158 	 */
159 	if (c->x86 == 5 && c->x86_model == 9) {
160 		pr_info("Disabling PGE capability bit\n");
161 		setup_clear_cpu_cap(X86_FEATURE_PGE);
162 	}
163 
164 	if (c->cpuid_level >= 0x00000001) {
165 		u32 eax, ebx, ecx, edx;
166 
167 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
168 		/*
169 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
170 		 * apicids which are reserved per package. Store the resulting
171 		 * shift value for the package management code.
172 		 */
173 		if (edx & (1U << 28))
174 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
175 	}
176 }
177 
178 #ifdef CONFIG_X86_32
179 /*
180  *	Early probe support logic for ppro memory erratum #50
181  *
182  *	This is called before we do cpu ident work
183  */
184 
185 int ppro_with_ram_bug(void)
186 {
187 	/* Uses data from early_cpu_detect now */
188 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
189 	    boot_cpu_data.x86 == 6 &&
190 	    boot_cpu_data.x86_model == 1 &&
191 	    boot_cpu_data.x86_mask < 8) {
192 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
193 		return 1;
194 	}
195 	return 0;
196 }
197 
198 static void intel_smp_check(struct cpuinfo_x86 *c)
199 {
200 	/* calling is from identify_secondary_cpu() ? */
201 	if (!c->cpu_index)
202 		return;
203 
204 	/*
205 	 * Mask B, Pentium, but not Pentium MMX
206 	 */
207 	if (c->x86 == 5 &&
208 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
209 	    c->x86_model <= 3) {
210 		/*
211 		 * Remember we have B step Pentia with bugs
212 		 */
213 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
214 				    "with B stepping processors.\n");
215 	}
216 }
217 
218 static int forcepae;
219 static int __init forcepae_setup(char *__unused)
220 {
221 	forcepae = 1;
222 	return 1;
223 }
224 __setup("forcepae", forcepae_setup);
225 
226 static void intel_workarounds(struct cpuinfo_x86 *c)
227 {
228 #ifdef CONFIG_X86_F00F_BUG
229 	/*
230 	 * All models of Pentium and Pentium with MMX technology CPUs
231 	 * have the F0 0F bug, which lets nonprivileged users lock up the
232 	 * system. Announce that the fault handler will be checking for it.
233 	 * The Quark is also family 5, but does not have the same bug.
234 	 */
235 	clear_cpu_bug(c, X86_BUG_F00F);
236 	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
237 		static int f00f_workaround_enabled;
238 
239 		set_cpu_bug(c, X86_BUG_F00F);
240 		if (!f00f_workaround_enabled) {
241 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
242 			f00f_workaround_enabled = 1;
243 		}
244 	}
245 #endif
246 
247 	/*
248 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
249 	 * model 3 mask 3
250 	 */
251 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
252 		clear_cpu_cap(c, X86_FEATURE_SEP);
253 
254 	/*
255 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
256 	 * functionally usable PAE implementation.
257 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
258 	 */
259 	if (forcepae) {
260 		pr_warn("PAE forced!\n");
261 		set_cpu_cap(c, X86_FEATURE_PAE);
262 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
263 	}
264 
265 	/*
266 	 * P4 Xeon errata 037 workaround.
267 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
268 	 */
269 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
270 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
271 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
272 		    > 0) {
273 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
274 			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
275 		}
276 	}
277 
278 	/*
279 	 * See if we have a good local APIC by checking for buggy Pentia,
280 	 * i.e. all B steppings and the C2 stepping of P54C when using their
281 	 * integrated APIC (see 11AP erratum in "Pentium Processor
282 	 * Specification Update").
283 	 */
284 	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
285 	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
286 		set_cpu_bug(c, X86_BUG_11AP);
287 
288 
289 #ifdef CONFIG_X86_INTEL_USERCOPY
290 	/*
291 	 * Set up the preferred alignment for movsl bulk memory moves
292 	 */
293 	switch (c->x86) {
294 	case 4:		/* 486: untested */
295 		break;
296 	case 5:		/* Old Pentia: untested */
297 		break;
298 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
299 		movsl_mask.mask = 7;
300 		break;
301 	case 15:	/* P4 is OK down to 8-byte alignment */
302 		movsl_mask.mask = 7;
303 		break;
304 	}
305 #endif
306 
307 	intel_smp_check(c);
308 }
309 #else
310 static void intel_workarounds(struct cpuinfo_x86 *c)
311 {
312 }
313 #endif
314 
315 static void srat_detect_node(struct cpuinfo_x86 *c)
316 {
317 #ifdef CONFIG_NUMA
318 	unsigned node;
319 	int cpu = smp_processor_id();
320 
321 	/* Don't do the funky fallback heuristics the AMD version employs
322 	   for now. */
323 	node = numa_cpu_node(cpu);
324 	if (node == NUMA_NO_NODE || !node_online(node)) {
325 		/* reuse the value from init_cpu_to_node() */
326 		node = cpu_to_node(cpu);
327 	}
328 	numa_set_node(cpu, node);
329 #endif
330 }
331 
332 /*
333  * find out the number of processor cores on the die
334  */
335 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
336 {
337 	unsigned int eax, ebx, ecx, edx;
338 
339 	if (c->cpuid_level < 4)
340 		return 1;
341 
342 	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
343 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
344 	if (eax & 0x1f)
345 		return (eax >> 26) + 1;
346 	else
347 		return 1;
348 }
349 
350 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
351 {
352 	/* Intel VMX MSR indicated features */
353 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
354 #define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
355 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
356 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
357 #define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
358 #define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
359 
360 	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
361 
362 	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
363 	clear_cpu_cap(c, X86_FEATURE_VNMI);
364 	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
365 	clear_cpu_cap(c, X86_FEATURE_EPT);
366 	clear_cpu_cap(c, X86_FEATURE_VPID);
367 
368 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
369 	msr_ctl = vmx_msr_high | vmx_msr_low;
370 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
371 		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
372 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
373 		set_cpu_cap(c, X86_FEATURE_VNMI);
374 	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
375 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
376 		      vmx_msr_low, vmx_msr_high);
377 		msr_ctl2 = vmx_msr_high | vmx_msr_low;
378 		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
379 		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
380 			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
381 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
382 			set_cpu_cap(c, X86_FEATURE_EPT);
383 		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
384 			set_cpu_cap(c, X86_FEATURE_VPID);
385 	}
386 }
387 
388 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
389 {
390 	u64 epb;
391 
392 	/*
393 	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
394 	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
395 	 */
396 	if (!cpu_has(c, X86_FEATURE_EPB))
397 		return;
398 
399 	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
400 	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
401 		return;
402 
403 	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
404 	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
405 	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
406 	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
407 }
408 
409 static void intel_bsp_resume(struct cpuinfo_x86 *c)
410 {
411 	/*
412 	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
413 	 * so reinitialize it properly like during bootup:
414 	 */
415 	init_intel_energy_perf(c);
416 }
417 
418 static void init_intel(struct cpuinfo_x86 *c)
419 {
420 	unsigned int l2 = 0;
421 
422 	early_init_intel(c);
423 
424 	intel_workarounds(c);
425 
426 	/*
427 	 * Detect the extended topology information if available. This
428 	 * will reinitialise the initial_apicid which will be used
429 	 * in init_intel_cacheinfo()
430 	 */
431 	detect_extended_topology(c);
432 
433 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
434 		/*
435 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
436 		 * detection.
437 		 */
438 		c->x86_max_cores = intel_num_cpu_cores(c);
439 #ifdef CONFIG_X86_32
440 		detect_ht(c);
441 #endif
442 	}
443 
444 	l2 = init_intel_cacheinfo(c);
445 
446 	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
447 	if (l2 == 0) {
448 		cpu_detect_cache_sizes(c);
449 		l2 = c->x86_cache_size;
450 	}
451 
452 	if (c->cpuid_level > 9) {
453 		unsigned eax = cpuid_eax(10);
454 		/* Check for version and the number of counters */
455 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
456 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
457 	}
458 
459 	if (cpu_has_xmm2)
460 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
461 
462 	if (boot_cpu_has(X86_FEATURE_DS)) {
463 		unsigned int l1;
464 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
465 		if (!(l1 & (1<<11)))
466 			set_cpu_cap(c, X86_FEATURE_BTS);
467 		if (!(l1 & (1<<12)))
468 			set_cpu_cap(c, X86_FEATURE_PEBS);
469 	}
470 
471 	if (c->x86 == 6 && cpu_has_clflush &&
472 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
473 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
474 
475 #ifdef CONFIG_X86_64
476 	if (c->x86 == 15)
477 		c->x86_cache_alignment = c->x86_clflush_size * 2;
478 	if (c->x86 == 6)
479 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
480 #else
481 	/*
482 	 * Names for the Pentium II/Celeron processors
483 	 * detectable only by also checking the cache size.
484 	 * Dixon is NOT a Celeron.
485 	 */
486 	if (c->x86 == 6) {
487 		char *p = NULL;
488 
489 		switch (c->x86_model) {
490 		case 5:
491 			if (l2 == 0)
492 				p = "Celeron (Covington)";
493 			else if (l2 == 256)
494 				p = "Mobile Pentium II (Dixon)";
495 			break;
496 
497 		case 6:
498 			if (l2 == 128)
499 				p = "Celeron (Mendocino)";
500 			else if (c->x86_mask == 0 || c->x86_mask == 5)
501 				p = "Celeron-A";
502 			break;
503 
504 		case 8:
505 			if (l2 == 128)
506 				p = "Celeron (Coppermine)";
507 			break;
508 		}
509 
510 		if (p)
511 			strcpy(c->x86_model_id, p);
512 	}
513 
514 	if (c->x86 == 15)
515 		set_cpu_cap(c, X86_FEATURE_P4);
516 	if (c->x86 == 6)
517 		set_cpu_cap(c, X86_FEATURE_P3);
518 #endif
519 
520 	/* Work around errata */
521 	srat_detect_node(c);
522 
523 	if (cpu_has(c, X86_FEATURE_VMX))
524 		detect_vmx_virtcap(c);
525 
526 	init_intel_energy_perf(c);
527 }
528 
529 #ifdef CONFIG_X86_32
530 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
531 {
532 	/*
533 	 * Intel PIII Tualatin. This comes in two flavours.
534 	 * One has 256kb of cache, the other 512. We have no way
535 	 * to determine which, so we use a boottime override
536 	 * for the 512kb model, and assume 256 otherwise.
537 	 */
538 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
539 		size = 256;
540 
541 	/*
542 	 * Intel Quark SoC X1000 contains a 4-way set associative
543 	 * 16K cache with a 16 byte cache line and 256 lines per tag
544 	 */
545 	if ((c->x86 == 5) && (c->x86_model == 9))
546 		size = 16;
547 	return size;
548 }
549 #endif
550 
551 #define TLB_INST_4K	0x01
552 #define TLB_INST_4M	0x02
553 #define TLB_INST_2M_4M	0x03
554 
555 #define TLB_INST_ALL	0x05
556 #define TLB_INST_1G	0x06
557 
558 #define TLB_DATA_4K	0x11
559 #define TLB_DATA_4M	0x12
560 #define TLB_DATA_2M_4M	0x13
561 #define TLB_DATA_4K_4M	0x14
562 
563 #define TLB_DATA_1G	0x16
564 
565 #define TLB_DATA0_4K	0x21
566 #define TLB_DATA0_4M	0x22
567 #define TLB_DATA0_2M_4M	0x23
568 
569 #define STLB_4K		0x41
570 #define STLB_4K_2M	0x42
571 
572 static const struct _tlb_table intel_tlb_table[] = {
573 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
574 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
575 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
576 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
577 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
578 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
579 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
580 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
581 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
582 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
583 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
584 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
585 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
586 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
587 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
588 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
589 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
590 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
591 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
592 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
593 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
594 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
595 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
596 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
597 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
598 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
599 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
600 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
601 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
602 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
603 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
604 	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
605 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
606 	{ 0x00, 0, 0 }
607 };
608 
609 static void intel_tlb_lookup(const unsigned char desc)
610 {
611 	unsigned char k;
612 	if (desc == 0)
613 		return;
614 
615 	/* look up this descriptor in the table */
616 	for (k = 0; intel_tlb_table[k].descriptor != desc && \
617 			intel_tlb_table[k].descriptor != 0; k++)
618 		;
619 
620 	if (intel_tlb_table[k].tlb_type == 0)
621 		return;
622 
623 	switch (intel_tlb_table[k].tlb_type) {
624 	case STLB_4K:
625 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
626 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
627 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
628 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
629 		break;
630 	case STLB_4K_2M:
631 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
632 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
633 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
634 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
635 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
636 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
637 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
638 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
639 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
640 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
641 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
642 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
643 		break;
644 	case TLB_INST_ALL:
645 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
646 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
647 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
648 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
649 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
650 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
651 		break;
652 	case TLB_INST_4K:
653 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
654 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
655 		break;
656 	case TLB_INST_4M:
657 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
658 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
659 		break;
660 	case TLB_INST_2M_4M:
661 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
662 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
663 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
664 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
665 		break;
666 	case TLB_DATA_4K:
667 	case TLB_DATA0_4K:
668 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
669 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
670 		break;
671 	case TLB_DATA_4M:
672 	case TLB_DATA0_4M:
673 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
674 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
675 		break;
676 	case TLB_DATA_2M_4M:
677 	case TLB_DATA0_2M_4M:
678 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
679 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
680 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
681 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
682 		break;
683 	case TLB_DATA_4K_4M:
684 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
685 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
686 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
687 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
688 		break;
689 	case TLB_DATA_1G:
690 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
691 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
692 		break;
693 	}
694 }
695 
696 static void intel_detect_tlb(struct cpuinfo_x86 *c)
697 {
698 	int i, j, n;
699 	unsigned int regs[4];
700 	unsigned char *desc = (unsigned char *)regs;
701 
702 	if (c->cpuid_level < 2)
703 		return;
704 
705 	/* Number of times to iterate */
706 	n = cpuid_eax(2) & 0xFF;
707 
708 	for (i = 0 ; i < n ; i++) {
709 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
710 
711 		/* If bit 31 is set, this is an unknown format */
712 		for (j = 0 ; j < 3 ; j++)
713 			if (regs[j] & (1 << 31))
714 				regs[j] = 0;
715 
716 		/* Byte 0 is level count, not a descriptor */
717 		for (j = 1 ; j < 16 ; j++)
718 			intel_tlb_lookup(desc[j]);
719 	}
720 }
721 
722 static const struct cpu_dev intel_cpu_dev = {
723 	.c_vendor	= "Intel",
724 	.c_ident	= { "GenuineIntel" },
725 #ifdef CONFIG_X86_32
726 	.legacy_models = {
727 		{ .family = 4, .model_names =
728 		  {
729 			  [0] = "486 DX-25/33",
730 			  [1] = "486 DX-50",
731 			  [2] = "486 SX",
732 			  [3] = "486 DX/2",
733 			  [4] = "486 SL",
734 			  [5] = "486 SX/2",
735 			  [7] = "486 DX/2-WB",
736 			  [8] = "486 DX/4",
737 			  [9] = "486 DX/4-WB"
738 		  }
739 		},
740 		{ .family = 5, .model_names =
741 		  {
742 			  [0] = "Pentium 60/66 A-step",
743 			  [1] = "Pentium 60/66",
744 			  [2] = "Pentium 75 - 200",
745 			  [3] = "OverDrive PODP5V83",
746 			  [4] = "Pentium MMX",
747 			  [7] = "Mobile Pentium 75 - 200",
748 			  [8] = "Mobile Pentium MMX",
749 			  [9] = "Quark SoC X1000",
750 		  }
751 		},
752 		{ .family = 6, .model_names =
753 		  {
754 			  [0] = "Pentium Pro A-step",
755 			  [1] = "Pentium Pro",
756 			  [3] = "Pentium II (Klamath)",
757 			  [4] = "Pentium II (Deschutes)",
758 			  [5] = "Pentium II (Deschutes)",
759 			  [6] = "Mobile Pentium II",
760 			  [7] = "Pentium III (Katmai)",
761 			  [8] = "Pentium III (Coppermine)",
762 			  [10] = "Pentium III (Cascades)",
763 			  [11] = "Pentium III (Tualatin)",
764 		  }
765 		},
766 		{ .family = 15, .model_names =
767 		  {
768 			  [0] = "Pentium 4 (Unknown)",
769 			  [1] = "Pentium 4 (Willamette)",
770 			  [2] = "Pentium 4 (Northwood)",
771 			  [4] = "Pentium 4 (Foster)",
772 			  [5] = "Pentium 4 (Foster)",
773 		  }
774 		},
775 	},
776 	.legacy_cache_size = intel_size_cache,
777 #endif
778 	.c_detect_tlb	= intel_detect_tlb,
779 	.c_early_init   = early_init_intel,
780 	.c_init		= init_intel,
781 	.c_bsp_resume	= intel_bsp_resume,
782 	.c_x86_vendor	= X86_VENDOR_INTEL,
783 };
784 
785 cpu_dev_register(intel_cpu_dev);
786 
787