xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision e5c86679)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54 
55 #include "cpu.h"
56 
57 u32 elf_hwcap2 __read_mostly;
58 
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63 
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66 
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75 
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 	cpu_detect_cache_sizes(c);
80 #else
81 	/* Not much we can do here... */
82 	/* Check if at least it has cpuid */
83 	if (c->cpuid_level == -1) {
84 		/* No cpuid. It must be an ancient CPU */
85 		if (c->x86 == 4)
86 			strcpy(c->x86_model_id, "486");
87 		else if (c->x86 == 3)
88 			strcpy(c->x86_model_id, "386");
89 	}
90 #endif
91 }
92 
93 static const struct cpu_dev default_cpu = {
94 	.c_init		= default_init,
95 	.c_vendor	= "Unknown",
96 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
97 };
98 
99 static const struct cpu_dev *this_cpu = &default_cpu;
100 
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 	/*
104 	 * We need valid kernel segments for data and code in long mode too
105 	 * IRET will check the segment types  kkeil 2000/10/28
106 	 * Also sysret mandates a special GDT layout
107 	 *
108 	 * TLS descriptors are currently at a different place compared to i386.
109 	 * Hopefully nobody expects them at a fixed place (Wine?)
110 	 */
111 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 	/*
123 	 * Segments used for calling PnP BIOS have byte granularity.
124 	 * They code segments and data segments have fixed 64k limits,
125 	 * the transfer segment sizes are set at run time.
126 	 */
127 	/* 32-bit code */
128 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 	/* 16-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 	/* 16-bit data */
132 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/*
138 	 * The APM segments have byte granularity and their bases
139 	 * are set at run time.  All have 64k limits.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* data */
146 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147 
148 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 	GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154 
155 static int __init x86_mpx_setup(char *s)
156 {
157 	/* require an exact match without trailing characters */
158 	if (strlen(s))
159 		return 0;
160 
161 	/* do not emit a message if the feature is not present */
162 	if (!boot_cpu_has(X86_FEATURE_MPX))
163 		return 1;
164 
165 	setup_clear_cpu_cap(X86_FEATURE_MPX);
166 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 	return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170 
171 static int __init x86_noinvpcid_setup(char *s)
172 {
173 	/* noinvpcid doesn't accept parameters */
174 	if (s)
175 		return -EINVAL;
176 
177 	/* do not emit a message if the feature is not present */
178 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
179 		return 0;
180 
181 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
182 	pr_info("noinvpcid: INVPCID feature disabled\n");
183 	return 0;
184 }
185 early_param("noinvpcid", x86_noinvpcid_setup);
186 
187 #ifdef CONFIG_X86_32
188 static int cachesize_override = -1;
189 static int disable_x86_serial_nr = 1;
190 
191 static int __init cachesize_setup(char *str)
192 {
193 	get_option(&str, &cachesize_override);
194 	return 1;
195 }
196 __setup("cachesize=", cachesize_setup);
197 
198 static int __init x86_sep_setup(char *s)
199 {
200 	setup_clear_cpu_cap(X86_FEATURE_SEP);
201 	return 1;
202 }
203 __setup("nosep", x86_sep_setup);
204 
205 /* Standard macro to see if a specific flag is changeable */
206 static inline int flag_is_changeable_p(u32 flag)
207 {
208 	u32 f1, f2;
209 
210 	/*
211 	 * Cyrix and IDT cpus allow disabling of CPUID
212 	 * so the code below may return different results
213 	 * when it is executed before and after enabling
214 	 * the CPUID. Add "volatile" to not allow gcc to
215 	 * optimize the subsequent calls to this function.
216 	 */
217 	asm volatile ("pushfl		\n\t"
218 		      "pushfl		\n\t"
219 		      "popl %0		\n\t"
220 		      "movl %0, %1	\n\t"
221 		      "xorl %2, %0	\n\t"
222 		      "pushl %0		\n\t"
223 		      "popfl		\n\t"
224 		      "pushfl		\n\t"
225 		      "popl %0		\n\t"
226 		      "popfl		\n\t"
227 
228 		      : "=&r" (f1), "=&r" (f2)
229 		      : "ir" (flag));
230 
231 	return ((f1^f2) & flag) != 0;
232 }
233 
234 /* Probe for the CPUID instruction */
235 int have_cpuid_p(void)
236 {
237 	return flag_is_changeable_p(X86_EFLAGS_ID);
238 }
239 
240 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
241 {
242 	unsigned long lo, hi;
243 
244 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
245 		return;
246 
247 	/* Disable processor serial number: */
248 
249 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
250 	lo |= 0x200000;
251 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
252 
253 	pr_notice("CPU serial number disabled.\n");
254 	clear_cpu_cap(c, X86_FEATURE_PN);
255 
256 	/* Disabling the serial number may affect the cpuid level */
257 	c->cpuid_level = cpuid_eax(0);
258 }
259 
260 static int __init x86_serial_nr_setup(char *s)
261 {
262 	disable_x86_serial_nr = 0;
263 	return 1;
264 }
265 __setup("serialnumber", x86_serial_nr_setup);
266 #else
267 static inline int flag_is_changeable_p(u32 flag)
268 {
269 	return 1;
270 }
271 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 }
274 #endif
275 
276 static __init int setup_disable_smep(char *arg)
277 {
278 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
279 	/* Check for things that depend on SMEP being enabled: */
280 	check_mpx_erratum(&boot_cpu_data);
281 	return 1;
282 }
283 __setup("nosmep", setup_disable_smep);
284 
285 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
286 {
287 	if (cpu_has(c, X86_FEATURE_SMEP))
288 		cr4_set_bits(X86_CR4_SMEP);
289 }
290 
291 static __init int setup_disable_smap(char *arg)
292 {
293 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
294 	return 1;
295 }
296 __setup("nosmap", setup_disable_smap);
297 
298 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
299 {
300 	unsigned long eflags = native_save_fl();
301 
302 	/* This should have been cleared long ago */
303 	BUG_ON(eflags & X86_EFLAGS_AC);
304 
305 	if (cpu_has(c, X86_FEATURE_SMAP)) {
306 #ifdef CONFIG_X86_SMAP
307 		cr4_set_bits(X86_CR4_SMAP);
308 #else
309 		cr4_clear_bits(X86_CR4_SMAP);
310 #endif
311 	}
312 }
313 
314 /*
315  * Protection Keys are not available in 32-bit mode.
316  */
317 static bool pku_disabled;
318 
319 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
320 {
321 	/* check the boot processor, plus compile options for PKU: */
322 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
323 		return;
324 	/* checks the actual processor's cpuid bits: */
325 	if (!cpu_has(c, X86_FEATURE_PKU))
326 		return;
327 	if (pku_disabled)
328 		return;
329 
330 	cr4_set_bits(X86_CR4_PKE);
331 	/*
332 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
333 	 * cpuid bit to be set.  We need to ensure that we
334 	 * update that bit in this CPU's "cpu_info".
335 	 */
336 	get_cpu_cap(c);
337 }
338 
339 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
340 static __init int setup_disable_pku(char *arg)
341 {
342 	/*
343 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
344 	 * runtime checks are against OSPKE so clearing the
345 	 * bit does nothing.
346 	 *
347 	 * This way, we will see "pku" in cpuinfo, but not
348 	 * "ospke", which is exactly what we want.  It shows
349 	 * that the CPU has PKU, but the OS has not enabled it.
350 	 * This happens to be exactly how a system would look
351 	 * if we disabled the config option.
352 	 */
353 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
354 	pku_disabled = true;
355 	return 1;
356 }
357 __setup("nopku", setup_disable_pku);
358 #endif /* CONFIG_X86_64 */
359 
360 /*
361  * Some CPU features depend on higher CPUID levels, which may not always
362  * be available due to CPUID level capping or broken virtualization
363  * software.  Add those features to this table to auto-disable them.
364  */
365 struct cpuid_dependent_feature {
366 	u32 feature;
367 	u32 level;
368 };
369 
370 static const struct cpuid_dependent_feature
371 cpuid_dependent_features[] = {
372 	{ X86_FEATURE_MWAIT,		0x00000005 },
373 	{ X86_FEATURE_DCA,		0x00000009 },
374 	{ X86_FEATURE_XSAVE,		0x0000000d },
375 	{ 0, 0 }
376 };
377 
378 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
379 {
380 	const struct cpuid_dependent_feature *df;
381 
382 	for (df = cpuid_dependent_features; df->feature; df++) {
383 
384 		if (!cpu_has(c, df->feature))
385 			continue;
386 		/*
387 		 * Note: cpuid_level is set to -1 if unavailable, but
388 		 * extended_extended_level is set to 0 if unavailable
389 		 * and the legitimate extended levels are all negative
390 		 * when signed; hence the weird messing around with
391 		 * signs here...
392 		 */
393 		if (!((s32)df->level < 0 ?
394 		     (u32)df->level > (u32)c->extended_cpuid_level :
395 		     (s32)df->level > (s32)c->cpuid_level))
396 			continue;
397 
398 		clear_cpu_cap(c, df->feature);
399 		if (!warn)
400 			continue;
401 
402 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
403 			x86_cap_flag(df->feature), df->level);
404 	}
405 }
406 
407 /*
408  * Naming convention should be: <Name> [(<Codename>)]
409  * This table only is used unless init_<vendor>() below doesn't set it;
410  * in particular, if CPUID levels 0x80000002..4 are supported, this
411  * isn't used
412  */
413 
414 /* Look up CPU names by table lookup. */
415 static const char *table_lookup_model(struct cpuinfo_x86 *c)
416 {
417 #ifdef CONFIG_X86_32
418 	const struct legacy_cpu_model_info *info;
419 
420 	if (c->x86_model >= 16)
421 		return NULL;	/* Range check */
422 
423 	if (!this_cpu)
424 		return NULL;
425 
426 	info = this_cpu->legacy_models;
427 
428 	while (info->family) {
429 		if (info->family == c->x86)
430 			return info->model_names[c->x86_model];
431 		info++;
432 	}
433 #endif
434 	return NULL;		/* Not found */
435 }
436 
437 __u32 cpu_caps_cleared[NCAPINTS];
438 __u32 cpu_caps_set[NCAPINTS];
439 
440 void load_percpu_segment(int cpu)
441 {
442 #ifdef CONFIG_X86_32
443 	loadsegment(fs, __KERNEL_PERCPU);
444 #else
445 	__loadsegment_simple(gs, 0);
446 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
447 #endif
448 	load_stack_canary_segment();
449 }
450 
451 /*
452  * Current gdt points %fs at the "master" per-cpu area: after this,
453  * it's on the real one.
454  */
455 void switch_to_new_gdt(int cpu)
456 {
457 	struct desc_ptr gdt_descr;
458 
459 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
460 	gdt_descr.size = GDT_SIZE - 1;
461 	load_gdt(&gdt_descr);
462 	/* Reload the per-cpu base */
463 
464 	load_percpu_segment(cpu);
465 }
466 
467 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
468 
469 static void get_model_name(struct cpuinfo_x86 *c)
470 {
471 	unsigned int *v;
472 	char *p, *q, *s;
473 
474 	if (c->extended_cpuid_level < 0x80000004)
475 		return;
476 
477 	v = (unsigned int *)c->x86_model_id;
478 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
479 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
480 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
481 	c->x86_model_id[48] = 0;
482 
483 	/* Trim whitespace */
484 	p = q = s = &c->x86_model_id[0];
485 
486 	while (*p == ' ')
487 		p++;
488 
489 	while (*p) {
490 		/* Note the last non-whitespace index */
491 		if (!isspace(*p))
492 			s = q;
493 
494 		*q++ = *p++;
495 	}
496 
497 	*(s + 1) = '\0';
498 }
499 
500 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
501 {
502 	unsigned int n, dummy, ebx, ecx, edx, l2size;
503 
504 	n = c->extended_cpuid_level;
505 
506 	if (n >= 0x80000005) {
507 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
508 		c->x86_cache_size = (ecx>>24) + (edx>>24);
509 #ifdef CONFIG_X86_64
510 		/* On K8 L1 TLB is inclusive, so don't count it */
511 		c->x86_tlbsize = 0;
512 #endif
513 	}
514 
515 	if (n < 0x80000006)	/* Some chips just has a large L1. */
516 		return;
517 
518 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
519 	l2size = ecx >> 16;
520 
521 #ifdef CONFIG_X86_64
522 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
523 #else
524 	/* do processor-specific cache resizing */
525 	if (this_cpu->legacy_cache_size)
526 		l2size = this_cpu->legacy_cache_size(c, l2size);
527 
528 	/* Allow user to override all this if necessary. */
529 	if (cachesize_override != -1)
530 		l2size = cachesize_override;
531 
532 	if (l2size == 0)
533 		return;		/* Again, no L2 cache is possible */
534 #endif
535 
536 	c->x86_cache_size = l2size;
537 }
538 
539 u16 __read_mostly tlb_lli_4k[NR_INFO];
540 u16 __read_mostly tlb_lli_2m[NR_INFO];
541 u16 __read_mostly tlb_lli_4m[NR_INFO];
542 u16 __read_mostly tlb_lld_4k[NR_INFO];
543 u16 __read_mostly tlb_lld_2m[NR_INFO];
544 u16 __read_mostly tlb_lld_4m[NR_INFO];
545 u16 __read_mostly tlb_lld_1g[NR_INFO];
546 
547 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
548 {
549 	if (this_cpu->c_detect_tlb)
550 		this_cpu->c_detect_tlb(c);
551 
552 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
553 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
554 		tlb_lli_4m[ENTRIES]);
555 
556 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
557 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
558 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
559 }
560 
561 void detect_ht(struct cpuinfo_x86 *c)
562 {
563 #ifdef CONFIG_SMP
564 	u32 eax, ebx, ecx, edx;
565 	int index_msb, core_bits;
566 	static bool printed;
567 
568 	if (!cpu_has(c, X86_FEATURE_HT))
569 		return;
570 
571 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
572 		goto out;
573 
574 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
575 		return;
576 
577 	cpuid(1, &eax, &ebx, &ecx, &edx);
578 
579 	smp_num_siblings = (ebx & 0xff0000) >> 16;
580 
581 	if (smp_num_siblings == 1) {
582 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
583 		goto out;
584 	}
585 
586 	if (smp_num_siblings <= 1)
587 		goto out;
588 
589 	index_msb = get_count_order(smp_num_siblings);
590 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
591 
592 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
593 
594 	index_msb = get_count_order(smp_num_siblings);
595 
596 	core_bits = get_count_order(c->x86_max_cores);
597 
598 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
599 				       ((1 << core_bits) - 1);
600 
601 out:
602 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
603 		pr_info("CPU: Physical Processor ID: %d\n",
604 			c->phys_proc_id);
605 		pr_info("CPU: Processor Core ID: %d\n",
606 			c->cpu_core_id);
607 		printed = 1;
608 	}
609 #endif
610 }
611 
612 static void get_cpu_vendor(struct cpuinfo_x86 *c)
613 {
614 	char *v = c->x86_vendor_id;
615 	int i;
616 
617 	for (i = 0; i < X86_VENDOR_NUM; i++) {
618 		if (!cpu_devs[i])
619 			break;
620 
621 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
622 		    (cpu_devs[i]->c_ident[1] &&
623 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
624 
625 			this_cpu = cpu_devs[i];
626 			c->x86_vendor = this_cpu->c_x86_vendor;
627 			return;
628 		}
629 	}
630 
631 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
632 		    "CPU: Your system may be unstable.\n", v);
633 
634 	c->x86_vendor = X86_VENDOR_UNKNOWN;
635 	this_cpu = &default_cpu;
636 }
637 
638 void cpu_detect(struct cpuinfo_x86 *c)
639 {
640 	/* Get vendor name */
641 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
642 	      (unsigned int *)&c->x86_vendor_id[0],
643 	      (unsigned int *)&c->x86_vendor_id[8],
644 	      (unsigned int *)&c->x86_vendor_id[4]);
645 
646 	c->x86 = 4;
647 	/* Intel-defined flags: level 0x00000001 */
648 	if (c->cpuid_level >= 0x00000001) {
649 		u32 junk, tfms, cap0, misc;
650 
651 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
652 		c->x86		= x86_family(tfms);
653 		c->x86_model	= x86_model(tfms);
654 		c->x86_mask	= x86_stepping(tfms);
655 
656 		if (cap0 & (1<<19)) {
657 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
658 			c->x86_cache_alignment = c->x86_clflush_size;
659 		}
660 	}
661 }
662 
663 static void apply_forced_caps(struct cpuinfo_x86 *c)
664 {
665 	int i;
666 
667 	for (i = 0; i < NCAPINTS; i++) {
668 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
669 		c->x86_capability[i] |= cpu_caps_set[i];
670 	}
671 }
672 
673 void get_cpu_cap(struct cpuinfo_x86 *c)
674 {
675 	u32 eax, ebx, ecx, edx;
676 
677 	/* Intel-defined flags: level 0x00000001 */
678 	if (c->cpuid_level >= 0x00000001) {
679 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
680 
681 		c->x86_capability[CPUID_1_ECX] = ecx;
682 		c->x86_capability[CPUID_1_EDX] = edx;
683 	}
684 
685 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
686 	if (c->cpuid_level >= 0x00000006)
687 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
688 
689 	/* Additional Intel-defined flags: level 0x00000007 */
690 	if (c->cpuid_level >= 0x00000007) {
691 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
692 		c->x86_capability[CPUID_7_0_EBX] = ebx;
693 		c->x86_capability[CPUID_7_ECX] = ecx;
694 	}
695 
696 	/* Extended state features: level 0x0000000d */
697 	if (c->cpuid_level >= 0x0000000d) {
698 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
699 
700 		c->x86_capability[CPUID_D_1_EAX] = eax;
701 	}
702 
703 	/* Additional Intel-defined flags: level 0x0000000F */
704 	if (c->cpuid_level >= 0x0000000F) {
705 
706 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
707 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
708 		c->x86_capability[CPUID_F_0_EDX] = edx;
709 
710 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
711 			/* will be overridden if occupancy monitoring exists */
712 			c->x86_cache_max_rmid = ebx;
713 
714 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
715 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
716 			c->x86_capability[CPUID_F_1_EDX] = edx;
717 
718 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
719 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
720 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
721 				c->x86_cache_max_rmid = ecx;
722 				c->x86_cache_occ_scale = ebx;
723 			}
724 		} else {
725 			c->x86_cache_max_rmid = -1;
726 			c->x86_cache_occ_scale = -1;
727 		}
728 	}
729 
730 	/* AMD-defined flags: level 0x80000001 */
731 	eax = cpuid_eax(0x80000000);
732 	c->extended_cpuid_level = eax;
733 
734 	if ((eax & 0xffff0000) == 0x80000000) {
735 		if (eax >= 0x80000001) {
736 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
737 
738 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
739 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
740 		}
741 	}
742 
743 	if (c->extended_cpuid_level >= 0x80000007) {
744 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
745 
746 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
747 		c->x86_power = edx;
748 	}
749 
750 	if (c->extended_cpuid_level >= 0x80000008) {
751 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
752 
753 		c->x86_virt_bits = (eax >> 8) & 0xff;
754 		c->x86_phys_bits = eax & 0xff;
755 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
756 	}
757 #ifdef CONFIG_X86_32
758 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
759 		c->x86_phys_bits = 36;
760 #endif
761 
762 	if (c->extended_cpuid_level >= 0x8000000a)
763 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
764 
765 	init_scattered_cpuid_features(c);
766 
767 	/*
768 	 * Clear/Set all flags overridden by options, after probe.
769 	 * This needs to happen each time we re-probe, which may happen
770 	 * several times during CPU initialization.
771 	 */
772 	apply_forced_caps(c);
773 }
774 
775 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_X86_32
778 	int i;
779 
780 	/*
781 	 * First of all, decide if this is a 486 or higher
782 	 * It's a 486 if we can modify the AC flag
783 	 */
784 	if (flag_is_changeable_p(X86_EFLAGS_AC))
785 		c->x86 = 4;
786 	else
787 		c->x86 = 3;
788 
789 	for (i = 0; i < X86_VENDOR_NUM; i++)
790 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
791 			c->x86_vendor_id[0] = 0;
792 			cpu_devs[i]->c_identify(c);
793 			if (c->x86_vendor_id[0]) {
794 				get_cpu_vendor(c);
795 				break;
796 			}
797 		}
798 #endif
799 }
800 
801 /*
802  * Do minimum CPU detection early.
803  * Fields really needed: vendor, cpuid_level, family, model, mask,
804  * cache alignment.
805  * The others are not touched to avoid unwanted side effects.
806  *
807  * WARNING: this function is only called on the BP.  Don't add code here
808  * that is supposed to run on all CPUs.
809  */
810 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
811 {
812 #ifdef CONFIG_X86_64
813 	c->x86_clflush_size = 64;
814 	c->x86_phys_bits = 36;
815 	c->x86_virt_bits = 48;
816 #else
817 	c->x86_clflush_size = 32;
818 	c->x86_phys_bits = 32;
819 	c->x86_virt_bits = 32;
820 #endif
821 	c->x86_cache_alignment = c->x86_clflush_size;
822 
823 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
824 	c->extended_cpuid_level = 0;
825 
826 	/* cyrix could have cpuid enabled via c_identify()*/
827 	if (have_cpuid_p()) {
828 		cpu_detect(c);
829 		get_cpu_vendor(c);
830 		get_cpu_cap(c);
831 		setup_force_cpu_cap(X86_FEATURE_CPUID);
832 
833 		if (this_cpu->c_early_init)
834 			this_cpu->c_early_init(c);
835 
836 		c->cpu_index = 0;
837 		filter_cpuid_features(c, false);
838 
839 		if (this_cpu->c_bsp_init)
840 			this_cpu->c_bsp_init(c);
841 	} else {
842 		identify_cpu_without_cpuid(c);
843 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
844 	}
845 
846 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
847 	fpu__init_system(c);
848 }
849 
850 void __init early_cpu_init(void)
851 {
852 	const struct cpu_dev *const *cdev;
853 	int count = 0;
854 
855 #ifdef CONFIG_PROCESSOR_SELECT
856 	pr_info("KERNEL supported cpus:\n");
857 #endif
858 
859 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
860 		const struct cpu_dev *cpudev = *cdev;
861 
862 		if (count >= X86_VENDOR_NUM)
863 			break;
864 		cpu_devs[count] = cpudev;
865 		count++;
866 
867 #ifdef CONFIG_PROCESSOR_SELECT
868 		{
869 			unsigned int j;
870 
871 			for (j = 0; j < 2; j++) {
872 				if (!cpudev->c_ident[j])
873 					continue;
874 				pr_info("  %s %s\n", cpudev->c_vendor,
875 					cpudev->c_ident[j]);
876 			}
877 		}
878 #endif
879 	}
880 	early_identify_cpu(&boot_cpu_data);
881 }
882 
883 /*
884  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
885  * unfortunately, that's not true in practice because of early VIA
886  * chips and (more importantly) broken virtualizers that are not easy
887  * to detect. In the latter case it doesn't even *fail* reliably, so
888  * probing for it doesn't even work. Disable it completely on 32-bit
889  * unless we can find a reliable way to detect all the broken cases.
890  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
891  */
892 static void detect_nopl(struct cpuinfo_x86 *c)
893 {
894 #ifdef CONFIG_X86_32
895 	clear_cpu_cap(c, X86_FEATURE_NOPL);
896 #else
897 	set_cpu_cap(c, X86_FEATURE_NOPL);
898 #endif
899 }
900 
901 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
902 {
903 #ifdef CONFIG_X86_64
904 	/*
905 	 * Empirically, writing zero to a segment selector on AMD does
906 	 * not clear the base, whereas writing zero to a segment
907 	 * selector on Intel does clear the base.  Intel's behavior
908 	 * allows slightly faster context switches in the common case
909 	 * where GS is unused by the prev and next threads.
910 	 *
911 	 * Since neither vendor documents this anywhere that I can see,
912 	 * detect it directly instead of hardcoding the choice by
913 	 * vendor.
914 	 *
915 	 * I've designated AMD's behavior as the "bug" because it's
916 	 * counterintuitive and less friendly.
917 	 */
918 
919 	unsigned long old_base, tmp;
920 	rdmsrl(MSR_FS_BASE, old_base);
921 	wrmsrl(MSR_FS_BASE, 1);
922 	loadsegment(fs, 0);
923 	rdmsrl(MSR_FS_BASE, tmp);
924 	if (tmp != 0)
925 		set_cpu_bug(c, X86_BUG_NULL_SEG);
926 	wrmsrl(MSR_FS_BASE, old_base);
927 #endif
928 }
929 
930 static void generic_identify(struct cpuinfo_x86 *c)
931 {
932 	c->extended_cpuid_level = 0;
933 
934 	if (!have_cpuid_p())
935 		identify_cpu_without_cpuid(c);
936 
937 	/* cyrix could have cpuid enabled via c_identify()*/
938 	if (!have_cpuid_p())
939 		return;
940 
941 	cpu_detect(c);
942 
943 	get_cpu_vendor(c);
944 
945 	get_cpu_cap(c);
946 
947 	if (c->cpuid_level >= 0x00000001) {
948 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
949 #ifdef CONFIG_X86_32
950 # ifdef CONFIG_SMP
951 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
952 # else
953 		c->apicid = c->initial_apicid;
954 # endif
955 #endif
956 		c->phys_proc_id = c->initial_apicid;
957 	}
958 
959 	get_model_name(c); /* Default name */
960 
961 	detect_nopl(c);
962 
963 	detect_null_seg_behavior(c);
964 
965 	/*
966 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
967 	 * systems that run Linux at CPL > 0 may or may not have the
968 	 * issue, but, even if they have the issue, there's absolutely
969 	 * nothing we can do about it because we can't use the real IRET
970 	 * instruction.
971 	 *
972 	 * NB: For the time being, only 32-bit kernels support
973 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
974 	 * whether to apply espfix using paravirt hooks.  If any
975 	 * non-paravirt system ever shows up that does *not* have the
976 	 * ESPFIX issue, we can change this.
977 	 */
978 #ifdef CONFIG_X86_32
979 # ifdef CONFIG_PARAVIRT
980 	do {
981 		extern void native_iret(void);
982 		if (pv_cpu_ops.iret == native_iret)
983 			set_cpu_bug(c, X86_BUG_ESPFIX);
984 	} while (0);
985 # else
986 	set_cpu_bug(c, X86_BUG_ESPFIX);
987 # endif
988 #endif
989 }
990 
991 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
992 {
993 	/*
994 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
995 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
996 	 * in case CQM bits really aren't there in this CPU.
997 	 */
998 	if (c != &boot_cpu_data) {
999 		boot_cpu_data.x86_cache_max_rmid =
1000 			min(boot_cpu_data.x86_cache_max_rmid,
1001 			    c->x86_cache_max_rmid);
1002 	}
1003 }
1004 
1005 /*
1006  * Validate that ACPI/mptables have the same information about the
1007  * effective APIC id and update the package map.
1008  */
1009 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1010 {
1011 #ifdef CONFIG_SMP
1012 	unsigned int apicid, cpu = smp_processor_id();
1013 
1014 	apicid = apic->cpu_present_to_apicid(cpu);
1015 
1016 	if (apicid != c->apicid) {
1017 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1018 		       cpu, apicid, c->initial_apicid);
1019 	}
1020 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1021 #else
1022 	c->logical_proc_id = 0;
1023 #endif
1024 }
1025 
1026 /*
1027  * This does the hard work of actually picking apart the CPU stuff...
1028  */
1029 static void identify_cpu(struct cpuinfo_x86 *c)
1030 {
1031 	int i;
1032 
1033 	c->loops_per_jiffy = loops_per_jiffy;
1034 	c->x86_cache_size = -1;
1035 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1036 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1037 	c->x86_vendor_id[0] = '\0'; /* Unset */
1038 	c->x86_model_id[0] = '\0';  /* Unset */
1039 	c->x86_max_cores = 1;
1040 	c->x86_coreid_bits = 0;
1041 	c->cu_id = 0xff;
1042 #ifdef CONFIG_X86_64
1043 	c->x86_clflush_size = 64;
1044 	c->x86_phys_bits = 36;
1045 	c->x86_virt_bits = 48;
1046 #else
1047 	c->cpuid_level = -1;	/* CPUID not detected */
1048 	c->x86_clflush_size = 32;
1049 	c->x86_phys_bits = 32;
1050 	c->x86_virt_bits = 32;
1051 #endif
1052 	c->x86_cache_alignment = c->x86_clflush_size;
1053 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1054 
1055 	generic_identify(c);
1056 
1057 	if (this_cpu->c_identify)
1058 		this_cpu->c_identify(c);
1059 
1060 	/* Clear/Set all flags overridden by options, after probe */
1061 	apply_forced_caps(c);
1062 
1063 #ifdef CONFIG_X86_64
1064 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1065 #endif
1066 
1067 	/*
1068 	 * Vendor-specific initialization.  In this section we
1069 	 * canonicalize the feature flags, meaning if there are
1070 	 * features a certain CPU supports which CPUID doesn't
1071 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1072 	 * we handle them here.
1073 	 *
1074 	 * At the end of this section, c->x86_capability better
1075 	 * indicate the features this CPU genuinely supports!
1076 	 */
1077 	if (this_cpu->c_init)
1078 		this_cpu->c_init(c);
1079 
1080 	/* Disable the PN if appropriate */
1081 	squash_the_stupid_serial_number(c);
1082 
1083 	/* Set up SMEP/SMAP */
1084 	setup_smep(c);
1085 	setup_smap(c);
1086 
1087 	/*
1088 	 * The vendor-specific functions might have changed features.
1089 	 * Now we do "generic changes."
1090 	 */
1091 
1092 	/* Filter out anything that depends on CPUID levels we don't have */
1093 	filter_cpuid_features(c, true);
1094 
1095 	/* If the model name is still unset, do table lookup. */
1096 	if (!c->x86_model_id[0]) {
1097 		const char *p;
1098 		p = table_lookup_model(c);
1099 		if (p)
1100 			strcpy(c->x86_model_id, p);
1101 		else
1102 			/* Last resort... */
1103 			sprintf(c->x86_model_id, "%02x/%02x",
1104 				c->x86, c->x86_model);
1105 	}
1106 
1107 #ifdef CONFIG_X86_64
1108 	detect_ht(c);
1109 #endif
1110 
1111 	init_hypervisor(c);
1112 	x86_init_rdrand(c);
1113 	x86_init_cache_qos(c);
1114 	setup_pku(c);
1115 
1116 	/*
1117 	 * Clear/Set all flags overridden by options, need do it
1118 	 * before following smp all cpus cap AND.
1119 	 */
1120 	apply_forced_caps(c);
1121 
1122 	/*
1123 	 * On SMP, boot_cpu_data holds the common feature set between
1124 	 * all CPUs; so make sure that we indicate which features are
1125 	 * common between the CPUs.  The first time this routine gets
1126 	 * executed, c == &boot_cpu_data.
1127 	 */
1128 	if (c != &boot_cpu_data) {
1129 		/* AND the already accumulated flags with these */
1130 		for (i = 0; i < NCAPINTS; i++)
1131 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1132 
1133 		/* OR, i.e. replicate the bug flags */
1134 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1135 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1136 	}
1137 
1138 	/* Init Machine Check Exception if available. */
1139 	mcheck_cpu_init(c);
1140 
1141 	select_idle_routine(c);
1142 
1143 #ifdef CONFIG_NUMA
1144 	numa_add_cpu(smp_processor_id());
1145 #endif
1146 }
1147 
1148 /*
1149  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1150  * on 32-bit kernels:
1151  */
1152 #ifdef CONFIG_X86_32
1153 void enable_sep_cpu(void)
1154 {
1155 	struct tss_struct *tss;
1156 	int cpu;
1157 
1158 	if (!boot_cpu_has(X86_FEATURE_SEP))
1159 		return;
1160 
1161 	cpu = get_cpu();
1162 	tss = &per_cpu(cpu_tss, cpu);
1163 
1164 	/*
1165 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1166 	 * see the big comment in struct x86_hw_tss's definition.
1167 	 */
1168 
1169 	tss->x86_tss.ss1 = __KERNEL_CS;
1170 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1171 
1172 	wrmsr(MSR_IA32_SYSENTER_ESP,
1173 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1174 	      0);
1175 
1176 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1177 
1178 	put_cpu();
1179 }
1180 #endif
1181 
1182 void __init identify_boot_cpu(void)
1183 {
1184 	identify_cpu(&boot_cpu_data);
1185 #ifdef CONFIG_X86_32
1186 	sysenter_setup();
1187 	enable_sep_cpu();
1188 #endif
1189 	cpu_detect_tlb(&boot_cpu_data);
1190 }
1191 
1192 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1193 {
1194 	BUG_ON(c == &boot_cpu_data);
1195 	identify_cpu(c);
1196 #ifdef CONFIG_X86_32
1197 	enable_sep_cpu();
1198 #endif
1199 	mtrr_ap_init();
1200 	validate_apic_and_package_id(c);
1201 }
1202 
1203 static __init int setup_noclflush(char *arg)
1204 {
1205 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1206 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1207 	return 1;
1208 }
1209 __setup("noclflush", setup_noclflush);
1210 
1211 void print_cpu_info(struct cpuinfo_x86 *c)
1212 {
1213 	const char *vendor = NULL;
1214 
1215 	if (c->x86_vendor < X86_VENDOR_NUM) {
1216 		vendor = this_cpu->c_vendor;
1217 	} else {
1218 		if (c->cpuid_level >= 0)
1219 			vendor = c->x86_vendor_id;
1220 	}
1221 
1222 	if (vendor && !strstr(c->x86_model_id, vendor))
1223 		pr_cont("%s ", vendor);
1224 
1225 	if (c->x86_model_id[0])
1226 		pr_cont("%s", c->x86_model_id);
1227 	else
1228 		pr_cont("%d86", c->x86);
1229 
1230 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1231 
1232 	if (c->x86_mask || c->cpuid_level >= 0)
1233 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1234 	else
1235 		pr_cont(")\n");
1236 }
1237 
1238 static __init int setup_disablecpuid(char *arg)
1239 {
1240 	int bit;
1241 
1242 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1243 		setup_clear_cpu_cap(bit);
1244 	else
1245 		return 0;
1246 
1247 	return 1;
1248 }
1249 __setup("clearcpuid=", setup_disablecpuid);
1250 
1251 #ifdef CONFIG_X86_64
1252 struct desc_ptr idt_descr __ro_after_init = {
1253 	.size = NR_VECTORS * 16 - 1,
1254 	.address = (unsigned long) idt_table,
1255 };
1256 const struct desc_ptr debug_idt_descr = {
1257 	.size = NR_VECTORS * 16 - 1,
1258 	.address = (unsigned long) debug_idt_table,
1259 };
1260 
1261 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1262 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1263 
1264 /*
1265  * The following percpu variables are hot.  Align current_task to
1266  * cacheline size such that they fall in the same cacheline.
1267  */
1268 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1269 	&init_task;
1270 EXPORT_PER_CPU_SYMBOL(current_task);
1271 
1272 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1273 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1274 
1275 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1276 
1277 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1278 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1279 
1280 /*
1281  * Special IST stacks which the CPU switches to when it calls
1282  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1283  * limit), all of them are 4K, except the debug stack which
1284  * is 8K.
1285  */
1286 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1287 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1288 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1289 };
1290 
1291 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1292 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1293 
1294 /* May not be marked __init: used by software suspend */
1295 void syscall_init(void)
1296 {
1297 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1298 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1299 
1300 #ifdef CONFIG_IA32_EMULATION
1301 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1302 	/*
1303 	 * This only works on Intel CPUs.
1304 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1305 	 * This does not cause SYSENTER to jump to the wrong location, because
1306 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1307 	 */
1308 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1309 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1310 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1311 #else
1312 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1313 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1314 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1315 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1316 #endif
1317 
1318 	/* Flags to clear on syscall */
1319 	wrmsrl(MSR_SYSCALL_MASK,
1320 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1321 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1322 }
1323 
1324 /*
1325  * Copies of the original ist values from the tss are only accessed during
1326  * debugging, no special alignment required.
1327  */
1328 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1329 
1330 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1331 DEFINE_PER_CPU(int, debug_stack_usage);
1332 
1333 int is_debug_stack(unsigned long addr)
1334 {
1335 	return __this_cpu_read(debug_stack_usage) ||
1336 		(addr <= __this_cpu_read(debug_stack_addr) &&
1337 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1338 }
1339 NOKPROBE_SYMBOL(is_debug_stack);
1340 
1341 DEFINE_PER_CPU(u32, debug_idt_ctr);
1342 
1343 void debug_stack_set_zero(void)
1344 {
1345 	this_cpu_inc(debug_idt_ctr);
1346 	load_current_idt();
1347 }
1348 NOKPROBE_SYMBOL(debug_stack_set_zero);
1349 
1350 void debug_stack_reset(void)
1351 {
1352 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1353 		return;
1354 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1355 		load_current_idt();
1356 }
1357 NOKPROBE_SYMBOL(debug_stack_reset);
1358 
1359 #else	/* CONFIG_X86_64 */
1360 
1361 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1362 EXPORT_PER_CPU_SYMBOL(current_task);
1363 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1364 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1365 
1366 /*
1367  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1368  * the top of the kernel stack.  Use an extra percpu variable to track the
1369  * top of the kernel stack directly.
1370  */
1371 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1372 	(unsigned long)&init_thread_union + THREAD_SIZE;
1373 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1374 
1375 #ifdef CONFIG_CC_STACKPROTECTOR
1376 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1377 #endif
1378 
1379 #endif	/* CONFIG_X86_64 */
1380 
1381 /*
1382  * Clear all 6 debug registers:
1383  */
1384 static void clear_all_debug_regs(void)
1385 {
1386 	int i;
1387 
1388 	for (i = 0; i < 8; i++) {
1389 		/* Ignore db4, db5 */
1390 		if ((i == 4) || (i == 5))
1391 			continue;
1392 
1393 		set_debugreg(0, i);
1394 	}
1395 }
1396 
1397 #ifdef CONFIG_KGDB
1398 /*
1399  * Restore debug regs if using kgdbwait and you have a kernel debugger
1400  * connection established.
1401  */
1402 static void dbg_restore_debug_regs(void)
1403 {
1404 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1405 		arch_kgdb_ops.correct_hw_break();
1406 }
1407 #else /* ! CONFIG_KGDB */
1408 #define dbg_restore_debug_regs()
1409 #endif /* ! CONFIG_KGDB */
1410 
1411 static void wait_for_master_cpu(int cpu)
1412 {
1413 #ifdef CONFIG_SMP
1414 	/*
1415 	 * wait for ACK from master CPU before continuing
1416 	 * with AP initialization
1417 	 */
1418 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1419 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1420 		cpu_relax();
1421 #endif
1422 }
1423 
1424 /*
1425  * cpu_init() initializes state that is per-CPU. Some data is already
1426  * initialized (naturally) in the bootstrap process, such as the GDT
1427  * and IDT. We reload them nevertheless, this function acts as a
1428  * 'CPU state barrier', nothing should get across.
1429  * A lot of state is already set up in PDA init for 64 bit
1430  */
1431 #ifdef CONFIG_X86_64
1432 
1433 void cpu_init(void)
1434 {
1435 	struct orig_ist *oist;
1436 	struct task_struct *me;
1437 	struct tss_struct *t;
1438 	unsigned long v;
1439 	int cpu = raw_smp_processor_id();
1440 	int i;
1441 
1442 	wait_for_master_cpu(cpu);
1443 
1444 	/*
1445 	 * Initialize the CR4 shadow before doing anything that could
1446 	 * try to read it.
1447 	 */
1448 	cr4_init_shadow();
1449 
1450 	if (cpu)
1451 		load_ucode_ap();
1452 
1453 	t = &per_cpu(cpu_tss, cpu);
1454 	oist = &per_cpu(orig_ist, cpu);
1455 
1456 #ifdef CONFIG_NUMA
1457 	if (this_cpu_read(numa_node) == 0 &&
1458 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1459 		set_numa_node(early_cpu_to_node(cpu));
1460 #endif
1461 
1462 	me = current;
1463 
1464 	pr_debug("Initializing CPU#%d\n", cpu);
1465 
1466 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1467 
1468 	/*
1469 	 * Initialize the per-CPU GDT with the boot GDT,
1470 	 * and set up the GDT descriptor:
1471 	 */
1472 
1473 	switch_to_new_gdt(cpu);
1474 	loadsegment(fs, 0);
1475 
1476 	load_current_idt();
1477 
1478 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1479 	syscall_init();
1480 
1481 	wrmsrl(MSR_FS_BASE, 0);
1482 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1483 	barrier();
1484 
1485 	x86_configure_nx();
1486 	x2apic_setup();
1487 
1488 	/*
1489 	 * set up and load the per-CPU TSS
1490 	 */
1491 	if (!oist->ist[0]) {
1492 		char *estacks = per_cpu(exception_stacks, cpu);
1493 
1494 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1495 			estacks += exception_stack_sizes[v];
1496 			oist->ist[v] = t->x86_tss.ist[v] =
1497 					(unsigned long)estacks;
1498 			if (v == DEBUG_STACK-1)
1499 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1500 		}
1501 	}
1502 
1503 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1504 
1505 	/*
1506 	 * <= is required because the CPU will access up to
1507 	 * 8 bits beyond the end of the IO permission bitmap.
1508 	 */
1509 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1510 		t->io_bitmap[i] = ~0UL;
1511 
1512 	mmgrab(&init_mm);
1513 	me->active_mm = &init_mm;
1514 	BUG_ON(me->mm);
1515 	enter_lazy_tlb(&init_mm, me);
1516 
1517 	load_sp0(t, &current->thread);
1518 	set_tss_desc(cpu, t);
1519 	load_TR_desc();
1520 	load_mm_ldt(&init_mm);
1521 
1522 	clear_all_debug_regs();
1523 	dbg_restore_debug_regs();
1524 
1525 	fpu__init_cpu();
1526 
1527 	if (is_uv_system())
1528 		uv_cpu_init();
1529 }
1530 
1531 #else
1532 
1533 void cpu_init(void)
1534 {
1535 	int cpu = smp_processor_id();
1536 	struct task_struct *curr = current;
1537 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1538 	struct thread_struct *thread = &curr->thread;
1539 
1540 	wait_for_master_cpu(cpu);
1541 
1542 	/*
1543 	 * Initialize the CR4 shadow before doing anything that could
1544 	 * try to read it.
1545 	 */
1546 	cr4_init_shadow();
1547 
1548 	show_ucode_info_early();
1549 
1550 	pr_info("Initializing CPU#%d\n", cpu);
1551 
1552 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1553 	    boot_cpu_has(X86_FEATURE_TSC) ||
1554 	    boot_cpu_has(X86_FEATURE_DE))
1555 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1556 
1557 	load_current_idt();
1558 	switch_to_new_gdt(cpu);
1559 
1560 	/*
1561 	 * Set up and load the per-CPU TSS and LDT
1562 	 */
1563 	mmgrab(&init_mm);
1564 	curr->active_mm = &init_mm;
1565 	BUG_ON(curr->mm);
1566 	enter_lazy_tlb(&init_mm, curr);
1567 
1568 	load_sp0(t, thread);
1569 	set_tss_desc(cpu, t);
1570 	load_TR_desc();
1571 	load_mm_ldt(&init_mm);
1572 
1573 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1574 
1575 #ifdef CONFIG_DOUBLEFAULT
1576 	/* Set up doublefault TSS pointer in the GDT */
1577 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1578 #endif
1579 
1580 	clear_all_debug_regs();
1581 	dbg_restore_debug_regs();
1582 
1583 	fpu__init_cpu();
1584 }
1585 #endif
1586 
1587 static void bsp_resume(void)
1588 {
1589 	if (this_cpu->c_bsp_resume)
1590 		this_cpu->c_bsp_resume(&boot_cpu_data);
1591 }
1592 
1593 static struct syscore_ops cpu_syscore_ops = {
1594 	.resume		= bsp_resume,
1595 };
1596 
1597 static int __init init_cpu_syscore(void)
1598 {
1599 	register_syscore_ops(&cpu_syscore_ops);
1600 	return 0;
1601 }
1602 core_initcall(init_cpu_syscore);
1603