xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 
63 #include "cpu.h"
64 
65 u32 elf_hwcap2 __read_mostly;
66 
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71 
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74 
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78 
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81 
82 u16 get_llc_id(unsigned int cpu)
83 {
84 	return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87 
88 /* correctly size the local cpu masks */
89 void __init setup_cpu_local_masks(void)
90 {
91 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
92 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
93 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
94 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
95 }
96 
97 static void default_init(struct cpuinfo_x86 *c)
98 {
99 #ifdef CONFIG_X86_64
100 	cpu_detect_cache_sizes(c);
101 #else
102 	/* Not much we can do here... */
103 	/* Check if at least it has cpuid */
104 	if (c->cpuid_level == -1) {
105 		/* No cpuid. It must be an ancient CPU */
106 		if (c->x86 == 4)
107 			strcpy(c->x86_model_id, "486");
108 		else if (c->x86 == 3)
109 			strcpy(c->x86_model_id, "386");
110 	}
111 #endif
112 }
113 
114 static const struct cpu_dev default_cpu = {
115 	.c_init		= default_init,
116 	.c_vendor	= "Unknown",
117 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
118 };
119 
120 static const struct cpu_dev *this_cpu = &default_cpu;
121 
122 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
123 #ifdef CONFIG_X86_64
124 	/*
125 	 * We need valid kernel segments for data and code in long mode too
126 	 * IRET will check the segment types  kkeil 2000/10/28
127 	 * Also sysret mandates a special GDT layout
128 	 *
129 	 * TLS descriptors are currently at a different place compared to i386.
130 	 * Hopefully nobody expects them at a fixed place (Wine?)
131 	 */
132 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
133 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
134 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
135 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
136 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
137 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
138 #else
139 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
140 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
142 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
143 	/*
144 	 * Segments used for calling PnP BIOS have byte granularity.
145 	 * They code segments and data segments have fixed 64k limits,
146 	 * the transfer segment sizes are set at run time.
147 	 */
148 	/* 32-bit code */
149 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
150 	/* 16-bit code */
151 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
152 	/* 16-bit data */
153 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
154 	/* 16-bit data */
155 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
156 	/* 16-bit data */
157 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
158 	/*
159 	 * The APM segments have byte granularity and their bases
160 	 * are set at run time.  All have 64k limits.
161 	 */
162 	/* 32-bit code */
163 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
164 	/* 16-bit code */
165 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
166 	/* data */
167 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
168 
169 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
170 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
171 #endif
172 } };
173 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
174 
175 #ifdef CONFIG_X86_64
176 static int __init x86_nopcid_setup(char *s)
177 {
178 	/* nopcid doesn't accept parameters */
179 	if (s)
180 		return -EINVAL;
181 
182 	/* do not emit a message if the feature is not present */
183 	if (!boot_cpu_has(X86_FEATURE_PCID))
184 		return 0;
185 
186 	setup_clear_cpu_cap(X86_FEATURE_PCID);
187 	pr_info("nopcid: PCID feature disabled\n");
188 	return 0;
189 }
190 early_param("nopcid", x86_nopcid_setup);
191 #endif
192 
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195 	/* noinvpcid doesn't accept parameters */
196 	if (s)
197 		return -EINVAL;
198 
199 	/* do not emit a message if the feature is not present */
200 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
201 		return 0;
202 
203 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204 	pr_info("noinvpcid: INVPCID feature disabled\n");
205 	return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208 
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212 
213 static int __init cachesize_setup(char *str)
214 {
215 	get_option(&str, &cachesize_override);
216 	return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219 
220 static int __init x86_sep_setup(char *s)
221 {
222 	setup_clear_cpu_cap(X86_FEATURE_SEP);
223 	return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226 
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230 	u32 f1, f2;
231 
232 	/*
233 	 * Cyrix and IDT cpus allow disabling of CPUID
234 	 * so the code below may return different results
235 	 * when it is executed before and after enabling
236 	 * the CPUID. Add "volatile" to not allow gcc to
237 	 * optimize the subsequent calls to this function.
238 	 */
239 	asm volatile ("pushfl		\n\t"
240 		      "pushfl		\n\t"
241 		      "popl %0		\n\t"
242 		      "movl %0, %1	\n\t"
243 		      "xorl %2, %0	\n\t"
244 		      "pushl %0		\n\t"
245 		      "popfl		\n\t"
246 		      "pushfl		\n\t"
247 		      "popl %0		\n\t"
248 		      "popfl		\n\t"
249 
250 		      : "=&r" (f1), "=&r" (f2)
251 		      : "ir" (flag));
252 
253 	return ((f1^f2) & flag) != 0;
254 }
255 
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259 	return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261 
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264 	unsigned long lo, hi;
265 
266 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267 		return;
268 
269 	/* Disable processor serial number: */
270 
271 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272 	lo |= 0x200000;
273 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274 
275 	pr_notice("CPU serial number disabled.\n");
276 	clear_cpu_cap(c, X86_FEATURE_PN);
277 
278 	/* Disabling the serial number may affect the cpuid level */
279 	c->cpuid_level = cpuid_eax(0);
280 }
281 
282 static int __init x86_serial_nr_setup(char *s)
283 {
284 	disable_x86_serial_nr = 0;
285 	return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291 	return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297 
298 static __init int setup_disable_smep(char *arg)
299 {
300 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
301 	return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304 
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 	if (cpu_has(c, X86_FEATURE_SMEP))
308 		cr4_set_bits(X86_CR4_SMEP);
309 }
310 
311 static __init int setup_disable_smap(char *arg)
312 {
313 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 	return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317 
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 	unsigned long eflags = native_save_fl();
321 
322 	/* This should have been cleared long ago */
323 	BUG_ON(eflags & X86_EFLAGS_AC);
324 
325 	if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 		cr4_set_bits(X86_CR4_SMAP);
328 #else
329 		cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 	}
332 }
333 
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336 	/* Check the boot processor, plus build option for UMIP. */
337 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338 		goto out;
339 
340 	/* Check the current processor's cpuid bits. */
341 	if (!cpu_has(c, X86_FEATURE_UMIP))
342 		goto out;
343 
344 	cr4_set_bits(X86_CR4_UMIP);
345 
346 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
347 
348 	return;
349 
350 out:
351 	/*
352 	 * Make sure UMIP is disabled in case it was enabled in a
353 	 * previous boot (e.g., via kexec).
354 	 */
355 	cr4_clear_bits(X86_CR4_UMIP);
356 }
357 
358 /* These bits should not change their value after CPU init is finished. */
359 static const unsigned long cr4_pinned_mask =
360 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
361 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
362 static unsigned long cr4_pinned_bits __ro_after_init;
363 
364 void native_write_cr0(unsigned long val)
365 {
366 	unsigned long bits_missing = 0;
367 
368 set_register:
369 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
370 
371 	if (static_branch_likely(&cr_pinning)) {
372 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
373 			bits_missing = X86_CR0_WP;
374 			val |= bits_missing;
375 			goto set_register;
376 		}
377 		/* Warn after we've set the missing bits. */
378 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
379 	}
380 }
381 EXPORT_SYMBOL(native_write_cr0);
382 
383 void native_write_cr4(unsigned long val)
384 {
385 	unsigned long bits_changed = 0;
386 
387 set_register:
388 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
389 
390 	if (static_branch_likely(&cr_pinning)) {
391 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
392 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
393 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
394 			goto set_register;
395 		}
396 		/* Warn after we've corrected the changed bits. */
397 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
398 			  bits_changed);
399 	}
400 }
401 #if IS_MODULE(CONFIG_LKDTM)
402 EXPORT_SYMBOL_GPL(native_write_cr4);
403 #endif
404 
405 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
406 {
407 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
408 
409 	lockdep_assert_irqs_disabled();
410 
411 	newval = (cr4 & ~clear) | set;
412 	if (newval != cr4) {
413 		this_cpu_write(cpu_tlbstate.cr4, newval);
414 		__write_cr4(newval);
415 	}
416 }
417 EXPORT_SYMBOL(cr4_update_irqsoff);
418 
419 /* Read the CR4 shadow. */
420 unsigned long cr4_read_shadow(void)
421 {
422 	return this_cpu_read(cpu_tlbstate.cr4);
423 }
424 EXPORT_SYMBOL_GPL(cr4_read_shadow);
425 
426 void cr4_init(void)
427 {
428 	unsigned long cr4 = __read_cr4();
429 
430 	if (boot_cpu_has(X86_FEATURE_PCID))
431 		cr4 |= X86_CR4_PCIDE;
432 	if (static_branch_likely(&cr_pinning))
433 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
434 
435 	__write_cr4(cr4);
436 
437 	/* Initialize cr4 shadow for this CPU. */
438 	this_cpu_write(cpu_tlbstate.cr4, cr4);
439 }
440 
441 /*
442  * Once CPU feature detection is finished (and boot params have been
443  * parsed), record any of the sensitive CR bits that are set, and
444  * enable CR pinning.
445  */
446 static void __init setup_cr_pinning(void)
447 {
448 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
449 	static_key_enable(&cr_pinning.key);
450 }
451 
452 static __init int x86_nofsgsbase_setup(char *arg)
453 {
454 	/* Require an exact match without trailing characters. */
455 	if (strlen(arg))
456 		return 0;
457 
458 	/* Do not emit a message if the feature is not present. */
459 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
460 		return 1;
461 
462 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
463 	pr_info("FSGSBASE disabled via kernel command line\n");
464 	return 1;
465 }
466 __setup("nofsgsbase", x86_nofsgsbase_setup);
467 
468 /*
469  * Protection Keys are not available in 32-bit mode.
470  */
471 static bool pku_disabled;
472 
473 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
474 {
475 	if (c == &boot_cpu_data) {
476 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
477 			return;
478 		/*
479 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
480 		 * bit to be set.  Enforce it.
481 		 */
482 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
483 
484 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
485 		return;
486 	}
487 
488 	cr4_set_bits(X86_CR4_PKE);
489 	/* Load the default PKRU value */
490 	pkru_write_default();
491 }
492 
493 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
494 static __init int setup_disable_pku(char *arg)
495 {
496 	/*
497 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
498 	 * runtime checks are against OSPKE so clearing the
499 	 * bit does nothing.
500 	 *
501 	 * This way, we will see "pku" in cpuinfo, but not
502 	 * "ospke", which is exactly what we want.  It shows
503 	 * that the CPU has PKU, but the OS has not enabled it.
504 	 * This happens to be exactly how a system would look
505 	 * if we disabled the config option.
506 	 */
507 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
508 	pku_disabled = true;
509 	return 1;
510 }
511 __setup("nopku", setup_disable_pku);
512 #endif /* CONFIG_X86_64 */
513 
514 /*
515  * Some CPU features depend on higher CPUID levels, which may not always
516  * be available due to CPUID level capping or broken virtualization
517  * software.  Add those features to this table to auto-disable them.
518  */
519 struct cpuid_dependent_feature {
520 	u32 feature;
521 	u32 level;
522 };
523 
524 static const struct cpuid_dependent_feature
525 cpuid_dependent_features[] = {
526 	{ X86_FEATURE_MWAIT,		0x00000005 },
527 	{ X86_FEATURE_DCA,		0x00000009 },
528 	{ X86_FEATURE_XSAVE,		0x0000000d },
529 	{ 0, 0 }
530 };
531 
532 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
533 {
534 	const struct cpuid_dependent_feature *df;
535 
536 	for (df = cpuid_dependent_features; df->feature; df++) {
537 
538 		if (!cpu_has(c, df->feature))
539 			continue;
540 		/*
541 		 * Note: cpuid_level is set to -1 if unavailable, but
542 		 * extended_extended_level is set to 0 if unavailable
543 		 * and the legitimate extended levels are all negative
544 		 * when signed; hence the weird messing around with
545 		 * signs here...
546 		 */
547 		if (!((s32)df->level < 0 ?
548 		     (u32)df->level > (u32)c->extended_cpuid_level :
549 		     (s32)df->level > (s32)c->cpuid_level))
550 			continue;
551 
552 		clear_cpu_cap(c, df->feature);
553 		if (!warn)
554 			continue;
555 
556 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
557 			x86_cap_flag(df->feature), df->level);
558 	}
559 }
560 
561 /*
562  * Naming convention should be: <Name> [(<Codename>)]
563  * This table only is used unless init_<vendor>() below doesn't set it;
564  * in particular, if CPUID levels 0x80000002..4 are supported, this
565  * isn't used
566  */
567 
568 /* Look up CPU names by table lookup. */
569 static const char *table_lookup_model(struct cpuinfo_x86 *c)
570 {
571 #ifdef CONFIG_X86_32
572 	const struct legacy_cpu_model_info *info;
573 
574 	if (c->x86_model >= 16)
575 		return NULL;	/* Range check */
576 
577 	if (!this_cpu)
578 		return NULL;
579 
580 	info = this_cpu->legacy_models;
581 
582 	while (info->family) {
583 		if (info->family == c->x86)
584 			return info->model_names[c->x86_model];
585 		info++;
586 	}
587 #endif
588 	return NULL;		/* Not found */
589 }
590 
591 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
592 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594 
595 void load_percpu_segment(int cpu)
596 {
597 #ifdef CONFIG_X86_32
598 	loadsegment(fs, __KERNEL_PERCPU);
599 #else
600 	__loadsegment_simple(gs, 0);
601 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
602 #endif
603 }
604 
605 #ifdef CONFIG_X86_32
606 /* The 32-bit entry code needs to find cpu_entry_area. */
607 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
608 #endif
609 
610 /* Load the original GDT from the per-cpu structure */
611 void load_direct_gdt(int cpu)
612 {
613 	struct desc_ptr gdt_descr;
614 
615 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
616 	gdt_descr.size = GDT_SIZE - 1;
617 	load_gdt(&gdt_descr);
618 }
619 EXPORT_SYMBOL_GPL(load_direct_gdt);
620 
621 /* Load a fixmap remapping of the per-cpu GDT */
622 void load_fixmap_gdt(int cpu)
623 {
624 	struct desc_ptr gdt_descr;
625 
626 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
627 	gdt_descr.size = GDT_SIZE - 1;
628 	load_gdt(&gdt_descr);
629 }
630 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
631 
632 /*
633  * Current gdt points %fs at the "master" per-cpu area: after this,
634  * it's on the real one.
635  */
636 void switch_to_new_gdt(int cpu)
637 {
638 	/* Load the original GDT */
639 	load_direct_gdt(cpu);
640 	/* Reload the per-cpu base */
641 	load_percpu_segment(cpu);
642 }
643 
644 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
645 
646 static void get_model_name(struct cpuinfo_x86 *c)
647 {
648 	unsigned int *v;
649 	char *p, *q, *s;
650 
651 	if (c->extended_cpuid_level < 0x80000004)
652 		return;
653 
654 	v = (unsigned int *)c->x86_model_id;
655 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
656 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
657 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
658 	c->x86_model_id[48] = 0;
659 
660 	/* Trim whitespace */
661 	p = q = s = &c->x86_model_id[0];
662 
663 	while (*p == ' ')
664 		p++;
665 
666 	while (*p) {
667 		/* Note the last non-whitespace index */
668 		if (!isspace(*p))
669 			s = q;
670 
671 		*q++ = *p++;
672 	}
673 
674 	*(s + 1) = '\0';
675 }
676 
677 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
678 {
679 	unsigned int eax, ebx, ecx, edx;
680 
681 	c->x86_max_cores = 1;
682 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
683 		return;
684 
685 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
686 	if (eax & 0x1f)
687 		c->x86_max_cores = (eax >> 26) + 1;
688 }
689 
690 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
691 {
692 	unsigned int n, dummy, ebx, ecx, edx, l2size;
693 
694 	n = c->extended_cpuid_level;
695 
696 	if (n >= 0x80000005) {
697 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
698 		c->x86_cache_size = (ecx>>24) + (edx>>24);
699 #ifdef CONFIG_X86_64
700 		/* On K8 L1 TLB is inclusive, so don't count it */
701 		c->x86_tlbsize = 0;
702 #endif
703 	}
704 
705 	if (n < 0x80000006)	/* Some chips just has a large L1. */
706 		return;
707 
708 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
709 	l2size = ecx >> 16;
710 
711 #ifdef CONFIG_X86_64
712 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
713 #else
714 	/* do processor-specific cache resizing */
715 	if (this_cpu->legacy_cache_size)
716 		l2size = this_cpu->legacy_cache_size(c, l2size);
717 
718 	/* Allow user to override all this if necessary. */
719 	if (cachesize_override != -1)
720 		l2size = cachesize_override;
721 
722 	if (l2size == 0)
723 		return;		/* Again, no L2 cache is possible */
724 #endif
725 
726 	c->x86_cache_size = l2size;
727 }
728 
729 u16 __read_mostly tlb_lli_4k[NR_INFO];
730 u16 __read_mostly tlb_lli_2m[NR_INFO];
731 u16 __read_mostly tlb_lli_4m[NR_INFO];
732 u16 __read_mostly tlb_lld_4k[NR_INFO];
733 u16 __read_mostly tlb_lld_2m[NR_INFO];
734 u16 __read_mostly tlb_lld_4m[NR_INFO];
735 u16 __read_mostly tlb_lld_1g[NR_INFO];
736 
737 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
738 {
739 	if (this_cpu->c_detect_tlb)
740 		this_cpu->c_detect_tlb(c);
741 
742 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
743 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
744 		tlb_lli_4m[ENTRIES]);
745 
746 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
747 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
748 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
749 }
750 
751 int detect_ht_early(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754 	u32 eax, ebx, ecx, edx;
755 
756 	if (!cpu_has(c, X86_FEATURE_HT))
757 		return -1;
758 
759 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
760 		return -1;
761 
762 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
763 		return -1;
764 
765 	cpuid(1, &eax, &ebx, &ecx, &edx);
766 
767 	smp_num_siblings = (ebx & 0xff0000) >> 16;
768 	if (smp_num_siblings == 1)
769 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
770 #endif
771 	return 0;
772 }
773 
774 void detect_ht(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_SMP
777 	int index_msb, core_bits;
778 
779 	if (detect_ht_early(c) < 0)
780 		return;
781 
782 	index_msb = get_count_order(smp_num_siblings);
783 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
784 
785 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
786 
787 	index_msb = get_count_order(smp_num_siblings);
788 
789 	core_bits = get_count_order(c->x86_max_cores);
790 
791 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
792 				       ((1 << core_bits) - 1);
793 #endif
794 }
795 
796 static void get_cpu_vendor(struct cpuinfo_x86 *c)
797 {
798 	char *v = c->x86_vendor_id;
799 	int i;
800 
801 	for (i = 0; i < X86_VENDOR_NUM; i++) {
802 		if (!cpu_devs[i])
803 			break;
804 
805 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
806 		    (cpu_devs[i]->c_ident[1] &&
807 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
808 
809 			this_cpu = cpu_devs[i];
810 			c->x86_vendor = this_cpu->c_x86_vendor;
811 			return;
812 		}
813 	}
814 
815 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
816 		    "CPU: Your system may be unstable.\n", v);
817 
818 	c->x86_vendor = X86_VENDOR_UNKNOWN;
819 	this_cpu = &default_cpu;
820 }
821 
822 void cpu_detect(struct cpuinfo_x86 *c)
823 {
824 	/* Get vendor name */
825 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826 	      (unsigned int *)&c->x86_vendor_id[0],
827 	      (unsigned int *)&c->x86_vendor_id[8],
828 	      (unsigned int *)&c->x86_vendor_id[4]);
829 
830 	c->x86 = 4;
831 	/* Intel-defined flags: level 0x00000001 */
832 	if (c->cpuid_level >= 0x00000001) {
833 		u32 junk, tfms, cap0, misc;
834 
835 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
836 		c->x86		= x86_family(tfms);
837 		c->x86_model	= x86_model(tfms);
838 		c->x86_stepping	= x86_stepping(tfms);
839 
840 		if (cap0 & (1<<19)) {
841 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
842 			c->x86_cache_alignment = c->x86_clflush_size;
843 		}
844 	}
845 }
846 
847 static void apply_forced_caps(struct cpuinfo_x86 *c)
848 {
849 	int i;
850 
851 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
852 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
853 		c->x86_capability[i] |= cpu_caps_set[i];
854 	}
855 }
856 
857 static void init_speculation_control(struct cpuinfo_x86 *c)
858 {
859 	/*
860 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
861 	 * and they also have a different bit for STIBP support. Also,
862 	 * a hypervisor might have set the individual AMD bits even on
863 	 * Intel CPUs, for finer-grained selection of what's available.
864 	 */
865 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
866 		set_cpu_cap(c, X86_FEATURE_IBRS);
867 		set_cpu_cap(c, X86_FEATURE_IBPB);
868 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869 	}
870 
871 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
872 		set_cpu_cap(c, X86_FEATURE_STIBP);
873 
874 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
875 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
876 		set_cpu_cap(c, X86_FEATURE_SSBD);
877 
878 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
879 		set_cpu_cap(c, X86_FEATURE_IBRS);
880 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
881 	}
882 
883 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
884 		set_cpu_cap(c, X86_FEATURE_IBPB);
885 
886 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
887 		set_cpu_cap(c, X86_FEATURE_STIBP);
888 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 	}
890 
891 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
892 		set_cpu_cap(c, X86_FEATURE_SSBD);
893 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
895 	}
896 }
897 
898 void get_cpu_cap(struct cpuinfo_x86 *c)
899 {
900 	u32 eax, ebx, ecx, edx;
901 
902 	/* Intel-defined flags: level 0x00000001 */
903 	if (c->cpuid_level >= 0x00000001) {
904 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
905 
906 		c->x86_capability[CPUID_1_ECX] = ecx;
907 		c->x86_capability[CPUID_1_EDX] = edx;
908 	}
909 
910 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911 	if (c->cpuid_level >= 0x00000006)
912 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913 
914 	/* Additional Intel-defined flags: level 0x00000007 */
915 	if (c->cpuid_level >= 0x00000007) {
916 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
917 		c->x86_capability[CPUID_7_0_EBX] = ebx;
918 		c->x86_capability[CPUID_7_ECX] = ecx;
919 		c->x86_capability[CPUID_7_EDX] = edx;
920 
921 		/* Check valid sub-leaf index before accessing it */
922 		if (eax >= 1) {
923 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924 			c->x86_capability[CPUID_7_1_EAX] = eax;
925 		}
926 	}
927 
928 	/* Extended state features: level 0x0000000d */
929 	if (c->cpuid_level >= 0x0000000d) {
930 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931 
932 		c->x86_capability[CPUID_D_1_EAX] = eax;
933 	}
934 
935 	/* AMD-defined flags: level 0x80000001 */
936 	eax = cpuid_eax(0x80000000);
937 	c->extended_cpuid_level = eax;
938 
939 	if ((eax & 0xffff0000) == 0x80000000) {
940 		if (eax >= 0x80000001) {
941 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
942 
943 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
945 		}
946 	}
947 
948 	if (c->extended_cpuid_level >= 0x80000007) {
949 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950 
951 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952 		c->x86_power = edx;
953 	}
954 
955 	if (c->extended_cpuid_level >= 0x80000008) {
956 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958 	}
959 
960 	if (c->extended_cpuid_level >= 0x8000000a)
961 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
962 
963 	if (c->extended_cpuid_level >= 0x8000001f)
964 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
965 
966 	init_scattered_cpuid_features(c);
967 	init_speculation_control(c);
968 
969 	/*
970 	 * Clear/Set all flags overridden by options, after probe.
971 	 * This needs to happen each time we re-probe, which may happen
972 	 * several times during CPU initialization.
973 	 */
974 	apply_forced_caps(c);
975 }
976 
977 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
978 {
979 	u32 eax, ebx, ecx, edx;
980 
981 	if (c->extended_cpuid_level >= 0x80000008) {
982 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
983 
984 		c->x86_virt_bits = (eax >> 8) & 0xff;
985 		c->x86_phys_bits = eax & 0xff;
986 	}
987 #ifdef CONFIG_X86_32
988 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
989 		c->x86_phys_bits = 36;
990 #endif
991 	c->x86_cache_bits = c->x86_phys_bits;
992 }
993 
994 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
995 {
996 #ifdef CONFIG_X86_32
997 	int i;
998 
999 	/*
1000 	 * First of all, decide if this is a 486 or higher
1001 	 * It's a 486 if we can modify the AC flag
1002 	 */
1003 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1004 		c->x86 = 4;
1005 	else
1006 		c->x86 = 3;
1007 
1008 	for (i = 0; i < X86_VENDOR_NUM; i++)
1009 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1010 			c->x86_vendor_id[0] = 0;
1011 			cpu_devs[i]->c_identify(c);
1012 			if (c->x86_vendor_id[0]) {
1013 				get_cpu_vendor(c);
1014 				break;
1015 			}
1016 		}
1017 #endif
1018 }
1019 
1020 #define NO_SPECULATION		BIT(0)
1021 #define NO_MELTDOWN		BIT(1)
1022 #define NO_SSB			BIT(2)
1023 #define NO_L1TF			BIT(3)
1024 #define NO_MDS			BIT(4)
1025 #define MSBDS_ONLY		BIT(5)
1026 #define NO_SWAPGS		BIT(6)
1027 #define NO_ITLB_MULTIHIT	BIT(7)
1028 #define NO_SPECTRE_V2		BIT(8)
1029 
1030 #define VULNWL(vendor, family, model, whitelist)	\
1031 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1032 
1033 #define VULNWL_INTEL(model, whitelist)		\
1034 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1035 
1036 #define VULNWL_AMD(family, whitelist)		\
1037 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1038 
1039 #define VULNWL_HYGON(family, whitelist)		\
1040 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1041 
1042 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1043 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1044 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1045 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1046 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1047 
1048 	/* Intel Family 6 */
1049 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1052 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1053 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1054 
1055 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 
1062 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1063 
1064 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 
1067 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070 
1071 	/*
1072 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1073 	 * being documented as such in the APM).  But according to AMD, %gs is
1074 	 * updated non-speculatively, and the issuing of %gs-relative memory
1075 	 * operands will be blocked until the %gs update completes, which is
1076 	 * good enough for our purposes.
1077 	 */
1078 
1079 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1080 
1081 	/* AMD Family 0xf - 0x12 */
1082 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 
1087 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1088 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 
1091 	/* Zhaoxin Family 7 */
1092 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1093 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1094 	{}
1095 };
1096 
1097 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1098 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1099 					    INTEL_FAM6_##model, steppings, \
1100 					    X86_FEATURE_ANY, issues)
1101 
1102 #define SRBDS		BIT(0)
1103 
1104 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1105 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1106 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1107 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1108 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1109 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1110 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1111 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1112 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1113 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1114 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1115 	{}
1116 };
1117 
1118 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1119 {
1120 	const struct x86_cpu_id *m = x86_match_cpu(table);
1121 
1122 	return m && !!(m->driver_data & which);
1123 }
1124 
1125 u64 x86_read_arch_cap_msr(void)
1126 {
1127 	u64 ia32_cap = 0;
1128 
1129 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1130 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1131 
1132 	return ia32_cap;
1133 }
1134 
1135 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1136 {
1137 	u64 ia32_cap = x86_read_arch_cap_msr();
1138 
1139 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1140 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1141 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1142 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1143 
1144 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1145 		return;
1146 
1147 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1148 
1149 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1150 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1151 
1152 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1153 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1154 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1155 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1156 
1157 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1158 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1159 
1160 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1161 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1162 		setup_force_cpu_bug(X86_BUG_MDS);
1163 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1164 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1165 	}
1166 
1167 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1168 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1169 
1170 	/*
1171 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1172 	 *	- TSX is supported or
1173 	 *	- TSX_CTRL is present
1174 	 *
1175 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1176 	 * the kernel boot e.g. kexec.
1177 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1178 	 * update is not present or running as guest that don't get TSX_CTRL.
1179 	 */
1180 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1181 	    (cpu_has(c, X86_FEATURE_RTM) ||
1182 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1183 		setup_force_cpu_bug(X86_BUG_TAA);
1184 
1185 	/*
1186 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1187 	 * in the vulnerability blacklist.
1188 	 */
1189 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1190 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1191 	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1192 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1193 
1194 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1195 		return;
1196 
1197 	/* Rogue Data Cache Load? No! */
1198 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1199 		return;
1200 
1201 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1202 
1203 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1204 		return;
1205 
1206 	setup_force_cpu_bug(X86_BUG_L1TF);
1207 }
1208 
1209 /*
1210  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1211  * unfortunately, that's not true in practice because of early VIA
1212  * chips and (more importantly) broken virtualizers that are not easy
1213  * to detect. In the latter case it doesn't even *fail* reliably, so
1214  * probing for it doesn't even work. Disable it completely on 32-bit
1215  * unless we can find a reliable way to detect all the broken cases.
1216  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1217  */
1218 static void detect_nopl(void)
1219 {
1220 #ifdef CONFIG_X86_32
1221 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1222 #else
1223 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1224 #endif
1225 }
1226 
1227 /*
1228  * We parse cpu parameters early because fpu__init_system() is executed
1229  * before parse_early_param().
1230  */
1231 static void __init cpu_parse_early_param(void)
1232 {
1233 	char arg[128];
1234 	char *argptr = arg;
1235 	int arglen, res, bit;
1236 
1237 #ifdef CONFIG_X86_32
1238 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1239 #ifdef CONFIG_MATH_EMULATION
1240 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1241 #else
1242 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1243 #endif
1244 
1245 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1246 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1247 #endif
1248 
1249 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1250 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1251 
1252 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1253 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1254 
1255 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1256 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1257 
1258 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1259 	if (arglen <= 0)
1260 		return;
1261 
1262 	pr_info("Clearing CPUID bits:");
1263 	do {
1264 		res = get_option(&argptr, &bit);
1265 		if (res == 0 || res == 3)
1266 			break;
1267 
1268 		/* If the argument was too long, the last bit may be cut off */
1269 		if (res == 1 && arglen >= sizeof(arg))
1270 			break;
1271 
1272 		if (bit >= 0 && bit < NCAPINTS * 32) {
1273 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1274 			setup_clear_cpu_cap(bit);
1275 		}
1276 	} while (res == 2);
1277 	pr_cont("\n");
1278 }
1279 
1280 /*
1281  * Do minimum CPU detection early.
1282  * Fields really needed: vendor, cpuid_level, family, model, mask,
1283  * cache alignment.
1284  * The others are not touched to avoid unwanted side effects.
1285  *
1286  * WARNING: this function is only called on the boot CPU.  Don't add code
1287  * here that is supposed to run on all CPUs.
1288  */
1289 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1290 {
1291 #ifdef CONFIG_X86_64
1292 	c->x86_clflush_size = 64;
1293 	c->x86_phys_bits = 36;
1294 	c->x86_virt_bits = 48;
1295 #else
1296 	c->x86_clflush_size = 32;
1297 	c->x86_phys_bits = 32;
1298 	c->x86_virt_bits = 32;
1299 #endif
1300 	c->x86_cache_alignment = c->x86_clflush_size;
1301 
1302 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1303 	c->extended_cpuid_level = 0;
1304 
1305 	if (!have_cpuid_p())
1306 		identify_cpu_without_cpuid(c);
1307 
1308 	/* cyrix could have cpuid enabled via c_identify()*/
1309 	if (have_cpuid_p()) {
1310 		cpu_detect(c);
1311 		get_cpu_vendor(c);
1312 		get_cpu_cap(c);
1313 		get_cpu_address_sizes(c);
1314 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1315 		cpu_parse_early_param();
1316 
1317 		if (this_cpu->c_early_init)
1318 			this_cpu->c_early_init(c);
1319 
1320 		c->cpu_index = 0;
1321 		filter_cpuid_features(c, false);
1322 
1323 		if (this_cpu->c_bsp_init)
1324 			this_cpu->c_bsp_init(c);
1325 	} else {
1326 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1327 	}
1328 
1329 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1330 
1331 	cpu_set_bug_bits(c);
1332 
1333 	sld_setup(c);
1334 
1335 	fpu__init_system(c);
1336 
1337 	init_sigframe_size();
1338 
1339 #ifdef CONFIG_X86_32
1340 	/*
1341 	 * Regardless of whether PCID is enumerated, the SDM says
1342 	 * that it can't be enabled in 32-bit mode.
1343 	 */
1344 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1345 #endif
1346 
1347 	/*
1348 	 * Later in the boot process pgtable_l5_enabled() relies on
1349 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1350 	 * enabled by this point we need to clear the feature bit to avoid
1351 	 * false-positives at the later stage.
1352 	 *
1353 	 * pgtable_l5_enabled() can be false here for several reasons:
1354 	 *  - 5-level paging is disabled compile-time;
1355 	 *  - it's 32-bit kernel;
1356 	 *  - machine doesn't support 5-level paging;
1357 	 *  - user specified 'no5lvl' in kernel command line.
1358 	 */
1359 	if (!pgtable_l5_enabled())
1360 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1361 
1362 	detect_nopl();
1363 }
1364 
1365 void __init early_cpu_init(void)
1366 {
1367 	const struct cpu_dev *const *cdev;
1368 	int count = 0;
1369 
1370 #ifdef CONFIG_PROCESSOR_SELECT
1371 	pr_info("KERNEL supported cpus:\n");
1372 #endif
1373 
1374 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1375 		const struct cpu_dev *cpudev = *cdev;
1376 
1377 		if (count >= X86_VENDOR_NUM)
1378 			break;
1379 		cpu_devs[count] = cpudev;
1380 		count++;
1381 
1382 #ifdef CONFIG_PROCESSOR_SELECT
1383 		{
1384 			unsigned int j;
1385 
1386 			for (j = 0; j < 2; j++) {
1387 				if (!cpudev->c_ident[j])
1388 					continue;
1389 				pr_info("  %s %s\n", cpudev->c_vendor,
1390 					cpudev->c_ident[j]);
1391 			}
1392 		}
1393 #endif
1394 	}
1395 	early_identify_cpu(&boot_cpu_data);
1396 }
1397 
1398 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1399 {
1400 #ifdef CONFIG_X86_64
1401 	/*
1402 	 * Empirically, writing zero to a segment selector on AMD does
1403 	 * not clear the base, whereas writing zero to a segment
1404 	 * selector on Intel does clear the base.  Intel's behavior
1405 	 * allows slightly faster context switches in the common case
1406 	 * where GS is unused by the prev and next threads.
1407 	 *
1408 	 * Since neither vendor documents this anywhere that I can see,
1409 	 * detect it directly instead of hard-coding the choice by
1410 	 * vendor.
1411 	 *
1412 	 * I've designated AMD's behavior as the "bug" because it's
1413 	 * counterintuitive and less friendly.
1414 	 */
1415 
1416 	unsigned long old_base, tmp;
1417 	rdmsrl(MSR_FS_BASE, old_base);
1418 	wrmsrl(MSR_FS_BASE, 1);
1419 	loadsegment(fs, 0);
1420 	rdmsrl(MSR_FS_BASE, tmp);
1421 	if (tmp != 0)
1422 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1423 	wrmsrl(MSR_FS_BASE, old_base);
1424 #endif
1425 }
1426 
1427 static void generic_identify(struct cpuinfo_x86 *c)
1428 {
1429 	c->extended_cpuid_level = 0;
1430 
1431 	if (!have_cpuid_p())
1432 		identify_cpu_without_cpuid(c);
1433 
1434 	/* cyrix could have cpuid enabled via c_identify()*/
1435 	if (!have_cpuid_p())
1436 		return;
1437 
1438 	cpu_detect(c);
1439 
1440 	get_cpu_vendor(c);
1441 
1442 	get_cpu_cap(c);
1443 
1444 	get_cpu_address_sizes(c);
1445 
1446 	if (c->cpuid_level >= 0x00000001) {
1447 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1448 #ifdef CONFIG_X86_32
1449 # ifdef CONFIG_SMP
1450 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1451 # else
1452 		c->apicid = c->initial_apicid;
1453 # endif
1454 #endif
1455 		c->phys_proc_id = c->initial_apicid;
1456 	}
1457 
1458 	get_model_name(c); /* Default name */
1459 
1460 	detect_null_seg_behavior(c);
1461 
1462 	/*
1463 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1464 	 * systems that run Linux at CPL > 0 may or may not have the
1465 	 * issue, but, even if they have the issue, there's absolutely
1466 	 * nothing we can do about it because we can't use the real IRET
1467 	 * instruction.
1468 	 *
1469 	 * NB: For the time being, only 32-bit kernels support
1470 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1471 	 * whether to apply espfix using paravirt hooks.  If any
1472 	 * non-paravirt system ever shows up that does *not* have the
1473 	 * ESPFIX issue, we can change this.
1474 	 */
1475 #ifdef CONFIG_X86_32
1476 	set_cpu_bug(c, X86_BUG_ESPFIX);
1477 #endif
1478 }
1479 
1480 /*
1481  * Validate that ACPI/mptables have the same information about the
1482  * effective APIC id and update the package map.
1483  */
1484 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1485 {
1486 #ifdef CONFIG_SMP
1487 	unsigned int apicid, cpu = smp_processor_id();
1488 
1489 	apicid = apic->cpu_present_to_apicid(cpu);
1490 
1491 	if (apicid != c->apicid) {
1492 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1493 		       cpu, apicid, c->initial_apicid);
1494 	}
1495 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1496 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1497 #else
1498 	c->logical_proc_id = 0;
1499 #endif
1500 }
1501 
1502 /*
1503  * This does the hard work of actually picking apart the CPU stuff...
1504  */
1505 static void identify_cpu(struct cpuinfo_x86 *c)
1506 {
1507 	int i;
1508 
1509 	c->loops_per_jiffy = loops_per_jiffy;
1510 	c->x86_cache_size = 0;
1511 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1512 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1513 	c->x86_vendor_id[0] = '\0'; /* Unset */
1514 	c->x86_model_id[0] = '\0';  /* Unset */
1515 	c->x86_max_cores = 1;
1516 	c->x86_coreid_bits = 0;
1517 	c->cu_id = 0xff;
1518 #ifdef CONFIG_X86_64
1519 	c->x86_clflush_size = 64;
1520 	c->x86_phys_bits = 36;
1521 	c->x86_virt_bits = 48;
1522 #else
1523 	c->cpuid_level = -1;	/* CPUID not detected */
1524 	c->x86_clflush_size = 32;
1525 	c->x86_phys_bits = 32;
1526 	c->x86_virt_bits = 32;
1527 #endif
1528 	c->x86_cache_alignment = c->x86_clflush_size;
1529 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1530 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1531 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1532 #endif
1533 
1534 	generic_identify(c);
1535 
1536 	if (this_cpu->c_identify)
1537 		this_cpu->c_identify(c);
1538 
1539 	/* Clear/Set all flags overridden by options, after probe */
1540 	apply_forced_caps(c);
1541 
1542 #ifdef CONFIG_X86_64
1543 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1544 #endif
1545 
1546 	/*
1547 	 * Vendor-specific initialization.  In this section we
1548 	 * canonicalize the feature flags, meaning if there are
1549 	 * features a certain CPU supports which CPUID doesn't
1550 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1551 	 * we handle them here.
1552 	 *
1553 	 * At the end of this section, c->x86_capability better
1554 	 * indicate the features this CPU genuinely supports!
1555 	 */
1556 	if (this_cpu->c_init)
1557 		this_cpu->c_init(c);
1558 
1559 	/* Disable the PN if appropriate */
1560 	squash_the_stupid_serial_number(c);
1561 
1562 	/* Set up SMEP/SMAP/UMIP */
1563 	setup_smep(c);
1564 	setup_smap(c);
1565 	setup_umip(c);
1566 
1567 	/* Enable FSGSBASE instructions if available. */
1568 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1569 		cr4_set_bits(X86_CR4_FSGSBASE);
1570 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1571 	}
1572 
1573 	/*
1574 	 * The vendor-specific functions might have changed features.
1575 	 * Now we do "generic changes."
1576 	 */
1577 
1578 	/* Filter out anything that depends on CPUID levels we don't have */
1579 	filter_cpuid_features(c, true);
1580 
1581 	/* If the model name is still unset, do table lookup. */
1582 	if (!c->x86_model_id[0]) {
1583 		const char *p;
1584 		p = table_lookup_model(c);
1585 		if (p)
1586 			strcpy(c->x86_model_id, p);
1587 		else
1588 			/* Last resort... */
1589 			sprintf(c->x86_model_id, "%02x/%02x",
1590 				c->x86, c->x86_model);
1591 	}
1592 
1593 #ifdef CONFIG_X86_64
1594 	detect_ht(c);
1595 #endif
1596 
1597 	x86_init_rdrand(c);
1598 	setup_pku(c);
1599 
1600 	/*
1601 	 * Clear/Set all flags overridden by options, need do it
1602 	 * before following smp all cpus cap AND.
1603 	 */
1604 	apply_forced_caps(c);
1605 
1606 	/*
1607 	 * On SMP, boot_cpu_data holds the common feature set between
1608 	 * all CPUs; so make sure that we indicate which features are
1609 	 * common between the CPUs.  The first time this routine gets
1610 	 * executed, c == &boot_cpu_data.
1611 	 */
1612 	if (c != &boot_cpu_data) {
1613 		/* AND the already accumulated flags with these */
1614 		for (i = 0; i < NCAPINTS; i++)
1615 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1616 
1617 		/* OR, i.e. replicate the bug flags */
1618 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1619 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1620 	}
1621 
1622 	/* Init Machine Check Exception if available. */
1623 	mcheck_cpu_init(c);
1624 
1625 	select_idle_routine(c);
1626 
1627 #ifdef CONFIG_NUMA
1628 	numa_add_cpu(smp_processor_id());
1629 #endif
1630 }
1631 
1632 /*
1633  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1634  * on 32-bit kernels:
1635  */
1636 #ifdef CONFIG_X86_32
1637 void enable_sep_cpu(void)
1638 {
1639 	struct tss_struct *tss;
1640 	int cpu;
1641 
1642 	if (!boot_cpu_has(X86_FEATURE_SEP))
1643 		return;
1644 
1645 	cpu = get_cpu();
1646 	tss = &per_cpu(cpu_tss_rw, cpu);
1647 
1648 	/*
1649 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1650 	 * see the big comment in struct x86_hw_tss's definition.
1651 	 */
1652 
1653 	tss->x86_tss.ss1 = __KERNEL_CS;
1654 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1655 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1656 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1657 
1658 	put_cpu();
1659 }
1660 #endif
1661 
1662 void __init identify_boot_cpu(void)
1663 {
1664 	identify_cpu(&boot_cpu_data);
1665 #ifdef CONFIG_X86_32
1666 	sysenter_setup();
1667 	enable_sep_cpu();
1668 #endif
1669 	cpu_detect_tlb(&boot_cpu_data);
1670 	setup_cr_pinning();
1671 
1672 	tsx_init();
1673 }
1674 
1675 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1676 {
1677 	BUG_ON(c == &boot_cpu_data);
1678 	identify_cpu(c);
1679 #ifdef CONFIG_X86_32
1680 	enable_sep_cpu();
1681 #endif
1682 	mtrr_ap_init();
1683 	validate_apic_and_package_id(c);
1684 	x86_spec_ctrl_setup_ap();
1685 	update_srbds_msr();
1686 }
1687 
1688 static __init int setup_noclflush(char *arg)
1689 {
1690 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1691 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1692 	return 1;
1693 }
1694 __setup("noclflush", setup_noclflush);
1695 
1696 void print_cpu_info(struct cpuinfo_x86 *c)
1697 {
1698 	const char *vendor = NULL;
1699 
1700 	if (c->x86_vendor < X86_VENDOR_NUM) {
1701 		vendor = this_cpu->c_vendor;
1702 	} else {
1703 		if (c->cpuid_level >= 0)
1704 			vendor = c->x86_vendor_id;
1705 	}
1706 
1707 	if (vendor && !strstr(c->x86_model_id, vendor))
1708 		pr_cont("%s ", vendor);
1709 
1710 	if (c->x86_model_id[0])
1711 		pr_cont("%s", c->x86_model_id);
1712 	else
1713 		pr_cont("%d86", c->x86);
1714 
1715 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1716 
1717 	if (c->x86_stepping || c->cpuid_level >= 0)
1718 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1719 	else
1720 		pr_cont(")\n");
1721 }
1722 
1723 /*
1724  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1725  * function prevents it from becoming an environment variable for init.
1726  */
1727 static __init int setup_clearcpuid(char *arg)
1728 {
1729 	return 1;
1730 }
1731 __setup("clearcpuid=", setup_clearcpuid);
1732 
1733 #ifdef CONFIG_X86_64
1734 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1735 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1736 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1737 
1738 /*
1739  * The following percpu variables are hot.  Align current_task to
1740  * cacheline size such that they fall in the same cacheline.
1741  */
1742 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1743 	&init_task;
1744 EXPORT_PER_CPU_SYMBOL(current_task);
1745 
1746 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1747 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1748 
1749 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1750 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1751 
1752 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1753 
1754 /* May not be marked __init: used by software suspend */
1755 void syscall_init(void)
1756 {
1757 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1758 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1759 
1760 #ifdef CONFIG_IA32_EMULATION
1761 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1762 	/*
1763 	 * This only works on Intel CPUs.
1764 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1765 	 * This does not cause SYSENTER to jump to the wrong location, because
1766 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1767 	 */
1768 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1769 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1770 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1771 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1772 #else
1773 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1774 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1775 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1776 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1777 #endif
1778 
1779 	/*
1780 	 * Flags to clear on syscall; clear as much as possible
1781 	 * to minimize user space-kernel interference.
1782 	 */
1783 	wrmsrl(MSR_SYSCALL_MASK,
1784 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1785 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1786 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1787 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1788 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
1789 }
1790 
1791 #else	/* CONFIG_X86_64 */
1792 
1793 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1794 EXPORT_PER_CPU_SYMBOL(current_task);
1795 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1796 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1797 
1798 /*
1799  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1800  * the top of the kernel stack.  Use an extra percpu variable to track the
1801  * top of the kernel stack directly.
1802  */
1803 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1804 	(unsigned long)&init_thread_union + THREAD_SIZE;
1805 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1806 
1807 #ifdef CONFIG_STACKPROTECTOR
1808 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1809 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1810 #endif
1811 
1812 #endif	/* CONFIG_X86_64 */
1813 
1814 /*
1815  * Clear all 6 debug registers:
1816  */
1817 static void clear_all_debug_regs(void)
1818 {
1819 	int i;
1820 
1821 	for (i = 0; i < 8; i++) {
1822 		/* Ignore db4, db5 */
1823 		if ((i == 4) || (i == 5))
1824 			continue;
1825 
1826 		set_debugreg(0, i);
1827 	}
1828 }
1829 
1830 #ifdef CONFIG_KGDB
1831 /*
1832  * Restore debug regs if using kgdbwait and you have a kernel debugger
1833  * connection established.
1834  */
1835 static void dbg_restore_debug_regs(void)
1836 {
1837 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1838 		arch_kgdb_ops.correct_hw_break();
1839 }
1840 #else /* ! CONFIG_KGDB */
1841 #define dbg_restore_debug_regs()
1842 #endif /* ! CONFIG_KGDB */
1843 
1844 static void wait_for_master_cpu(int cpu)
1845 {
1846 #ifdef CONFIG_SMP
1847 	/*
1848 	 * wait for ACK from master CPU before continuing
1849 	 * with AP initialization
1850 	 */
1851 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1852 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1853 		cpu_relax();
1854 #endif
1855 }
1856 
1857 #ifdef CONFIG_X86_64
1858 static inline void setup_getcpu(int cpu)
1859 {
1860 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1861 	struct desc_struct d = { };
1862 
1863 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1864 		wrmsr(MSR_TSC_AUX, cpudata, 0);
1865 
1866 	/* Store CPU and node number in limit. */
1867 	d.limit0 = cpudata;
1868 	d.limit1 = cpudata >> 16;
1869 
1870 	d.type = 5;		/* RO data, expand down, accessed */
1871 	d.dpl = 3;		/* Visible to user code */
1872 	d.s = 1;		/* Not a system segment */
1873 	d.p = 1;		/* Present */
1874 	d.d = 1;		/* 32-bit */
1875 
1876 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1877 }
1878 
1879 static inline void ucode_cpu_init(int cpu)
1880 {
1881 	if (cpu)
1882 		load_ucode_ap();
1883 }
1884 
1885 static inline void tss_setup_ist(struct tss_struct *tss)
1886 {
1887 	/* Set up the per-CPU TSS IST stacks */
1888 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1889 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1890 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1891 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1892 	/* Only mapped when SEV-ES is active */
1893 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1894 }
1895 
1896 #else /* CONFIG_X86_64 */
1897 
1898 static inline void setup_getcpu(int cpu) { }
1899 
1900 static inline void ucode_cpu_init(int cpu)
1901 {
1902 	show_ucode_info_early();
1903 }
1904 
1905 static inline void tss_setup_ist(struct tss_struct *tss) { }
1906 
1907 #endif /* !CONFIG_X86_64 */
1908 
1909 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1910 {
1911 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1912 
1913 #ifdef CONFIG_X86_IOPL_IOPERM
1914 	tss->io_bitmap.prev_max = 0;
1915 	tss->io_bitmap.prev_sequence = 0;
1916 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1917 	/*
1918 	 * Invalidate the extra array entry past the end of the all
1919 	 * permission bitmap as required by the hardware.
1920 	 */
1921 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1922 #endif
1923 }
1924 
1925 /*
1926  * Setup everything needed to handle exceptions from the IDT, including the IST
1927  * exceptions which use paranoid_entry().
1928  */
1929 void cpu_init_exception_handling(void)
1930 {
1931 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1932 	int cpu = raw_smp_processor_id();
1933 
1934 	/* paranoid_entry() gets the CPU number from the GDT */
1935 	setup_getcpu(cpu);
1936 
1937 	/* IST vectors need TSS to be set up. */
1938 	tss_setup_ist(tss);
1939 	tss_setup_io_bitmap(tss);
1940 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1941 
1942 	load_TR_desc();
1943 
1944 	/* Finally load the IDT */
1945 	load_current_idt();
1946 }
1947 
1948 /*
1949  * cpu_init() initializes state that is per-CPU. Some data is already
1950  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1951  * reload it nevertheless, this function acts as a 'CPU state barrier',
1952  * nothing should get across.
1953  */
1954 void cpu_init(void)
1955 {
1956 	struct task_struct *cur = current;
1957 	int cpu = raw_smp_processor_id();
1958 
1959 	wait_for_master_cpu(cpu);
1960 
1961 	ucode_cpu_init(cpu);
1962 
1963 #ifdef CONFIG_NUMA
1964 	if (this_cpu_read(numa_node) == 0 &&
1965 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1966 		set_numa_node(early_cpu_to_node(cpu));
1967 #endif
1968 	pr_debug("Initializing CPU#%d\n", cpu);
1969 
1970 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1971 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1972 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1973 
1974 	/*
1975 	 * Initialize the per-CPU GDT with the boot GDT,
1976 	 * and set up the GDT descriptor:
1977 	 */
1978 	switch_to_new_gdt(cpu);
1979 
1980 	if (IS_ENABLED(CONFIG_X86_64)) {
1981 		loadsegment(fs, 0);
1982 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1983 		syscall_init();
1984 
1985 		wrmsrl(MSR_FS_BASE, 0);
1986 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
1987 		barrier();
1988 
1989 		x2apic_setup();
1990 	}
1991 
1992 	mmgrab(&init_mm);
1993 	cur->active_mm = &init_mm;
1994 	BUG_ON(cur->mm);
1995 	initialize_tlbstate_and_flush();
1996 	enter_lazy_tlb(&init_mm, cur);
1997 
1998 	/*
1999 	 * sp0 points to the entry trampoline stack regardless of what task
2000 	 * is running.
2001 	 */
2002 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2003 
2004 	load_mm_ldt(&init_mm);
2005 
2006 	clear_all_debug_regs();
2007 	dbg_restore_debug_regs();
2008 
2009 	doublefault_init_cpu_tss();
2010 
2011 	fpu__init_cpu();
2012 
2013 	if (is_uv_system())
2014 		uv_cpu_init();
2015 
2016 	load_fixmap_gdt(cpu);
2017 }
2018 
2019 #ifdef CONFIG_SMP
2020 void cpu_init_secondary(void)
2021 {
2022 	/*
2023 	 * Relies on the BP having set-up the IDT tables, which are loaded
2024 	 * on this CPU in cpu_init_exception_handling().
2025 	 */
2026 	cpu_init_exception_handling();
2027 	cpu_init();
2028 }
2029 #endif
2030 
2031 /*
2032  * The microcode loader calls this upon late microcode load to recheck features,
2033  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2034  * hotplug lock.
2035  */
2036 void microcode_check(void)
2037 {
2038 	struct cpuinfo_x86 info;
2039 
2040 	perf_check_microcode();
2041 
2042 	/* Reload CPUID max function as it might've changed. */
2043 	info.cpuid_level = cpuid_eax(0);
2044 
2045 	/*
2046 	 * Copy all capability leafs to pick up the synthetic ones so that
2047 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2048 	 * get overwritten in get_cpu_cap().
2049 	 */
2050 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2051 
2052 	get_cpu_cap(&info);
2053 
2054 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2055 		return;
2056 
2057 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2058 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2059 }
2060 
2061 /*
2062  * Invoked from core CPU hotplug code after hotplug operations
2063  */
2064 void arch_smt_update(void)
2065 {
2066 	/* Handle the speculative execution misfeatures */
2067 	cpu_bugs_smt_update();
2068 	/* Check whether IPI broadcasting can be enabled */
2069 	apic_smt_update();
2070 }
2071