xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision f42b3800)
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/processor.h>
9 #include <asm/i387.h>
10 #include <asm/msr.h>
11 #include <asm/io.h>
12 #include <asm/mmu_context.h>
13 #include <asm/mtrr.h>
14 #include <asm/mce.h>
15 #ifdef CONFIG_X86_LOCAL_APIC
16 #include <asm/mpspec.h>
17 #include <asm/apic.h>
18 #include <mach_apic.h>
19 #endif
20 
21 #include "cpu.h"
22 
23 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
24 	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
25 	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
26 	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
27 	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
28 	/*
29 	 * Segments used for calling PnP BIOS have byte granularity.
30 	 * They code segments and data segments have fixed 64k limits,
31 	 * the transfer segment sizes are set at run time.
32 	 */
33 	/* 32-bit code */
34 	[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
35 	/* 16-bit code */
36 	[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
37 	/* 16-bit data */
38 	[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
39 	/* 16-bit data */
40 	[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
41 	/* 16-bit data */
42 	[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
43 	/*
44 	 * The APM segments have byte granularity and their bases
45 	 * are set at run time.  All have 64k limits.
46 	 */
47 	/* 32-bit code */
48 	[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
49 	/* 16-bit code */
50 	[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
51 	/* data */
52 	[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
53 
54 	[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
55 	[GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
56 } };
57 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
58 
59 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
60 
61 static int cachesize_override __cpuinitdata = -1;
62 static int disable_x86_serial_nr __cpuinitdata = 1;
63 
64 struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
65 
66 static void __cpuinit default_init(struct cpuinfo_x86 *c)
67 {
68 	/* Not much we can do here... */
69 	/* Check if at least it has cpuid */
70 	if (c->cpuid_level == -1) {
71 		/* No cpuid. It must be an ancient CPU */
72 		if (c->x86 == 4)
73 			strcpy(c->x86_model_id, "486");
74 		else if (c->x86 == 3)
75 			strcpy(c->x86_model_id, "386");
76 	}
77 }
78 
79 static struct cpu_dev __cpuinitdata default_cpu = {
80 	.c_init	= default_init,
81 	.c_vendor = "Unknown",
82 };
83 static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
84 
85 static int __init cachesize_setup(char *str)
86 {
87 	get_option(&str, &cachesize_override);
88 	return 1;
89 }
90 __setup("cachesize=", cachesize_setup);
91 
92 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
93 {
94 	unsigned int *v;
95 	char *p, *q;
96 
97 	if (cpuid_eax(0x80000000) < 0x80000004)
98 		return 0;
99 
100 	v = (unsigned int *) c->x86_model_id;
101 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
102 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
103 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
104 	c->x86_model_id[48] = 0;
105 
106 	/* Intel chips right-justify this string for some dumb reason;
107 	   undo that brain damage */
108 	p = q = &c->x86_model_id[0];
109 	while (*p == ' ')
110 	     p++;
111 	if (p != q) {
112 	     while (*p)
113 		  *q++ = *p++;
114 	     while (q <= &c->x86_model_id[48])
115 		  *q++ = '\0';	/* Zero-pad the rest */
116 	}
117 
118 	return 1;
119 }
120 
121 
122 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
123 {
124 	unsigned int n, dummy, ecx, edx, l2size;
125 
126 	n = cpuid_eax(0x80000000);
127 
128 	if (n >= 0x80000005) {
129 		cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
130 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
131 			edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
132 		c->x86_cache_size = (ecx>>24)+(edx>>24);
133 	}
134 
135 	if (n < 0x80000006)	/* Some chips just has a large L1. */
136 		return;
137 
138 	ecx = cpuid_ecx(0x80000006);
139 	l2size = ecx >> 16;
140 
141 	/* do processor-specific cache resizing */
142 	if (this_cpu->c_size_cache)
143 		l2size = this_cpu->c_size_cache(c, l2size);
144 
145 	/* Allow user to override all this if necessary. */
146 	if (cachesize_override != -1)
147 		l2size = cachesize_override;
148 
149 	if (l2size == 0)
150 		return;		/* Again, no L2 cache is possible */
151 
152 	c->x86_cache_size = l2size;
153 
154 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
155 	       l2size, ecx & 0xFF);
156 }
157 
158 /*
159  * Naming convention should be: <Name> [(<Codename>)]
160  * This table only is used unless init_<vendor>() below doesn't set it;
161  * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
162  *
163  */
164 
165 /* Look up CPU names by table lookup. */
166 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
167 {
168 	struct cpu_model_info *info;
169 
170 	if (c->x86_model >= 16)
171 		return NULL;	/* Range check */
172 
173 	if (!this_cpu)
174 		return NULL;
175 
176 	info = this_cpu->c_models;
177 
178 	while (info && info->family) {
179 		if (info->family == c->x86)
180 			return info->model_names[c->x86_model];
181 		info++;
182 	}
183 	return NULL;		/* Not found */
184 }
185 
186 
187 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
188 {
189 	char *v = c->x86_vendor_id;
190 	int i;
191 	static int printed;
192 
193 	for (i = 0; i < X86_VENDOR_NUM; i++) {
194 		if (cpu_devs[i]) {
195 			if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
196 			    (cpu_devs[i]->c_ident[1] &&
197 			     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
198 				c->x86_vendor = i;
199 				if (!early)
200 					this_cpu = cpu_devs[i];
201 				return;
202 			}
203 		}
204 	}
205 	if (!printed) {
206 		printed++;
207 		printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
208 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
209 	}
210 	c->x86_vendor = X86_VENDOR_UNKNOWN;
211 	this_cpu = &default_cpu;
212 }
213 
214 
215 static int __init x86_fxsr_setup(char *s)
216 {
217 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
218 	setup_clear_cpu_cap(X86_FEATURE_XMM);
219 	return 1;
220 }
221 __setup("nofxsr", x86_fxsr_setup);
222 
223 
224 static int __init x86_sep_setup(char *s)
225 {
226 	setup_clear_cpu_cap(X86_FEATURE_SEP);
227 	return 1;
228 }
229 __setup("nosep", x86_sep_setup);
230 
231 
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 	u32 f1, f2;
236 
237 	asm("pushfl\n\t"
238 	    "pushfl\n\t"
239 	    "popl %0\n\t"
240 	    "movl %0,%1\n\t"
241 	    "xorl %2,%0\n\t"
242 	    "pushl %0\n\t"
243 	    "popfl\n\t"
244 	    "pushfl\n\t"
245 	    "popl %0\n\t"
246 	    "popfl\n\t"
247 	    : "=&r" (f1), "=&r" (f2)
248 	    : "ir" (flag));
249 
250 	return ((f1^f2) & flag) != 0;
251 }
252 
253 
254 /* Probe for the CPUID instruction */
255 static int __cpuinit have_cpuid_p(void)
256 {
257 	return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259 
260 void __init cpu_detect(struct cpuinfo_x86 *c)
261 {
262 	/* Get vendor name */
263 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
264 	      (unsigned int *)&c->x86_vendor_id[0],
265 	      (unsigned int *)&c->x86_vendor_id[8],
266 	      (unsigned int *)&c->x86_vendor_id[4]);
267 
268 	c->x86 = 4;
269 	if (c->cpuid_level >= 0x00000001) {
270 		u32 junk, tfms, cap0, misc;
271 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
272 		c->x86 = (tfms >> 8) & 15;
273 		c->x86_model = (tfms >> 4) & 15;
274 		if (c->x86 == 0xf)
275 			c->x86 += (tfms >> 20) & 0xff;
276 		if (c->x86 >= 0x6)
277 			c->x86_model += ((tfms >> 16) & 0xF) << 4;
278 		c->x86_mask = tfms & 15;
279 		if (cap0 & (1<<19)) {
280 			c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
281 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
282 		}
283 	}
284 }
285 static void __cpuinit early_get_cap(struct cpuinfo_x86 *c)
286 {
287 	u32 tfms, xlvl;
288 	unsigned int ebx;
289 
290 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
291 	if (have_cpuid_p()) {
292 		/* Intel-defined flags: level 0x00000001 */
293 		if (c->cpuid_level >= 0x00000001) {
294 			u32 capability, excap;
295 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
296 			c->x86_capability[0] = capability;
297 			c->x86_capability[4] = excap;
298 		}
299 
300 		/* AMD-defined flags: level 0x80000001 */
301 		xlvl = cpuid_eax(0x80000000);
302 		if ((xlvl & 0xffff0000) == 0x80000000) {
303 			if (xlvl >= 0x80000001) {
304 				c->x86_capability[1] = cpuid_edx(0x80000001);
305 				c->x86_capability[6] = cpuid_ecx(0x80000001);
306 			}
307 		}
308 
309 	}
310 
311 	clear_cpu_cap(c, X86_FEATURE_PAT);
312 
313 	switch (c->x86_vendor) {
314 	case X86_VENDOR_AMD:
315 		if (c->x86 >= 0xf && c->x86 <= 0x11)
316 			set_cpu_cap(c, X86_FEATURE_PAT);
317 		break;
318 	case X86_VENDOR_INTEL:
319 		if (c->x86 == 0xF || (c->x86 == 6 && c->x86_model >= 15))
320 			set_cpu_cap(c, X86_FEATURE_PAT);
321 		break;
322 	}
323 
324 }
325 
326 /*
327  * Do minimum CPU detection early.
328  * Fields really needed: vendor, cpuid_level, family, model, mask,
329  * cache alignment.
330  * The others are not touched to avoid unwanted side effects.
331  *
332  * WARNING: this function is only called on the BP.  Don't add code here
333  * that is supposed to run on all CPUs.
334  */
335 static void __init early_cpu_detect(void)
336 {
337 	struct cpuinfo_x86 *c = &boot_cpu_data;
338 
339 	c->x86_cache_alignment = 32;
340 	c->x86_clflush_size = 32;
341 
342 	if (!have_cpuid_p())
343 		return;
344 
345 	cpu_detect(c);
346 
347 	get_cpu_vendor(c, 1);
348 
349 	if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
350 	    cpu_devs[c->x86_vendor]->c_early_init)
351 		cpu_devs[c->x86_vendor]->c_early_init(c);
352 
353 	early_get_cap(c);
354 }
355 
356 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
357 {
358 	u32 tfms, xlvl;
359 	unsigned int ebx;
360 
361 	if (have_cpuid_p()) {
362 		/* Get vendor name */
363 		cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
364 		      (unsigned int *)&c->x86_vendor_id[0],
365 		      (unsigned int *)&c->x86_vendor_id[8],
366 		      (unsigned int *)&c->x86_vendor_id[4]);
367 
368 		get_cpu_vendor(c, 0);
369 		/* Initialize the standard set of capabilities */
370 		/* Note that the vendor-specific code below might override */
371 		/* Intel-defined flags: level 0x00000001 */
372 		if (c->cpuid_level >= 0x00000001) {
373 			u32 capability, excap;
374 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
375 			c->x86_capability[0] = capability;
376 			c->x86_capability[4] = excap;
377 			c->x86 = (tfms >> 8) & 15;
378 			c->x86_model = (tfms >> 4) & 15;
379 			if (c->x86 == 0xf)
380 				c->x86 += (tfms >> 20) & 0xff;
381 			if (c->x86 >= 0x6)
382 				c->x86_model += ((tfms >> 16) & 0xF) << 4;
383 			c->x86_mask = tfms & 15;
384 			c->initial_apicid = (ebx >> 24) & 0xFF;
385 #ifdef CONFIG_X86_HT
386 			c->apicid = phys_pkg_id(c->initial_apicid, 0);
387 			c->phys_proc_id = c->initial_apicid;
388 #else
389 			c->apicid = c->initial_apicid;
390 #endif
391 			if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
392 				c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
393 		} else {
394 			/* Have CPUID level 0 only - unheard of */
395 			c->x86 = 4;
396 		}
397 
398 		/* AMD-defined flags: level 0x80000001 */
399 		xlvl = cpuid_eax(0x80000000);
400 		if ((xlvl & 0xffff0000) == 0x80000000) {
401 			if (xlvl >= 0x80000001) {
402 				c->x86_capability[1] = cpuid_edx(0x80000001);
403 				c->x86_capability[6] = cpuid_ecx(0x80000001);
404 			}
405 			if (xlvl >= 0x80000004)
406 				get_model_name(c); /* Default name */
407 		}
408 
409 		init_scattered_cpuid_features(c);
410 	}
411 
412 	clear_cpu_cap(c, X86_FEATURE_PAT);
413 
414 	switch (c->x86_vendor) {
415 	case X86_VENDOR_AMD:
416 		if (c->x86 >= 0xf && c->x86 <= 0x11)
417 			set_cpu_cap(c, X86_FEATURE_PAT);
418 		break;
419 	case X86_VENDOR_INTEL:
420 		if (c->x86 == 0xF || (c->x86 == 6 && c->x86_model >= 15))
421 			set_cpu_cap(c, X86_FEATURE_PAT);
422 		break;
423 	}
424 }
425 
426 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
427 {
428 	if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
429 		/* Disable processor serial number */
430 		unsigned long lo, hi;
431 		rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
432 		lo |= 0x200000;
433 		wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
434 		printk(KERN_NOTICE "CPU serial number disabled.\n");
435 		clear_cpu_cap(c, X86_FEATURE_PN);
436 
437 		/* Disabling the serial number may affect the cpuid level */
438 		c->cpuid_level = cpuid_eax(0);
439 	}
440 }
441 
442 static int __init x86_serial_nr_setup(char *s)
443 {
444 	disable_x86_serial_nr = 0;
445 	return 1;
446 }
447 __setup("serialnumber", x86_serial_nr_setup);
448 
449 
450 
451 /*
452  * This does the hard work of actually picking apart the CPU stuff...
453  */
454 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
455 {
456 	int i;
457 
458 	c->loops_per_jiffy = loops_per_jiffy;
459 	c->x86_cache_size = -1;
460 	c->x86_vendor = X86_VENDOR_UNKNOWN;
461 	c->cpuid_level = -1;	/* CPUID not detected */
462 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
463 	c->x86_vendor_id[0] = '\0'; /* Unset */
464 	c->x86_model_id[0] = '\0';  /* Unset */
465 	c->x86_max_cores = 1;
466 	c->x86_clflush_size = 32;
467 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
468 
469 	if (!have_cpuid_p()) {
470 		/*
471 		 * First of all, decide if this is a 486 or higher
472 		 * It's a 486 if we can modify the AC flag
473 		 */
474 		if (flag_is_changeable_p(X86_EFLAGS_AC))
475 			c->x86 = 4;
476 		else
477 			c->x86 = 3;
478 	}
479 
480 	generic_identify(c);
481 
482 	if (this_cpu->c_identify)
483 		this_cpu->c_identify(c);
484 
485 	/*
486 	 * Vendor-specific initialization.  In this section we
487 	 * canonicalize the feature flags, meaning if there are
488 	 * features a certain CPU supports which CPUID doesn't
489 	 * tell us, CPUID claiming incorrect flags, or other bugs,
490 	 * we handle them here.
491 	 *
492 	 * At the end of this section, c->x86_capability better
493 	 * indicate the features this CPU genuinely supports!
494 	 */
495 	if (this_cpu->c_init)
496 		this_cpu->c_init(c);
497 
498 	/* Disable the PN if appropriate */
499 	squash_the_stupid_serial_number(c);
500 
501 	/*
502 	 * The vendor-specific functions might have changed features.  Now
503 	 * we do "generic changes."
504 	 */
505 
506 	/* If the model name is still unset, do table lookup. */
507 	if (!c->x86_model_id[0]) {
508 		char *p;
509 		p = table_lookup_model(c);
510 		if (p)
511 			strcpy(c->x86_model_id, p);
512 		else
513 			/* Last resort... */
514 			sprintf(c->x86_model_id, "%02x/%02x",
515 				c->x86, c->x86_model);
516 	}
517 
518 	/*
519 	 * On SMP, boot_cpu_data holds the common feature set between
520 	 * all CPUs; so make sure that we indicate which features are
521 	 * common between the CPUs.  The first time this routine gets
522 	 * executed, c == &boot_cpu_data.
523 	 */
524 	if (c != &boot_cpu_data) {
525 		/* AND the already accumulated flags with these */
526 		for (i = 0 ; i < NCAPINTS ; i++)
527 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
528 	}
529 
530 	/* Clear all flags overriden by options */
531 	for (i = 0; i < NCAPINTS; i++)
532 		c->x86_capability[i] &= ~cleared_cpu_caps[i];
533 
534 	/* Init Machine Check Exception if available. */
535 	mcheck_init(c);
536 
537 	select_idle_routine(c);
538 }
539 
540 void __init identify_boot_cpu(void)
541 {
542 	identify_cpu(&boot_cpu_data);
543 	sysenter_setup();
544 	enable_sep_cpu();
545 }
546 
547 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
548 {
549 	BUG_ON(c == &boot_cpu_data);
550 	identify_cpu(c);
551 	enable_sep_cpu();
552 	mtrr_ap_init();
553 }
554 
555 #ifdef CONFIG_X86_HT
556 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
557 {
558 	u32 	eax, ebx, ecx, edx;
559 	int 	index_msb, core_bits;
560 
561 	cpuid(1, &eax, &ebx, &ecx, &edx);
562 
563 	if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
564 		return;
565 
566 	smp_num_siblings = (ebx & 0xff0000) >> 16;
567 
568 	if (smp_num_siblings == 1) {
569 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
570 	} else if (smp_num_siblings > 1) {
571 
572 		if (smp_num_siblings > NR_CPUS) {
573 			printk(KERN_WARNING "CPU: Unsupported number of the "
574 					"siblings %d", smp_num_siblings);
575 			smp_num_siblings = 1;
576 			return;
577 		}
578 
579 		index_msb = get_count_order(smp_num_siblings);
580 		c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
581 
582 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
583 		       c->phys_proc_id);
584 
585 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
586 
587 		index_msb = get_count_order(smp_num_siblings) ;
588 
589 		core_bits = get_count_order(c->x86_max_cores);
590 
591 		c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
592 					       ((1 << core_bits) - 1);
593 
594 		if (c->x86_max_cores > 1)
595 			printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
596 			       c->cpu_core_id);
597 	}
598 }
599 #endif
600 
601 static __init int setup_noclflush(char *arg)
602 {
603 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
604 	return 1;
605 }
606 __setup("noclflush", setup_noclflush);
607 
608 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
609 {
610 	char *vendor = NULL;
611 
612 	if (c->x86_vendor < X86_VENDOR_NUM)
613 		vendor = this_cpu->c_vendor;
614 	else if (c->cpuid_level >= 0)
615 		vendor = c->x86_vendor_id;
616 
617 	if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
618 		printk("%s ", vendor);
619 
620 	if (!c->x86_model_id[0])
621 		printk("%d86", c->x86);
622 	else
623 		printk("%s", c->x86_model_id);
624 
625 	if (c->x86_mask || c->cpuid_level >= 0)
626 		printk(" stepping %02x\n", c->x86_mask);
627 	else
628 		printk("\n");
629 }
630 
631 static __init int setup_disablecpuid(char *arg)
632 {
633 	int bit;
634 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
635 		setup_clear_cpu_cap(bit);
636 	else
637 		return 0;
638 	return 1;
639 }
640 __setup("clearcpuid=", setup_disablecpuid);
641 
642 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
643 
644 void __init early_cpu_init(void)
645 {
646 	struct cpu_vendor_dev *cvdev;
647 
648 	for (cvdev = __x86cpuvendor_start ;
649 	     cvdev < __x86cpuvendor_end   ;
650 	     cvdev++)
651 		cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
652 
653 	early_cpu_detect();
654 }
655 
656 /* Make sure %fs is initialized properly in idle threads */
657 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
658 {
659 	memset(regs, 0, sizeof(struct pt_regs));
660 	regs->fs = __KERNEL_PERCPU;
661 	return regs;
662 }
663 
664 /* Current gdt points %fs at the "master" per-cpu area: after this,
665  * it's on the real one. */
666 void switch_to_new_gdt(void)
667 {
668 	struct desc_ptr gdt_descr;
669 
670 	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
671 	gdt_descr.size = GDT_SIZE - 1;
672 	load_gdt(&gdt_descr);
673 	asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
674 }
675 
676 /*
677  * cpu_init() initializes state that is per-CPU. Some data is already
678  * initialized (naturally) in the bootstrap process, such as the GDT
679  * and IDT. We reload them nevertheless, this function acts as a
680  * 'CPU state barrier', nothing should get across.
681  */
682 void __cpuinit cpu_init(void)
683 {
684 	int cpu = smp_processor_id();
685 	struct task_struct *curr = current;
686 	struct tss_struct *t = &per_cpu(init_tss, cpu);
687 	struct thread_struct *thread = &curr->thread;
688 
689 	if (cpu_test_and_set(cpu, cpu_initialized)) {
690 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
691 		for (;;) local_irq_enable();
692 	}
693 
694 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
695 
696 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
697 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
698 
699 	load_idt(&idt_descr);
700 	switch_to_new_gdt();
701 
702 	/*
703 	 * Set up and load the per-CPU TSS and LDT
704 	 */
705 	atomic_inc(&init_mm.mm_count);
706 	curr->active_mm = &init_mm;
707 	if (curr->mm)
708 		BUG();
709 	enter_lazy_tlb(&init_mm, curr);
710 
711 	load_sp0(t, thread);
712 	set_tss_desc(cpu, t);
713 	load_TR_desc();
714 	load_LDT(&init_mm.context);
715 
716 #ifdef CONFIG_DOUBLEFAULT
717 	/* Set up doublefault TSS pointer in the GDT */
718 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
719 #endif
720 
721 	/* Clear %gs. */
722 	asm volatile ("mov %0, %%gs" : : "r" (0));
723 
724 	/* Clear all 6 debug registers: */
725 	set_debugreg(0, 0);
726 	set_debugreg(0, 1);
727 	set_debugreg(0, 2);
728 	set_debugreg(0, 3);
729 	set_debugreg(0, 6);
730 	set_debugreg(0, 7);
731 
732 	/*
733 	 * Force FPU initialization:
734 	 */
735 	current_thread_info()->status = 0;
736 	clear_used_math();
737 	mxcsr_feature_mask_init();
738 }
739 
740 #ifdef CONFIG_HOTPLUG_CPU
741 void __cpuinit cpu_uninit(void)
742 {
743 	int cpu = raw_smp_processor_id();
744 	cpu_clear(cpu, cpu_initialized);
745 
746 	/* lazy TLB state */
747 	per_cpu(cpu_tlbstate, cpu).state = 0;
748 	per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
749 }
750 #endif
751