xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision e917ba44)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15 
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/debugreg.h>
23 #include <asm/sections.h>
24 #include <asm/vsyscall.h>
25 #include <linux/topology.h>
26 #include <linux/cpumask.h>
27 #include <asm/pgtable.h>
28 #include <linux/atomic.h>
29 #include <asm/proto.h>
30 #include <asm/setup.h>
31 #include <asm/apic.h>
32 #include <asm/desc.h>
33 #include <asm/i387.h>
34 #include <asm/fpu-internal.h>
35 #include <asm/mtrr.h>
36 #include <linux/numa.h>
37 #include <asm/asm.h>
38 #include <asm/cpu.h>
39 #include <asm/mce.h>
40 #include <asm/msr.h>
41 #include <asm/pat.h>
42 #include <asm/microcode.h>
43 #include <asm/microcode_intel.h>
44 
45 #ifdef CONFIG_X86_LOCAL_APIC
46 #include <asm/uv/uv.h>
47 #endif
48 
49 #include "cpu.h"
50 
51 /* all of these masks are initialized in setup_cpu_local_masks() */
52 cpumask_var_t cpu_initialized_mask;
53 cpumask_var_t cpu_callout_mask;
54 cpumask_var_t cpu_callin_mask;
55 
56 /* representing cpus for which sibling maps can be computed */
57 cpumask_var_t cpu_sibling_setup_mask;
58 
59 /* correctly size the local cpu masks */
60 void __init setup_cpu_local_masks(void)
61 {
62 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
63 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
64 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
65 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
66 }
67 
68 static void default_init(struct cpuinfo_x86 *c)
69 {
70 #ifdef CONFIG_X86_64
71 	cpu_detect_cache_sizes(c);
72 #else
73 	/* Not much we can do here... */
74 	/* Check if at least it has cpuid */
75 	if (c->cpuid_level == -1) {
76 		/* No cpuid. It must be an ancient CPU */
77 		if (c->x86 == 4)
78 			strcpy(c->x86_model_id, "486");
79 		else if (c->x86 == 3)
80 			strcpy(c->x86_model_id, "386");
81 	}
82 #endif
83 }
84 
85 static const struct cpu_dev default_cpu = {
86 	.c_init		= default_init,
87 	.c_vendor	= "Unknown",
88 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
89 };
90 
91 static const struct cpu_dev *this_cpu = &default_cpu;
92 
93 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
94 #ifdef CONFIG_X86_64
95 	/*
96 	 * We need valid kernel segments for data and code in long mode too
97 	 * IRET will check the segment types  kkeil 2000/10/28
98 	 * Also sysret mandates a special GDT layout
99 	 *
100 	 * TLS descriptors are currently at a different place compared to i386.
101 	 * Hopefully nobody expects them at a fixed place (Wine?)
102 	 */
103 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
104 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
105 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
106 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
107 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
109 #else
110 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
111 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
112 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
114 	/*
115 	 * Segments used for calling PnP BIOS have byte granularity.
116 	 * They code segments and data segments have fixed 64k limits,
117 	 * the transfer segment sizes are set at run time.
118 	 */
119 	/* 32-bit code */
120 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
121 	/* 16-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/*
130 	 * The APM segments have byte granularity and their bases
131 	 * are set at run time.  All have 64k limits.
132 	 */
133 	/* 32-bit code */
134 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
135 	/* 16-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
137 	/* data */
138 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
139 
140 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 	GDT_STACK_CANARY_INIT
143 #endif
144 } };
145 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
146 
147 static int __init x86_xsave_setup(char *s)
148 {
149 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
150 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
152 	setup_clear_cpu_cap(X86_FEATURE_AVX);
153 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
154 	return 1;
155 }
156 __setup("noxsave", x86_xsave_setup);
157 
158 static int __init x86_xsaveopt_setup(char *s)
159 {
160 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
161 	return 1;
162 }
163 __setup("noxsaveopt", x86_xsaveopt_setup);
164 
165 static int __init x86_xsaves_setup(char *s)
166 {
167 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
168 	return 1;
169 }
170 __setup("noxsaves", x86_xsaves_setup);
171 
172 #ifdef CONFIG_X86_32
173 static int cachesize_override = -1;
174 static int disable_x86_serial_nr = 1;
175 
176 static int __init cachesize_setup(char *str)
177 {
178 	get_option(&str, &cachesize_override);
179 	return 1;
180 }
181 __setup("cachesize=", cachesize_setup);
182 
183 static int __init x86_fxsr_setup(char *s)
184 {
185 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
186 	setup_clear_cpu_cap(X86_FEATURE_XMM);
187 	return 1;
188 }
189 __setup("nofxsr", x86_fxsr_setup);
190 
191 static int __init x86_sep_setup(char *s)
192 {
193 	setup_clear_cpu_cap(X86_FEATURE_SEP);
194 	return 1;
195 }
196 __setup("nosep", x86_sep_setup);
197 
198 /* Standard macro to see if a specific flag is changeable */
199 static inline int flag_is_changeable_p(u32 flag)
200 {
201 	u32 f1, f2;
202 
203 	/*
204 	 * Cyrix and IDT cpus allow disabling of CPUID
205 	 * so the code below may return different results
206 	 * when it is executed before and after enabling
207 	 * the CPUID. Add "volatile" to not allow gcc to
208 	 * optimize the subsequent calls to this function.
209 	 */
210 	asm volatile ("pushfl		\n\t"
211 		      "pushfl		\n\t"
212 		      "popl %0		\n\t"
213 		      "movl %0, %1	\n\t"
214 		      "xorl %2, %0	\n\t"
215 		      "pushl %0		\n\t"
216 		      "popfl		\n\t"
217 		      "pushfl		\n\t"
218 		      "popl %0		\n\t"
219 		      "popfl		\n\t"
220 
221 		      : "=&r" (f1), "=&r" (f2)
222 		      : "ir" (flag));
223 
224 	return ((f1^f2) & flag) != 0;
225 }
226 
227 /* Probe for the CPUID instruction */
228 int have_cpuid_p(void)
229 {
230 	return flag_is_changeable_p(X86_EFLAGS_ID);
231 }
232 
233 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
234 {
235 	unsigned long lo, hi;
236 
237 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
238 		return;
239 
240 	/* Disable processor serial number: */
241 
242 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
243 	lo |= 0x200000;
244 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 
246 	printk(KERN_NOTICE "CPU serial number disabled.\n");
247 	clear_cpu_cap(c, X86_FEATURE_PN);
248 
249 	/* Disabling the serial number may affect the cpuid level */
250 	c->cpuid_level = cpuid_eax(0);
251 }
252 
253 static int __init x86_serial_nr_setup(char *s)
254 {
255 	disable_x86_serial_nr = 0;
256 	return 1;
257 }
258 __setup("serialnumber", x86_serial_nr_setup);
259 #else
260 static inline int flag_is_changeable_p(u32 flag)
261 {
262 	return 1;
263 }
264 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
265 {
266 }
267 #endif
268 
269 static __init int setup_disable_smep(char *arg)
270 {
271 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
272 	return 1;
273 }
274 __setup("nosmep", setup_disable_smep);
275 
276 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
277 {
278 	if (cpu_has(c, X86_FEATURE_SMEP))
279 		set_in_cr4(X86_CR4_SMEP);
280 }
281 
282 static __init int setup_disable_smap(char *arg)
283 {
284 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
285 	return 1;
286 }
287 __setup("nosmap", setup_disable_smap);
288 
289 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
290 {
291 	unsigned long eflags;
292 
293 	/* This should have been cleared long ago */
294 	raw_local_save_flags(eflags);
295 	BUG_ON(eflags & X86_EFLAGS_AC);
296 
297 	if (cpu_has(c, X86_FEATURE_SMAP)) {
298 #ifdef CONFIG_X86_SMAP
299 		set_in_cr4(X86_CR4_SMAP);
300 #else
301 		clear_in_cr4(X86_CR4_SMAP);
302 #endif
303 	}
304 }
305 
306 /*
307  * Some CPU features depend on higher CPUID levels, which may not always
308  * be available due to CPUID level capping or broken virtualization
309  * software.  Add those features to this table to auto-disable them.
310  */
311 struct cpuid_dependent_feature {
312 	u32 feature;
313 	u32 level;
314 };
315 
316 static const struct cpuid_dependent_feature
317 cpuid_dependent_features[] = {
318 	{ X86_FEATURE_MWAIT,		0x00000005 },
319 	{ X86_FEATURE_DCA,		0x00000009 },
320 	{ X86_FEATURE_XSAVE,		0x0000000d },
321 	{ 0, 0 }
322 };
323 
324 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
325 {
326 	const struct cpuid_dependent_feature *df;
327 
328 	for (df = cpuid_dependent_features; df->feature; df++) {
329 
330 		if (!cpu_has(c, df->feature))
331 			continue;
332 		/*
333 		 * Note: cpuid_level is set to -1 if unavailable, but
334 		 * extended_extended_level is set to 0 if unavailable
335 		 * and the legitimate extended levels are all negative
336 		 * when signed; hence the weird messing around with
337 		 * signs here...
338 		 */
339 		if (!((s32)df->level < 0 ?
340 		     (u32)df->level > (u32)c->extended_cpuid_level :
341 		     (s32)df->level > (s32)c->cpuid_level))
342 			continue;
343 
344 		clear_cpu_cap(c, df->feature);
345 		if (!warn)
346 			continue;
347 
348 		printk(KERN_WARNING
349 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
350 				x86_cap_flags[df->feature], df->level);
351 	}
352 }
353 
354 /*
355  * Naming convention should be: <Name> [(<Codename>)]
356  * This table only is used unless init_<vendor>() below doesn't set it;
357  * in particular, if CPUID levels 0x80000002..4 are supported, this
358  * isn't used
359  */
360 
361 /* Look up CPU names by table lookup. */
362 static const char *table_lookup_model(struct cpuinfo_x86 *c)
363 {
364 #ifdef CONFIG_X86_32
365 	const struct legacy_cpu_model_info *info;
366 
367 	if (c->x86_model >= 16)
368 		return NULL;	/* Range check */
369 
370 	if (!this_cpu)
371 		return NULL;
372 
373 	info = this_cpu->legacy_models;
374 
375 	while (info->family) {
376 		if (info->family == c->x86)
377 			return info->model_names[c->x86_model];
378 		info++;
379 	}
380 #endif
381 	return NULL;		/* Not found */
382 }
383 
384 __u32 cpu_caps_cleared[NCAPINTS];
385 __u32 cpu_caps_set[NCAPINTS];
386 
387 void load_percpu_segment(int cpu)
388 {
389 #ifdef CONFIG_X86_32
390 	loadsegment(fs, __KERNEL_PERCPU);
391 #else
392 	loadsegment(gs, 0);
393 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
394 #endif
395 	load_stack_canary_segment();
396 }
397 
398 /*
399  * Current gdt points %fs at the "master" per-cpu area: after this,
400  * it's on the real one.
401  */
402 void switch_to_new_gdt(int cpu)
403 {
404 	struct desc_ptr gdt_descr;
405 
406 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
407 	gdt_descr.size = GDT_SIZE - 1;
408 	load_gdt(&gdt_descr);
409 	/* Reload the per-cpu base */
410 
411 	load_percpu_segment(cpu);
412 }
413 
414 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
415 
416 static void get_model_name(struct cpuinfo_x86 *c)
417 {
418 	unsigned int *v;
419 	char *p, *q;
420 
421 	if (c->extended_cpuid_level < 0x80000004)
422 		return;
423 
424 	v = (unsigned int *)c->x86_model_id;
425 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
426 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
427 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
428 	c->x86_model_id[48] = 0;
429 
430 	/*
431 	 * Intel chips right-justify this string for some dumb reason;
432 	 * undo that brain damage:
433 	 */
434 	p = q = &c->x86_model_id[0];
435 	while (*p == ' ')
436 		p++;
437 	if (p != q) {
438 		while (*p)
439 			*q++ = *p++;
440 		while (q <= &c->x86_model_id[48])
441 			*q++ = '\0';	/* Zero-pad the rest */
442 	}
443 }
444 
445 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
446 {
447 	unsigned int n, dummy, ebx, ecx, edx, l2size;
448 
449 	n = c->extended_cpuid_level;
450 
451 	if (n >= 0x80000005) {
452 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
453 		c->x86_cache_size = (ecx>>24) + (edx>>24);
454 #ifdef CONFIG_X86_64
455 		/* On K8 L1 TLB is inclusive, so don't count it */
456 		c->x86_tlbsize = 0;
457 #endif
458 	}
459 
460 	if (n < 0x80000006)	/* Some chips just has a large L1. */
461 		return;
462 
463 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
464 	l2size = ecx >> 16;
465 
466 #ifdef CONFIG_X86_64
467 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
468 #else
469 	/* do processor-specific cache resizing */
470 	if (this_cpu->legacy_cache_size)
471 		l2size = this_cpu->legacy_cache_size(c, l2size);
472 
473 	/* Allow user to override all this if necessary. */
474 	if (cachesize_override != -1)
475 		l2size = cachesize_override;
476 
477 	if (l2size == 0)
478 		return;		/* Again, no L2 cache is possible */
479 #endif
480 
481 	c->x86_cache_size = l2size;
482 }
483 
484 u16 __read_mostly tlb_lli_4k[NR_INFO];
485 u16 __read_mostly tlb_lli_2m[NR_INFO];
486 u16 __read_mostly tlb_lli_4m[NR_INFO];
487 u16 __read_mostly tlb_lld_4k[NR_INFO];
488 u16 __read_mostly tlb_lld_2m[NR_INFO];
489 u16 __read_mostly tlb_lld_4m[NR_INFO];
490 u16 __read_mostly tlb_lld_1g[NR_INFO];
491 
492 void cpu_detect_tlb(struct cpuinfo_x86 *c)
493 {
494 	if (this_cpu->c_detect_tlb)
495 		this_cpu->c_detect_tlb(c);
496 
497 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
498 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
499 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
500 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
501 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
502 		tlb_lld_1g[ENTRIES]);
503 }
504 
505 void detect_ht(struct cpuinfo_x86 *c)
506 {
507 #ifdef CONFIG_X86_HT
508 	u32 eax, ebx, ecx, edx;
509 	int index_msb, core_bits;
510 	static bool printed;
511 
512 	if (!cpu_has(c, X86_FEATURE_HT))
513 		return;
514 
515 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
516 		goto out;
517 
518 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
519 		return;
520 
521 	cpuid(1, &eax, &ebx, &ecx, &edx);
522 
523 	smp_num_siblings = (ebx & 0xff0000) >> 16;
524 
525 	if (smp_num_siblings == 1) {
526 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
527 		goto out;
528 	}
529 
530 	if (smp_num_siblings <= 1)
531 		goto out;
532 
533 	index_msb = get_count_order(smp_num_siblings);
534 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
535 
536 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
537 
538 	index_msb = get_count_order(smp_num_siblings);
539 
540 	core_bits = get_count_order(c->x86_max_cores);
541 
542 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
543 				       ((1 << core_bits) - 1);
544 
545 out:
546 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
547 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
548 		       c->phys_proc_id);
549 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
550 		       c->cpu_core_id);
551 		printed = 1;
552 	}
553 #endif
554 }
555 
556 static void get_cpu_vendor(struct cpuinfo_x86 *c)
557 {
558 	char *v = c->x86_vendor_id;
559 	int i;
560 
561 	for (i = 0; i < X86_VENDOR_NUM; i++) {
562 		if (!cpu_devs[i])
563 			break;
564 
565 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
566 		    (cpu_devs[i]->c_ident[1] &&
567 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
568 
569 			this_cpu = cpu_devs[i];
570 			c->x86_vendor = this_cpu->c_x86_vendor;
571 			return;
572 		}
573 	}
574 
575 	printk_once(KERN_ERR
576 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
577 			"CPU: Your system may be unstable.\n", v);
578 
579 	c->x86_vendor = X86_VENDOR_UNKNOWN;
580 	this_cpu = &default_cpu;
581 }
582 
583 void cpu_detect(struct cpuinfo_x86 *c)
584 {
585 	/* Get vendor name */
586 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
587 	      (unsigned int *)&c->x86_vendor_id[0],
588 	      (unsigned int *)&c->x86_vendor_id[8],
589 	      (unsigned int *)&c->x86_vendor_id[4]);
590 
591 	c->x86 = 4;
592 	/* Intel-defined flags: level 0x00000001 */
593 	if (c->cpuid_level >= 0x00000001) {
594 		u32 junk, tfms, cap0, misc;
595 
596 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
597 		c->x86 = (tfms >> 8) & 0xf;
598 		c->x86_model = (tfms >> 4) & 0xf;
599 		c->x86_mask = tfms & 0xf;
600 
601 		if (c->x86 == 0xf)
602 			c->x86 += (tfms >> 20) & 0xff;
603 		if (c->x86 >= 0x6)
604 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
605 
606 		if (cap0 & (1<<19)) {
607 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
608 			c->x86_cache_alignment = c->x86_clflush_size;
609 		}
610 	}
611 }
612 
613 void get_cpu_cap(struct cpuinfo_x86 *c)
614 {
615 	u32 tfms, xlvl;
616 	u32 ebx;
617 
618 	/* Intel-defined flags: level 0x00000001 */
619 	if (c->cpuid_level >= 0x00000001) {
620 		u32 capability, excap;
621 
622 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
623 		c->x86_capability[0] = capability;
624 		c->x86_capability[4] = excap;
625 	}
626 
627 	/* Additional Intel-defined flags: level 0x00000007 */
628 	if (c->cpuid_level >= 0x00000007) {
629 		u32 eax, ebx, ecx, edx;
630 
631 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
632 
633 		c->x86_capability[9] = ebx;
634 	}
635 
636 	/* Extended state features: level 0x0000000d */
637 	if (c->cpuid_level >= 0x0000000d) {
638 		u32 eax, ebx, ecx, edx;
639 
640 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
641 
642 		c->x86_capability[10] = eax;
643 	}
644 
645 	/* AMD-defined flags: level 0x80000001 */
646 	xlvl = cpuid_eax(0x80000000);
647 	c->extended_cpuid_level = xlvl;
648 
649 	if ((xlvl & 0xffff0000) == 0x80000000) {
650 		if (xlvl >= 0x80000001) {
651 			c->x86_capability[1] = cpuid_edx(0x80000001);
652 			c->x86_capability[6] = cpuid_ecx(0x80000001);
653 		}
654 	}
655 
656 	if (c->extended_cpuid_level >= 0x80000008) {
657 		u32 eax = cpuid_eax(0x80000008);
658 
659 		c->x86_virt_bits = (eax >> 8) & 0xff;
660 		c->x86_phys_bits = eax & 0xff;
661 	}
662 #ifdef CONFIG_X86_32
663 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
664 		c->x86_phys_bits = 36;
665 #endif
666 
667 	if (c->extended_cpuid_level >= 0x80000007)
668 		c->x86_power = cpuid_edx(0x80000007);
669 
670 	init_scattered_cpuid_features(c);
671 }
672 
673 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
674 {
675 #ifdef CONFIG_X86_32
676 	int i;
677 
678 	/*
679 	 * First of all, decide if this is a 486 or higher
680 	 * It's a 486 if we can modify the AC flag
681 	 */
682 	if (flag_is_changeable_p(X86_EFLAGS_AC))
683 		c->x86 = 4;
684 	else
685 		c->x86 = 3;
686 
687 	for (i = 0; i < X86_VENDOR_NUM; i++)
688 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
689 			c->x86_vendor_id[0] = 0;
690 			cpu_devs[i]->c_identify(c);
691 			if (c->x86_vendor_id[0]) {
692 				get_cpu_vendor(c);
693 				break;
694 			}
695 		}
696 #endif
697 }
698 
699 /*
700  * Do minimum CPU detection early.
701  * Fields really needed: vendor, cpuid_level, family, model, mask,
702  * cache alignment.
703  * The others are not touched to avoid unwanted side effects.
704  *
705  * WARNING: this function is only called on the BP.  Don't add code here
706  * that is supposed to run on all CPUs.
707  */
708 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
709 {
710 #ifdef CONFIG_X86_64
711 	c->x86_clflush_size = 64;
712 	c->x86_phys_bits = 36;
713 	c->x86_virt_bits = 48;
714 #else
715 	c->x86_clflush_size = 32;
716 	c->x86_phys_bits = 32;
717 	c->x86_virt_bits = 32;
718 #endif
719 	c->x86_cache_alignment = c->x86_clflush_size;
720 
721 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
722 	c->extended_cpuid_level = 0;
723 
724 	if (!have_cpuid_p())
725 		identify_cpu_without_cpuid(c);
726 
727 	/* cyrix could have cpuid enabled via c_identify()*/
728 	if (!have_cpuid_p())
729 		return;
730 
731 	cpu_detect(c);
732 	get_cpu_vendor(c);
733 	get_cpu_cap(c);
734 	fpu_detect(c);
735 
736 	if (this_cpu->c_early_init)
737 		this_cpu->c_early_init(c);
738 
739 	c->cpu_index = 0;
740 	filter_cpuid_features(c, false);
741 
742 	if (this_cpu->c_bsp_init)
743 		this_cpu->c_bsp_init(c);
744 
745 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
746 }
747 
748 void __init early_cpu_init(void)
749 {
750 	const struct cpu_dev *const *cdev;
751 	int count = 0;
752 
753 #ifdef CONFIG_PROCESSOR_SELECT
754 	printk(KERN_INFO "KERNEL supported cpus:\n");
755 #endif
756 
757 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
758 		const struct cpu_dev *cpudev = *cdev;
759 
760 		if (count >= X86_VENDOR_NUM)
761 			break;
762 		cpu_devs[count] = cpudev;
763 		count++;
764 
765 #ifdef CONFIG_PROCESSOR_SELECT
766 		{
767 			unsigned int j;
768 
769 			for (j = 0; j < 2; j++) {
770 				if (!cpudev->c_ident[j])
771 					continue;
772 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
773 					cpudev->c_ident[j]);
774 			}
775 		}
776 #endif
777 	}
778 	early_identify_cpu(&boot_cpu_data);
779 }
780 
781 /*
782  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
783  * unfortunately, that's not true in practice because of early VIA
784  * chips and (more importantly) broken virtualizers that are not easy
785  * to detect. In the latter case it doesn't even *fail* reliably, so
786  * probing for it doesn't even work. Disable it completely on 32-bit
787  * unless we can find a reliable way to detect all the broken cases.
788  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
789  */
790 static void detect_nopl(struct cpuinfo_x86 *c)
791 {
792 #ifdef CONFIG_X86_32
793 	clear_cpu_cap(c, X86_FEATURE_NOPL);
794 #else
795 	set_cpu_cap(c, X86_FEATURE_NOPL);
796 #endif
797 }
798 
799 static void generic_identify(struct cpuinfo_x86 *c)
800 {
801 	c->extended_cpuid_level = 0;
802 
803 	if (!have_cpuid_p())
804 		identify_cpu_without_cpuid(c);
805 
806 	/* cyrix could have cpuid enabled via c_identify()*/
807 	if (!have_cpuid_p())
808 		return;
809 
810 	cpu_detect(c);
811 
812 	get_cpu_vendor(c);
813 
814 	get_cpu_cap(c);
815 
816 	if (c->cpuid_level >= 0x00000001) {
817 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
818 #ifdef CONFIG_X86_32
819 # ifdef CONFIG_X86_HT
820 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
821 # else
822 		c->apicid = c->initial_apicid;
823 # endif
824 #endif
825 		c->phys_proc_id = c->initial_apicid;
826 	}
827 
828 	get_model_name(c); /* Default name */
829 
830 	detect_nopl(c);
831 }
832 
833 /*
834  * This does the hard work of actually picking apart the CPU stuff...
835  */
836 static void identify_cpu(struct cpuinfo_x86 *c)
837 {
838 	int i;
839 
840 	c->loops_per_jiffy = loops_per_jiffy;
841 	c->x86_cache_size = -1;
842 	c->x86_vendor = X86_VENDOR_UNKNOWN;
843 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
844 	c->x86_vendor_id[0] = '\0'; /* Unset */
845 	c->x86_model_id[0] = '\0';  /* Unset */
846 	c->x86_max_cores = 1;
847 	c->x86_coreid_bits = 0;
848 #ifdef CONFIG_X86_64
849 	c->x86_clflush_size = 64;
850 	c->x86_phys_bits = 36;
851 	c->x86_virt_bits = 48;
852 #else
853 	c->cpuid_level = -1;	/* CPUID not detected */
854 	c->x86_clflush_size = 32;
855 	c->x86_phys_bits = 32;
856 	c->x86_virt_bits = 32;
857 #endif
858 	c->x86_cache_alignment = c->x86_clflush_size;
859 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
860 
861 	generic_identify(c);
862 
863 	if (this_cpu->c_identify)
864 		this_cpu->c_identify(c);
865 
866 	/* Clear/Set all flags overriden by options, after probe */
867 	for (i = 0; i < NCAPINTS; i++) {
868 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
869 		c->x86_capability[i] |= cpu_caps_set[i];
870 	}
871 
872 #ifdef CONFIG_X86_64
873 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
874 #endif
875 
876 	/*
877 	 * Vendor-specific initialization.  In this section we
878 	 * canonicalize the feature flags, meaning if there are
879 	 * features a certain CPU supports which CPUID doesn't
880 	 * tell us, CPUID claiming incorrect flags, or other bugs,
881 	 * we handle them here.
882 	 *
883 	 * At the end of this section, c->x86_capability better
884 	 * indicate the features this CPU genuinely supports!
885 	 */
886 	if (this_cpu->c_init)
887 		this_cpu->c_init(c);
888 
889 	/* Disable the PN if appropriate */
890 	squash_the_stupid_serial_number(c);
891 
892 	/* Set up SMEP/SMAP */
893 	setup_smep(c);
894 	setup_smap(c);
895 
896 	/*
897 	 * The vendor-specific functions might have changed features.
898 	 * Now we do "generic changes."
899 	 */
900 
901 	/* Filter out anything that depends on CPUID levels we don't have */
902 	filter_cpuid_features(c, true);
903 
904 	/* If the model name is still unset, do table lookup. */
905 	if (!c->x86_model_id[0]) {
906 		const char *p;
907 		p = table_lookup_model(c);
908 		if (p)
909 			strcpy(c->x86_model_id, p);
910 		else
911 			/* Last resort... */
912 			sprintf(c->x86_model_id, "%02x/%02x",
913 				c->x86, c->x86_model);
914 	}
915 
916 #ifdef CONFIG_X86_64
917 	detect_ht(c);
918 #endif
919 
920 	init_hypervisor(c);
921 	x86_init_rdrand(c);
922 
923 	/*
924 	 * Clear/Set all flags overriden by options, need do it
925 	 * before following smp all cpus cap AND.
926 	 */
927 	for (i = 0; i < NCAPINTS; i++) {
928 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
929 		c->x86_capability[i] |= cpu_caps_set[i];
930 	}
931 
932 	/*
933 	 * On SMP, boot_cpu_data holds the common feature set between
934 	 * all CPUs; so make sure that we indicate which features are
935 	 * common between the CPUs.  The first time this routine gets
936 	 * executed, c == &boot_cpu_data.
937 	 */
938 	if (c != &boot_cpu_data) {
939 		/* AND the already accumulated flags with these */
940 		for (i = 0; i < NCAPINTS; i++)
941 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
942 
943 		/* OR, i.e. replicate the bug flags */
944 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
945 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
946 	}
947 
948 	/* Init Machine Check Exception if available. */
949 	mcheck_cpu_init(c);
950 
951 	select_idle_routine(c);
952 
953 #ifdef CONFIG_NUMA
954 	numa_add_cpu(smp_processor_id());
955 #endif
956 }
957 
958 #ifdef CONFIG_X86_64
959 static void vgetcpu_set_mode(void)
960 {
961 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
962 		vgetcpu_mode = VGETCPU_RDTSCP;
963 	else
964 		vgetcpu_mode = VGETCPU_LSL;
965 }
966 
967 /* May not be __init: called during resume */
968 static void syscall32_cpu_init(void)
969 {
970 	/* Load these always in case some future AMD CPU supports
971 	   SYSENTER from compat mode too. */
972 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
973 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
974 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
975 
976 	wrmsrl(MSR_CSTAR, ia32_cstar_target);
977 }
978 #endif
979 
980 #ifdef CONFIG_X86_32
981 void enable_sep_cpu(void)
982 {
983 	int cpu = get_cpu();
984 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
985 
986 	if (!boot_cpu_has(X86_FEATURE_SEP)) {
987 		put_cpu();
988 		return;
989 	}
990 
991 	tss->x86_tss.ss1 = __KERNEL_CS;
992 	tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
993 	wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
994 	wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
995 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
996 	put_cpu();
997 }
998 #endif
999 
1000 void __init identify_boot_cpu(void)
1001 {
1002 	identify_cpu(&boot_cpu_data);
1003 	init_amd_e400_c1e_mask();
1004 #ifdef CONFIG_X86_32
1005 	sysenter_setup();
1006 	enable_sep_cpu();
1007 #else
1008 	vgetcpu_set_mode();
1009 #endif
1010 	cpu_detect_tlb(&boot_cpu_data);
1011 }
1012 
1013 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1014 {
1015 	BUG_ON(c == &boot_cpu_data);
1016 	identify_cpu(c);
1017 #ifdef CONFIG_X86_32
1018 	enable_sep_cpu();
1019 #endif
1020 	mtrr_ap_init();
1021 }
1022 
1023 struct msr_range {
1024 	unsigned	min;
1025 	unsigned	max;
1026 };
1027 
1028 static const struct msr_range msr_range_array[] = {
1029 	{ 0x00000000, 0x00000418},
1030 	{ 0xc0000000, 0xc000040b},
1031 	{ 0xc0010000, 0xc0010142},
1032 	{ 0xc0011000, 0xc001103b},
1033 };
1034 
1035 static void __print_cpu_msr(void)
1036 {
1037 	unsigned index_min, index_max;
1038 	unsigned index;
1039 	u64 val;
1040 	int i;
1041 
1042 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1043 		index_min = msr_range_array[i].min;
1044 		index_max = msr_range_array[i].max;
1045 
1046 		for (index = index_min; index < index_max; index++) {
1047 			if (rdmsrl_safe(index, &val))
1048 				continue;
1049 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1050 		}
1051 	}
1052 }
1053 
1054 static int show_msr;
1055 
1056 static __init int setup_show_msr(char *arg)
1057 {
1058 	int num;
1059 
1060 	get_option(&arg, &num);
1061 
1062 	if (num > 0)
1063 		show_msr = num;
1064 	return 1;
1065 }
1066 __setup("show_msr=", setup_show_msr);
1067 
1068 static __init int setup_noclflush(char *arg)
1069 {
1070 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1071 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1072 	return 1;
1073 }
1074 __setup("noclflush", setup_noclflush);
1075 
1076 void print_cpu_info(struct cpuinfo_x86 *c)
1077 {
1078 	const char *vendor = NULL;
1079 
1080 	if (c->x86_vendor < X86_VENDOR_NUM) {
1081 		vendor = this_cpu->c_vendor;
1082 	} else {
1083 		if (c->cpuid_level >= 0)
1084 			vendor = c->x86_vendor_id;
1085 	}
1086 
1087 	if (vendor && !strstr(c->x86_model_id, vendor))
1088 		printk(KERN_CONT "%s ", vendor);
1089 
1090 	if (c->x86_model_id[0])
1091 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1092 	else
1093 		printk(KERN_CONT "%d86", c->x86);
1094 
1095 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1096 
1097 	if (c->x86_mask || c->cpuid_level >= 0)
1098 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1099 	else
1100 		printk(KERN_CONT ")\n");
1101 
1102 	print_cpu_msr(c);
1103 }
1104 
1105 void print_cpu_msr(struct cpuinfo_x86 *c)
1106 {
1107 	if (c->cpu_index < show_msr)
1108 		__print_cpu_msr();
1109 }
1110 
1111 static __init int setup_disablecpuid(char *arg)
1112 {
1113 	int bit;
1114 
1115 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1116 		setup_clear_cpu_cap(bit);
1117 	else
1118 		return 0;
1119 
1120 	return 1;
1121 }
1122 __setup("clearcpuid=", setup_disablecpuid);
1123 
1124 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1125 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1126 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1127 
1128 #ifdef CONFIG_X86_64
1129 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1130 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1131 				    (unsigned long) debug_idt_table };
1132 
1133 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1134 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1135 
1136 /*
1137  * The following four percpu variables are hot.  Align current_task to
1138  * cacheline size such that all four fall in the same cacheline.
1139  */
1140 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1141 	&init_task;
1142 EXPORT_PER_CPU_SYMBOL(current_task);
1143 
1144 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1145 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1146 
1147 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1148 
1149 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1150 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1151 
1152 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1153 
1154 /*
1155  * Special IST stacks which the CPU switches to when it calls
1156  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1157  * limit), all of them are 4K, except the debug stack which
1158  * is 8K.
1159  */
1160 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1161 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1162 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1163 };
1164 
1165 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1166 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1167 
1168 /* May not be marked __init: used by software suspend */
1169 void syscall_init(void)
1170 {
1171 	/*
1172 	 * LSTAR and STAR live in a bit strange symbiosis.
1173 	 * They both write to the same internal register. STAR allows to
1174 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1175 	 */
1176 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1177 	wrmsrl(MSR_LSTAR, system_call);
1178 	wrmsrl(MSR_CSTAR, ignore_sysret);
1179 
1180 #ifdef CONFIG_IA32_EMULATION
1181 	syscall32_cpu_init();
1182 #endif
1183 
1184 	/* Flags to clear on syscall */
1185 	wrmsrl(MSR_SYSCALL_MASK,
1186 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1187 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1188 }
1189 
1190 /*
1191  * Copies of the original ist values from the tss are only accessed during
1192  * debugging, no special alignment required.
1193  */
1194 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1195 
1196 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1197 DEFINE_PER_CPU(int, debug_stack_usage);
1198 
1199 int is_debug_stack(unsigned long addr)
1200 {
1201 	return __get_cpu_var(debug_stack_usage) ||
1202 		(addr <= __get_cpu_var(debug_stack_addr) &&
1203 		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1204 }
1205 NOKPROBE_SYMBOL(is_debug_stack);
1206 
1207 DEFINE_PER_CPU(u32, debug_idt_ctr);
1208 
1209 void debug_stack_set_zero(void)
1210 {
1211 	this_cpu_inc(debug_idt_ctr);
1212 	load_current_idt();
1213 }
1214 NOKPROBE_SYMBOL(debug_stack_set_zero);
1215 
1216 void debug_stack_reset(void)
1217 {
1218 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1219 		return;
1220 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1221 		load_current_idt();
1222 }
1223 NOKPROBE_SYMBOL(debug_stack_reset);
1224 
1225 #else	/* CONFIG_X86_64 */
1226 
1227 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1228 EXPORT_PER_CPU_SYMBOL(current_task);
1229 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1230 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1231 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1232 
1233 #ifdef CONFIG_CC_STACKPROTECTOR
1234 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1235 #endif
1236 
1237 #endif	/* CONFIG_X86_64 */
1238 
1239 /*
1240  * Clear all 6 debug registers:
1241  */
1242 static void clear_all_debug_regs(void)
1243 {
1244 	int i;
1245 
1246 	for (i = 0; i < 8; i++) {
1247 		/* Ignore db4, db5 */
1248 		if ((i == 4) || (i == 5))
1249 			continue;
1250 
1251 		set_debugreg(0, i);
1252 	}
1253 }
1254 
1255 #ifdef CONFIG_KGDB
1256 /*
1257  * Restore debug regs if using kgdbwait and you have a kernel debugger
1258  * connection established.
1259  */
1260 static void dbg_restore_debug_regs(void)
1261 {
1262 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1263 		arch_kgdb_ops.correct_hw_break();
1264 }
1265 #else /* ! CONFIG_KGDB */
1266 #define dbg_restore_debug_regs()
1267 #endif /* ! CONFIG_KGDB */
1268 
1269 /*
1270  * cpu_init() initializes state that is per-CPU. Some data is already
1271  * initialized (naturally) in the bootstrap process, such as the GDT
1272  * and IDT. We reload them nevertheless, this function acts as a
1273  * 'CPU state barrier', nothing should get across.
1274  * A lot of state is already set up in PDA init for 64 bit
1275  */
1276 #ifdef CONFIG_X86_64
1277 
1278 void cpu_init(void)
1279 {
1280 	struct orig_ist *oist;
1281 	struct task_struct *me;
1282 	struct tss_struct *t;
1283 	unsigned long v;
1284 	int cpu;
1285 	int i;
1286 
1287 	/*
1288 	 * Load microcode on this cpu if a valid microcode is available.
1289 	 * This is early microcode loading procedure.
1290 	 */
1291 	load_ucode_ap();
1292 
1293 	cpu = stack_smp_processor_id();
1294 	t = &per_cpu(init_tss, cpu);
1295 	oist = &per_cpu(orig_ist, cpu);
1296 
1297 #ifdef CONFIG_NUMA
1298 	if (this_cpu_read(numa_node) == 0 &&
1299 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1300 		set_numa_node(early_cpu_to_node(cpu));
1301 #endif
1302 
1303 	me = current;
1304 
1305 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1306 		panic("CPU#%d already initialized!\n", cpu);
1307 
1308 	pr_debug("Initializing CPU#%d\n", cpu);
1309 
1310 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1311 
1312 	/*
1313 	 * Initialize the per-CPU GDT with the boot GDT,
1314 	 * and set up the GDT descriptor:
1315 	 */
1316 
1317 	switch_to_new_gdt(cpu);
1318 	loadsegment(fs, 0);
1319 
1320 	load_current_idt();
1321 
1322 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1323 	syscall_init();
1324 
1325 	wrmsrl(MSR_FS_BASE, 0);
1326 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1327 	barrier();
1328 
1329 	x86_configure_nx();
1330 	enable_x2apic();
1331 
1332 	/*
1333 	 * set up and load the per-CPU TSS
1334 	 */
1335 	if (!oist->ist[0]) {
1336 		char *estacks = per_cpu(exception_stacks, cpu);
1337 
1338 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1339 			estacks += exception_stack_sizes[v];
1340 			oist->ist[v] = t->x86_tss.ist[v] =
1341 					(unsigned long)estacks;
1342 			if (v == DEBUG_STACK-1)
1343 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1344 		}
1345 	}
1346 
1347 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1348 
1349 	/*
1350 	 * <= is required because the CPU will access up to
1351 	 * 8 bits beyond the end of the IO permission bitmap.
1352 	 */
1353 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1354 		t->io_bitmap[i] = ~0UL;
1355 
1356 	atomic_inc(&init_mm.mm_count);
1357 	me->active_mm = &init_mm;
1358 	BUG_ON(me->mm);
1359 	enter_lazy_tlb(&init_mm, me);
1360 
1361 	load_sp0(t, &current->thread);
1362 	set_tss_desc(cpu, t);
1363 	load_TR_desc();
1364 	load_LDT(&init_mm.context);
1365 
1366 	clear_all_debug_regs();
1367 	dbg_restore_debug_regs();
1368 
1369 	fpu_init();
1370 
1371 	if (is_uv_system())
1372 		uv_cpu_init();
1373 }
1374 
1375 #else
1376 
1377 void cpu_init(void)
1378 {
1379 	int cpu = smp_processor_id();
1380 	struct task_struct *curr = current;
1381 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1382 	struct thread_struct *thread = &curr->thread;
1383 
1384 	show_ucode_info_early();
1385 
1386 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1387 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1388 		for (;;)
1389 			local_irq_enable();
1390 	}
1391 
1392 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1393 
1394 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1395 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1396 
1397 	load_current_idt();
1398 	switch_to_new_gdt(cpu);
1399 
1400 	/*
1401 	 * Set up and load the per-CPU TSS and LDT
1402 	 */
1403 	atomic_inc(&init_mm.mm_count);
1404 	curr->active_mm = &init_mm;
1405 	BUG_ON(curr->mm);
1406 	enter_lazy_tlb(&init_mm, curr);
1407 
1408 	load_sp0(t, thread);
1409 	set_tss_desc(cpu, t);
1410 	load_TR_desc();
1411 	load_LDT(&init_mm.context);
1412 
1413 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1414 
1415 #ifdef CONFIG_DOUBLEFAULT
1416 	/* Set up doublefault TSS pointer in the GDT */
1417 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1418 #endif
1419 
1420 	clear_all_debug_regs();
1421 	dbg_restore_debug_regs();
1422 
1423 	fpu_init();
1424 }
1425 #endif
1426 
1427 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1428 void warn_pre_alternatives(void)
1429 {
1430 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1431 }
1432 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1433 #endif
1434 
1435 inline bool __static_cpu_has_safe(u16 bit)
1436 {
1437 	return boot_cpu_has(bit);
1438 }
1439 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1440