xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision e23feb16)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 #include <asm/microcode.h>
41 #include <asm/microcode_intel.h>
42 
43 #ifdef CONFIG_X86_LOCAL_APIC
44 #include <asm/uv/uv.h>
45 #endif
46 
47 #include "cpu.h"
48 
49 /* all of these masks are initialized in setup_cpu_local_masks() */
50 cpumask_var_t cpu_initialized_mask;
51 cpumask_var_t cpu_callout_mask;
52 cpumask_var_t cpu_callin_mask;
53 
54 /* representing cpus for which sibling maps can be computed */
55 cpumask_var_t cpu_sibling_setup_mask;
56 
57 /* correctly size the local cpu masks */
58 void __init setup_cpu_local_masks(void)
59 {
60 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
61 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
62 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
63 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
64 }
65 
66 static void default_init(struct cpuinfo_x86 *c)
67 {
68 #ifdef CONFIG_X86_64
69 	cpu_detect_cache_sizes(c);
70 #else
71 	/* Not much we can do here... */
72 	/* Check if at least it has cpuid */
73 	if (c->cpuid_level == -1) {
74 		/* No cpuid. It must be an ancient CPU */
75 		if (c->x86 == 4)
76 			strcpy(c->x86_model_id, "486");
77 		else if (c->x86 == 3)
78 			strcpy(c->x86_model_id, "386");
79 	}
80 #endif
81 }
82 
83 static const struct cpu_dev default_cpu = {
84 	.c_init		= default_init,
85 	.c_vendor	= "Unknown",
86 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
87 };
88 
89 static const struct cpu_dev *this_cpu = &default_cpu;
90 
91 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
92 #ifdef CONFIG_X86_64
93 	/*
94 	 * We need valid kernel segments for data and code in long mode too
95 	 * IRET will check the segment types  kkeil 2000/10/28
96 	 * Also sysret mandates a special GDT layout
97 	 *
98 	 * TLS descriptors are currently at a different place compared to i386.
99 	 * Hopefully nobody expects them at a fixed place (Wine?)
100 	 */
101 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
107 #else
108 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
112 	/*
113 	 * Segments used for calling PnP BIOS have byte granularity.
114 	 * They code segments and data segments have fixed 64k limits,
115 	 * the transfer segment sizes are set at run time.
116 	 */
117 	/* 32-bit code */
118 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
119 	/* 16-bit code */
120 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
121 	/* 16-bit data */
122 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
127 	/*
128 	 * The APM segments have byte granularity and their bases
129 	 * are set at run time.  All have 64k limits.
130 	 */
131 	/* 32-bit code */
132 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133 	/* 16-bit code */
134 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135 	/* data */
136 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
137 
138 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 	GDT_STACK_CANARY_INIT
141 #endif
142 } };
143 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
144 
145 static int __init x86_xsave_setup(char *s)
146 {
147 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
148 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
149 	setup_clear_cpu_cap(X86_FEATURE_AVX);
150 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
151 	return 1;
152 }
153 __setup("noxsave", x86_xsave_setup);
154 
155 static int __init x86_xsaveopt_setup(char *s)
156 {
157 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
158 	return 1;
159 }
160 __setup("noxsaveopt", x86_xsaveopt_setup);
161 
162 #ifdef CONFIG_X86_32
163 static int cachesize_override = -1;
164 static int disable_x86_serial_nr = 1;
165 
166 static int __init cachesize_setup(char *str)
167 {
168 	get_option(&str, &cachesize_override);
169 	return 1;
170 }
171 __setup("cachesize=", cachesize_setup);
172 
173 static int __init x86_fxsr_setup(char *s)
174 {
175 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
176 	setup_clear_cpu_cap(X86_FEATURE_XMM);
177 	return 1;
178 }
179 __setup("nofxsr", x86_fxsr_setup);
180 
181 static int __init x86_sep_setup(char *s)
182 {
183 	setup_clear_cpu_cap(X86_FEATURE_SEP);
184 	return 1;
185 }
186 __setup("nosep", x86_sep_setup);
187 
188 /* Standard macro to see if a specific flag is changeable */
189 static inline int flag_is_changeable_p(u32 flag)
190 {
191 	u32 f1, f2;
192 
193 	/*
194 	 * Cyrix and IDT cpus allow disabling of CPUID
195 	 * so the code below may return different results
196 	 * when it is executed before and after enabling
197 	 * the CPUID. Add "volatile" to not allow gcc to
198 	 * optimize the subsequent calls to this function.
199 	 */
200 	asm volatile ("pushfl		\n\t"
201 		      "pushfl		\n\t"
202 		      "popl %0		\n\t"
203 		      "movl %0, %1	\n\t"
204 		      "xorl %2, %0	\n\t"
205 		      "pushl %0		\n\t"
206 		      "popfl		\n\t"
207 		      "pushfl		\n\t"
208 		      "popl %0		\n\t"
209 		      "popfl		\n\t"
210 
211 		      : "=&r" (f1), "=&r" (f2)
212 		      : "ir" (flag));
213 
214 	return ((f1^f2) & flag) != 0;
215 }
216 
217 /* Probe for the CPUID instruction */
218 int have_cpuid_p(void)
219 {
220 	return flag_is_changeable_p(X86_EFLAGS_ID);
221 }
222 
223 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
224 {
225 	unsigned long lo, hi;
226 
227 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
228 		return;
229 
230 	/* Disable processor serial number: */
231 
232 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 	lo |= 0x200000;
234 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
235 
236 	printk(KERN_NOTICE "CPU serial number disabled.\n");
237 	clear_cpu_cap(c, X86_FEATURE_PN);
238 
239 	/* Disabling the serial number may affect the cpuid level */
240 	c->cpuid_level = cpuid_eax(0);
241 }
242 
243 static int __init x86_serial_nr_setup(char *s)
244 {
245 	disable_x86_serial_nr = 0;
246 	return 1;
247 }
248 __setup("serialnumber", x86_serial_nr_setup);
249 #else
250 static inline int flag_is_changeable_p(u32 flag)
251 {
252 	return 1;
253 }
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 }
257 #endif
258 
259 static __init int setup_disable_smep(char *arg)
260 {
261 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
262 	return 1;
263 }
264 __setup("nosmep", setup_disable_smep);
265 
266 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
267 {
268 	if (cpu_has(c, X86_FEATURE_SMEP))
269 		set_in_cr4(X86_CR4_SMEP);
270 }
271 
272 static __init int setup_disable_smap(char *arg)
273 {
274 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
275 	return 1;
276 }
277 __setup("nosmap", setup_disable_smap);
278 
279 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
280 {
281 	unsigned long eflags;
282 
283 	/* This should have been cleared long ago */
284 	raw_local_save_flags(eflags);
285 	BUG_ON(eflags & X86_EFLAGS_AC);
286 
287 	if (cpu_has(c, X86_FEATURE_SMAP))
288 		set_in_cr4(X86_CR4_SMAP);
289 }
290 
291 /*
292  * Some CPU features depend on higher CPUID levels, which may not always
293  * be available due to CPUID level capping or broken virtualization
294  * software.  Add those features to this table to auto-disable them.
295  */
296 struct cpuid_dependent_feature {
297 	u32 feature;
298 	u32 level;
299 };
300 
301 static const struct cpuid_dependent_feature
302 cpuid_dependent_features[] = {
303 	{ X86_FEATURE_MWAIT,		0x00000005 },
304 	{ X86_FEATURE_DCA,		0x00000009 },
305 	{ X86_FEATURE_XSAVE,		0x0000000d },
306 	{ 0, 0 }
307 };
308 
309 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
310 {
311 	const struct cpuid_dependent_feature *df;
312 
313 	for (df = cpuid_dependent_features; df->feature; df++) {
314 
315 		if (!cpu_has(c, df->feature))
316 			continue;
317 		/*
318 		 * Note: cpuid_level is set to -1 if unavailable, but
319 		 * extended_extended_level is set to 0 if unavailable
320 		 * and the legitimate extended levels are all negative
321 		 * when signed; hence the weird messing around with
322 		 * signs here...
323 		 */
324 		if (!((s32)df->level < 0 ?
325 		     (u32)df->level > (u32)c->extended_cpuid_level :
326 		     (s32)df->level > (s32)c->cpuid_level))
327 			continue;
328 
329 		clear_cpu_cap(c, df->feature);
330 		if (!warn)
331 			continue;
332 
333 		printk(KERN_WARNING
334 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
335 				x86_cap_flags[df->feature], df->level);
336 	}
337 }
338 
339 /*
340  * Naming convention should be: <Name> [(<Codename>)]
341  * This table only is used unless init_<vendor>() below doesn't set it;
342  * in particular, if CPUID levels 0x80000002..4 are supported, this
343  * isn't used
344  */
345 
346 /* Look up CPU names by table lookup. */
347 static const char *table_lookup_model(struct cpuinfo_x86 *c)
348 {
349 	const struct cpu_model_info *info;
350 
351 	if (c->x86_model >= 16)
352 		return NULL;	/* Range check */
353 
354 	if (!this_cpu)
355 		return NULL;
356 
357 	info = this_cpu->c_models;
358 
359 	while (info && info->family) {
360 		if (info->family == c->x86)
361 			return info->model_names[c->x86_model];
362 		info++;
363 	}
364 	return NULL;		/* Not found */
365 }
366 
367 __u32 cpu_caps_cleared[NCAPINTS];
368 __u32 cpu_caps_set[NCAPINTS];
369 
370 void load_percpu_segment(int cpu)
371 {
372 #ifdef CONFIG_X86_32
373 	loadsegment(fs, __KERNEL_PERCPU);
374 #else
375 	loadsegment(gs, 0);
376 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
377 #endif
378 	load_stack_canary_segment();
379 }
380 
381 /*
382  * Current gdt points %fs at the "master" per-cpu area: after this,
383  * it's on the real one.
384  */
385 void switch_to_new_gdt(int cpu)
386 {
387 	struct desc_ptr gdt_descr;
388 
389 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
390 	gdt_descr.size = GDT_SIZE - 1;
391 	load_gdt(&gdt_descr);
392 	/* Reload the per-cpu base */
393 
394 	load_percpu_segment(cpu);
395 }
396 
397 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
398 
399 static void get_model_name(struct cpuinfo_x86 *c)
400 {
401 	unsigned int *v;
402 	char *p, *q;
403 
404 	if (c->extended_cpuid_level < 0x80000004)
405 		return;
406 
407 	v = (unsigned int *)c->x86_model_id;
408 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
409 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
410 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
411 	c->x86_model_id[48] = 0;
412 
413 	/*
414 	 * Intel chips right-justify this string for some dumb reason;
415 	 * undo that brain damage:
416 	 */
417 	p = q = &c->x86_model_id[0];
418 	while (*p == ' ')
419 		p++;
420 	if (p != q) {
421 		while (*p)
422 			*q++ = *p++;
423 		while (q <= &c->x86_model_id[48])
424 			*q++ = '\0';	/* Zero-pad the rest */
425 	}
426 }
427 
428 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
429 {
430 	unsigned int n, dummy, ebx, ecx, edx, l2size;
431 
432 	n = c->extended_cpuid_level;
433 
434 	if (n >= 0x80000005) {
435 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
436 		c->x86_cache_size = (ecx>>24) + (edx>>24);
437 #ifdef CONFIG_X86_64
438 		/* On K8 L1 TLB is inclusive, so don't count it */
439 		c->x86_tlbsize = 0;
440 #endif
441 	}
442 
443 	if (n < 0x80000006)	/* Some chips just has a large L1. */
444 		return;
445 
446 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
447 	l2size = ecx >> 16;
448 
449 #ifdef CONFIG_X86_64
450 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
451 #else
452 	/* do processor-specific cache resizing */
453 	if (this_cpu->c_size_cache)
454 		l2size = this_cpu->c_size_cache(c, l2size);
455 
456 	/* Allow user to override all this if necessary. */
457 	if (cachesize_override != -1)
458 		l2size = cachesize_override;
459 
460 	if (l2size == 0)
461 		return;		/* Again, no L2 cache is possible */
462 #endif
463 
464 	c->x86_cache_size = l2size;
465 }
466 
467 u16 __read_mostly tlb_lli_4k[NR_INFO];
468 u16 __read_mostly tlb_lli_2m[NR_INFO];
469 u16 __read_mostly tlb_lli_4m[NR_INFO];
470 u16 __read_mostly tlb_lld_4k[NR_INFO];
471 u16 __read_mostly tlb_lld_2m[NR_INFO];
472 u16 __read_mostly tlb_lld_4m[NR_INFO];
473 
474 /*
475  * tlb_flushall_shift shows the balance point in replacing cr3 write
476  * with multiple 'invlpg'. It will do this replacement when
477  *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
478  * If tlb_flushall_shift is -1, means the replacement will be disabled.
479  */
480 s8  __read_mostly tlb_flushall_shift = -1;
481 
482 void cpu_detect_tlb(struct cpuinfo_x86 *c)
483 {
484 	if (this_cpu->c_detect_tlb)
485 		this_cpu->c_detect_tlb(c);
486 
487 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
488 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n"	     \
489 		"tlb_flushall_shift: %d\n",
490 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
491 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
492 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
493 		tlb_flushall_shift);
494 }
495 
496 void detect_ht(struct cpuinfo_x86 *c)
497 {
498 #ifdef CONFIG_X86_HT
499 	u32 eax, ebx, ecx, edx;
500 	int index_msb, core_bits;
501 	static bool printed;
502 
503 	if (!cpu_has(c, X86_FEATURE_HT))
504 		return;
505 
506 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
507 		goto out;
508 
509 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
510 		return;
511 
512 	cpuid(1, &eax, &ebx, &ecx, &edx);
513 
514 	smp_num_siblings = (ebx & 0xff0000) >> 16;
515 
516 	if (smp_num_siblings == 1) {
517 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
518 		goto out;
519 	}
520 
521 	if (smp_num_siblings <= 1)
522 		goto out;
523 
524 	index_msb = get_count_order(smp_num_siblings);
525 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
526 
527 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
528 
529 	index_msb = get_count_order(smp_num_siblings);
530 
531 	core_bits = get_count_order(c->x86_max_cores);
532 
533 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
534 				       ((1 << core_bits) - 1);
535 
536 out:
537 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
538 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
539 		       c->phys_proc_id);
540 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
541 		       c->cpu_core_id);
542 		printed = 1;
543 	}
544 #endif
545 }
546 
547 static void get_cpu_vendor(struct cpuinfo_x86 *c)
548 {
549 	char *v = c->x86_vendor_id;
550 	int i;
551 
552 	for (i = 0; i < X86_VENDOR_NUM; i++) {
553 		if (!cpu_devs[i])
554 			break;
555 
556 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
557 		    (cpu_devs[i]->c_ident[1] &&
558 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
559 
560 			this_cpu = cpu_devs[i];
561 			c->x86_vendor = this_cpu->c_x86_vendor;
562 			return;
563 		}
564 	}
565 
566 	printk_once(KERN_ERR
567 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
568 			"CPU: Your system may be unstable.\n", v);
569 
570 	c->x86_vendor = X86_VENDOR_UNKNOWN;
571 	this_cpu = &default_cpu;
572 }
573 
574 void cpu_detect(struct cpuinfo_x86 *c)
575 {
576 	/* Get vendor name */
577 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
578 	      (unsigned int *)&c->x86_vendor_id[0],
579 	      (unsigned int *)&c->x86_vendor_id[8],
580 	      (unsigned int *)&c->x86_vendor_id[4]);
581 
582 	c->x86 = 4;
583 	/* Intel-defined flags: level 0x00000001 */
584 	if (c->cpuid_level >= 0x00000001) {
585 		u32 junk, tfms, cap0, misc;
586 
587 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
588 		c->x86 = (tfms >> 8) & 0xf;
589 		c->x86_model = (tfms >> 4) & 0xf;
590 		c->x86_mask = tfms & 0xf;
591 
592 		if (c->x86 == 0xf)
593 			c->x86 += (tfms >> 20) & 0xff;
594 		if (c->x86 >= 0x6)
595 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
596 
597 		if (cap0 & (1<<19)) {
598 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
599 			c->x86_cache_alignment = c->x86_clflush_size;
600 		}
601 	}
602 }
603 
604 void get_cpu_cap(struct cpuinfo_x86 *c)
605 {
606 	u32 tfms, xlvl;
607 	u32 ebx;
608 
609 	/* Intel-defined flags: level 0x00000001 */
610 	if (c->cpuid_level >= 0x00000001) {
611 		u32 capability, excap;
612 
613 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
614 		c->x86_capability[0] = capability;
615 		c->x86_capability[4] = excap;
616 	}
617 
618 	/* Additional Intel-defined flags: level 0x00000007 */
619 	if (c->cpuid_level >= 0x00000007) {
620 		u32 eax, ebx, ecx, edx;
621 
622 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
623 
624 		c->x86_capability[9] = ebx;
625 	}
626 
627 	/* AMD-defined flags: level 0x80000001 */
628 	xlvl = cpuid_eax(0x80000000);
629 	c->extended_cpuid_level = xlvl;
630 
631 	if ((xlvl & 0xffff0000) == 0x80000000) {
632 		if (xlvl >= 0x80000001) {
633 			c->x86_capability[1] = cpuid_edx(0x80000001);
634 			c->x86_capability[6] = cpuid_ecx(0x80000001);
635 		}
636 	}
637 
638 	if (c->extended_cpuid_level >= 0x80000008) {
639 		u32 eax = cpuid_eax(0x80000008);
640 
641 		c->x86_virt_bits = (eax >> 8) & 0xff;
642 		c->x86_phys_bits = eax & 0xff;
643 	}
644 #ifdef CONFIG_X86_32
645 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
646 		c->x86_phys_bits = 36;
647 #endif
648 
649 	if (c->extended_cpuid_level >= 0x80000007)
650 		c->x86_power = cpuid_edx(0x80000007);
651 
652 	init_scattered_cpuid_features(c);
653 }
654 
655 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
656 {
657 #ifdef CONFIG_X86_32
658 	int i;
659 
660 	/*
661 	 * First of all, decide if this is a 486 or higher
662 	 * It's a 486 if we can modify the AC flag
663 	 */
664 	if (flag_is_changeable_p(X86_EFLAGS_AC))
665 		c->x86 = 4;
666 	else
667 		c->x86 = 3;
668 
669 	for (i = 0; i < X86_VENDOR_NUM; i++)
670 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
671 			c->x86_vendor_id[0] = 0;
672 			cpu_devs[i]->c_identify(c);
673 			if (c->x86_vendor_id[0]) {
674 				get_cpu_vendor(c);
675 				break;
676 			}
677 		}
678 #endif
679 }
680 
681 /*
682  * Do minimum CPU detection early.
683  * Fields really needed: vendor, cpuid_level, family, model, mask,
684  * cache alignment.
685  * The others are not touched to avoid unwanted side effects.
686  *
687  * WARNING: this function is only called on the BP.  Don't add code here
688  * that is supposed to run on all CPUs.
689  */
690 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
691 {
692 #ifdef CONFIG_X86_64
693 	c->x86_clflush_size = 64;
694 	c->x86_phys_bits = 36;
695 	c->x86_virt_bits = 48;
696 #else
697 	c->x86_clflush_size = 32;
698 	c->x86_phys_bits = 32;
699 	c->x86_virt_bits = 32;
700 #endif
701 	c->x86_cache_alignment = c->x86_clflush_size;
702 
703 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
704 	c->extended_cpuid_level = 0;
705 
706 	if (!have_cpuid_p())
707 		identify_cpu_without_cpuid(c);
708 
709 	/* cyrix could have cpuid enabled via c_identify()*/
710 	if (!have_cpuid_p())
711 		return;
712 
713 	cpu_detect(c);
714 	get_cpu_vendor(c);
715 	get_cpu_cap(c);
716 	fpu_detect(c);
717 
718 	if (this_cpu->c_early_init)
719 		this_cpu->c_early_init(c);
720 
721 	c->cpu_index = 0;
722 	filter_cpuid_features(c, false);
723 
724 	if (this_cpu->c_bsp_init)
725 		this_cpu->c_bsp_init(c);
726 
727 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
728 }
729 
730 void __init early_cpu_init(void)
731 {
732 	const struct cpu_dev *const *cdev;
733 	int count = 0;
734 
735 #ifdef CONFIG_PROCESSOR_SELECT
736 	printk(KERN_INFO "KERNEL supported cpus:\n");
737 #endif
738 
739 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
740 		const struct cpu_dev *cpudev = *cdev;
741 
742 		if (count >= X86_VENDOR_NUM)
743 			break;
744 		cpu_devs[count] = cpudev;
745 		count++;
746 
747 #ifdef CONFIG_PROCESSOR_SELECT
748 		{
749 			unsigned int j;
750 
751 			for (j = 0; j < 2; j++) {
752 				if (!cpudev->c_ident[j])
753 					continue;
754 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
755 					cpudev->c_ident[j]);
756 			}
757 		}
758 #endif
759 	}
760 	early_identify_cpu(&boot_cpu_data);
761 }
762 
763 /*
764  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
765  * unfortunately, that's not true in practice because of early VIA
766  * chips and (more importantly) broken virtualizers that are not easy
767  * to detect. In the latter case it doesn't even *fail* reliably, so
768  * probing for it doesn't even work. Disable it completely on 32-bit
769  * unless we can find a reliable way to detect all the broken cases.
770  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
771  */
772 static void detect_nopl(struct cpuinfo_x86 *c)
773 {
774 #ifdef CONFIG_X86_32
775 	clear_cpu_cap(c, X86_FEATURE_NOPL);
776 #else
777 	set_cpu_cap(c, X86_FEATURE_NOPL);
778 #endif
779 }
780 
781 static void generic_identify(struct cpuinfo_x86 *c)
782 {
783 	c->extended_cpuid_level = 0;
784 
785 	if (!have_cpuid_p())
786 		identify_cpu_without_cpuid(c);
787 
788 	/* cyrix could have cpuid enabled via c_identify()*/
789 	if (!have_cpuid_p())
790 		return;
791 
792 	cpu_detect(c);
793 
794 	get_cpu_vendor(c);
795 
796 	get_cpu_cap(c);
797 
798 	if (c->cpuid_level >= 0x00000001) {
799 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
800 #ifdef CONFIG_X86_32
801 # ifdef CONFIG_X86_HT
802 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
803 # else
804 		c->apicid = c->initial_apicid;
805 # endif
806 #endif
807 		c->phys_proc_id = c->initial_apicid;
808 	}
809 
810 	get_model_name(c); /* Default name */
811 
812 	detect_nopl(c);
813 }
814 
815 /*
816  * This does the hard work of actually picking apart the CPU stuff...
817  */
818 static void identify_cpu(struct cpuinfo_x86 *c)
819 {
820 	int i;
821 
822 	c->loops_per_jiffy = loops_per_jiffy;
823 	c->x86_cache_size = -1;
824 	c->x86_vendor = X86_VENDOR_UNKNOWN;
825 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
826 	c->x86_vendor_id[0] = '\0'; /* Unset */
827 	c->x86_model_id[0] = '\0';  /* Unset */
828 	c->x86_max_cores = 1;
829 	c->x86_coreid_bits = 0;
830 #ifdef CONFIG_X86_64
831 	c->x86_clflush_size = 64;
832 	c->x86_phys_bits = 36;
833 	c->x86_virt_bits = 48;
834 #else
835 	c->cpuid_level = -1;	/* CPUID not detected */
836 	c->x86_clflush_size = 32;
837 	c->x86_phys_bits = 32;
838 	c->x86_virt_bits = 32;
839 #endif
840 	c->x86_cache_alignment = c->x86_clflush_size;
841 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
842 
843 	generic_identify(c);
844 
845 	if (this_cpu->c_identify)
846 		this_cpu->c_identify(c);
847 
848 	/* Clear/Set all flags overriden by options, after probe */
849 	for (i = 0; i < NCAPINTS; i++) {
850 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
851 		c->x86_capability[i] |= cpu_caps_set[i];
852 	}
853 
854 #ifdef CONFIG_X86_64
855 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
856 #endif
857 
858 	/*
859 	 * Vendor-specific initialization.  In this section we
860 	 * canonicalize the feature flags, meaning if there are
861 	 * features a certain CPU supports which CPUID doesn't
862 	 * tell us, CPUID claiming incorrect flags, or other bugs,
863 	 * we handle them here.
864 	 *
865 	 * At the end of this section, c->x86_capability better
866 	 * indicate the features this CPU genuinely supports!
867 	 */
868 	if (this_cpu->c_init)
869 		this_cpu->c_init(c);
870 
871 	/* Disable the PN if appropriate */
872 	squash_the_stupid_serial_number(c);
873 
874 	/* Set up SMEP/SMAP */
875 	setup_smep(c);
876 	setup_smap(c);
877 
878 	/*
879 	 * The vendor-specific functions might have changed features.
880 	 * Now we do "generic changes."
881 	 */
882 
883 	/* Filter out anything that depends on CPUID levels we don't have */
884 	filter_cpuid_features(c, true);
885 
886 	/* If the model name is still unset, do table lookup. */
887 	if (!c->x86_model_id[0]) {
888 		const char *p;
889 		p = table_lookup_model(c);
890 		if (p)
891 			strcpy(c->x86_model_id, p);
892 		else
893 			/* Last resort... */
894 			sprintf(c->x86_model_id, "%02x/%02x",
895 				c->x86, c->x86_model);
896 	}
897 
898 #ifdef CONFIG_X86_64
899 	detect_ht(c);
900 #endif
901 
902 	init_hypervisor(c);
903 	x86_init_rdrand(c);
904 
905 	/*
906 	 * Clear/Set all flags overriden by options, need do it
907 	 * before following smp all cpus cap AND.
908 	 */
909 	for (i = 0; i < NCAPINTS; i++) {
910 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
911 		c->x86_capability[i] |= cpu_caps_set[i];
912 	}
913 
914 	/*
915 	 * On SMP, boot_cpu_data holds the common feature set between
916 	 * all CPUs; so make sure that we indicate which features are
917 	 * common between the CPUs.  The first time this routine gets
918 	 * executed, c == &boot_cpu_data.
919 	 */
920 	if (c != &boot_cpu_data) {
921 		/* AND the already accumulated flags with these */
922 		for (i = 0; i < NCAPINTS; i++)
923 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
924 
925 		/* OR, i.e. replicate the bug flags */
926 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
927 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
928 	}
929 
930 	/* Init Machine Check Exception if available. */
931 	mcheck_cpu_init(c);
932 
933 	select_idle_routine(c);
934 
935 #ifdef CONFIG_NUMA
936 	numa_add_cpu(smp_processor_id());
937 #endif
938 }
939 
940 #ifdef CONFIG_X86_64
941 static void vgetcpu_set_mode(void)
942 {
943 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
944 		vgetcpu_mode = VGETCPU_RDTSCP;
945 	else
946 		vgetcpu_mode = VGETCPU_LSL;
947 }
948 #endif
949 
950 void __init identify_boot_cpu(void)
951 {
952 	identify_cpu(&boot_cpu_data);
953 	init_amd_e400_c1e_mask();
954 #ifdef CONFIG_X86_32
955 	sysenter_setup();
956 	enable_sep_cpu();
957 #else
958 	vgetcpu_set_mode();
959 #endif
960 	cpu_detect_tlb(&boot_cpu_data);
961 }
962 
963 void identify_secondary_cpu(struct cpuinfo_x86 *c)
964 {
965 	BUG_ON(c == &boot_cpu_data);
966 	identify_cpu(c);
967 #ifdef CONFIG_X86_32
968 	enable_sep_cpu();
969 #endif
970 	mtrr_ap_init();
971 }
972 
973 struct msr_range {
974 	unsigned	min;
975 	unsigned	max;
976 };
977 
978 static const struct msr_range msr_range_array[] = {
979 	{ 0x00000000, 0x00000418},
980 	{ 0xc0000000, 0xc000040b},
981 	{ 0xc0010000, 0xc0010142},
982 	{ 0xc0011000, 0xc001103b},
983 };
984 
985 static void __print_cpu_msr(void)
986 {
987 	unsigned index_min, index_max;
988 	unsigned index;
989 	u64 val;
990 	int i;
991 
992 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
993 		index_min = msr_range_array[i].min;
994 		index_max = msr_range_array[i].max;
995 
996 		for (index = index_min; index < index_max; index++) {
997 			if (rdmsrl_safe(index, &val))
998 				continue;
999 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1000 		}
1001 	}
1002 }
1003 
1004 static int show_msr;
1005 
1006 static __init int setup_show_msr(char *arg)
1007 {
1008 	int num;
1009 
1010 	get_option(&arg, &num);
1011 
1012 	if (num > 0)
1013 		show_msr = num;
1014 	return 1;
1015 }
1016 __setup("show_msr=", setup_show_msr);
1017 
1018 static __init int setup_noclflush(char *arg)
1019 {
1020 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1021 	return 1;
1022 }
1023 __setup("noclflush", setup_noclflush);
1024 
1025 void print_cpu_info(struct cpuinfo_x86 *c)
1026 {
1027 	const char *vendor = NULL;
1028 
1029 	if (c->x86_vendor < X86_VENDOR_NUM) {
1030 		vendor = this_cpu->c_vendor;
1031 	} else {
1032 		if (c->cpuid_level >= 0)
1033 			vendor = c->x86_vendor_id;
1034 	}
1035 
1036 	if (vendor && !strstr(c->x86_model_id, vendor))
1037 		printk(KERN_CONT "%s ", vendor);
1038 
1039 	if (c->x86_model_id[0])
1040 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1041 	else
1042 		printk(KERN_CONT "%d86", c->x86);
1043 
1044 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1045 
1046 	if (c->x86_mask || c->cpuid_level >= 0)
1047 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1048 	else
1049 		printk(KERN_CONT ")\n");
1050 
1051 	print_cpu_msr(c);
1052 }
1053 
1054 void print_cpu_msr(struct cpuinfo_x86 *c)
1055 {
1056 	if (c->cpu_index < show_msr)
1057 		__print_cpu_msr();
1058 }
1059 
1060 static __init int setup_disablecpuid(char *arg)
1061 {
1062 	int bit;
1063 
1064 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1065 		setup_clear_cpu_cap(bit);
1066 	else
1067 		return 0;
1068 
1069 	return 1;
1070 }
1071 __setup("clearcpuid=", setup_disablecpuid);
1072 
1073 #ifdef CONFIG_X86_64
1074 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1075 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1076 				    (unsigned long) debug_idt_table };
1077 
1078 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1079 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1080 
1081 /*
1082  * The following four percpu variables are hot.  Align current_task to
1083  * cacheline size such that all four fall in the same cacheline.
1084  */
1085 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1086 	&init_task;
1087 EXPORT_PER_CPU_SYMBOL(current_task);
1088 
1089 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1090 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1091 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1092 
1093 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1094 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1095 
1096 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1097 
1098 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1099 
1100 /*
1101  * Special IST stacks which the CPU switches to when it calls
1102  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1103  * limit), all of them are 4K, except the debug stack which
1104  * is 8K.
1105  */
1106 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1107 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1108 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1109 };
1110 
1111 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1112 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1113 
1114 /* May not be marked __init: used by software suspend */
1115 void syscall_init(void)
1116 {
1117 	/*
1118 	 * LSTAR and STAR live in a bit strange symbiosis.
1119 	 * They both write to the same internal register. STAR allows to
1120 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1121 	 */
1122 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1123 	wrmsrl(MSR_LSTAR, system_call);
1124 	wrmsrl(MSR_CSTAR, ignore_sysret);
1125 
1126 #ifdef CONFIG_IA32_EMULATION
1127 	syscall32_cpu_init();
1128 #endif
1129 
1130 	/* Flags to clear on syscall */
1131 	wrmsrl(MSR_SYSCALL_MASK,
1132 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1133 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1134 }
1135 
1136 /*
1137  * Copies of the original ist values from the tss are only accessed during
1138  * debugging, no special alignment required.
1139  */
1140 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1141 
1142 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1143 DEFINE_PER_CPU(int, debug_stack_usage);
1144 
1145 int is_debug_stack(unsigned long addr)
1146 {
1147 	return __get_cpu_var(debug_stack_usage) ||
1148 		(addr <= __get_cpu_var(debug_stack_addr) &&
1149 		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1150 }
1151 
1152 DEFINE_PER_CPU(u32, debug_idt_ctr);
1153 
1154 void debug_stack_set_zero(void)
1155 {
1156 	this_cpu_inc(debug_idt_ctr);
1157 	load_current_idt();
1158 }
1159 
1160 void debug_stack_reset(void)
1161 {
1162 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1163 		return;
1164 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1165 		load_current_idt();
1166 }
1167 
1168 #else	/* CONFIG_X86_64 */
1169 
1170 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1171 EXPORT_PER_CPU_SYMBOL(current_task);
1172 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1173 
1174 #ifdef CONFIG_CC_STACKPROTECTOR
1175 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1176 #endif
1177 
1178 #endif	/* CONFIG_X86_64 */
1179 
1180 /*
1181  * Clear all 6 debug registers:
1182  */
1183 static void clear_all_debug_regs(void)
1184 {
1185 	int i;
1186 
1187 	for (i = 0; i < 8; i++) {
1188 		/* Ignore db4, db5 */
1189 		if ((i == 4) || (i == 5))
1190 			continue;
1191 
1192 		set_debugreg(0, i);
1193 	}
1194 }
1195 
1196 #ifdef CONFIG_KGDB
1197 /*
1198  * Restore debug regs if using kgdbwait and you have a kernel debugger
1199  * connection established.
1200  */
1201 static void dbg_restore_debug_regs(void)
1202 {
1203 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1204 		arch_kgdb_ops.correct_hw_break();
1205 }
1206 #else /* ! CONFIG_KGDB */
1207 #define dbg_restore_debug_regs()
1208 #endif /* ! CONFIG_KGDB */
1209 
1210 /*
1211  * cpu_init() initializes state that is per-CPU. Some data is already
1212  * initialized (naturally) in the bootstrap process, such as the GDT
1213  * and IDT. We reload them nevertheless, this function acts as a
1214  * 'CPU state barrier', nothing should get across.
1215  * A lot of state is already set up in PDA init for 64 bit
1216  */
1217 #ifdef CONFIG_X86_64
1218 
1219 void cpu_init(void)
1220 {
1221 	struct orig_ist *oist;
1222 	struct task_struct *me;
1223 	struct tss_struct *t;
1224 	unsigned long v;
1225 	int cpu;
1226 	int i;
1227 
1228 	/*
1229 	 * Load microcode on this cpu if a valid microcode is available.
1230 	 * This is early microcode loading procedure.
1231 	 */
1232 	load_ucode_ap();
1233 
1234 	cpu = stack_smp_processor_id();
1235 	t = &per_cpu(init_tss, cpu);
1236 	oist = &per_cpu(orig_ist, cpu);
1237 
1238 #ifdef CONFIG_NUMA
1239 	if (this_cpu_read(numa_node) == 0 &&
1240 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1241 		set_numa_node(early_cpu_to_node(cpu));
1242 #endif
1243 
1244 	me = current;
1245 
1246 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1247 		panic("CPU#%d already initialized!\n", cpu);
1248 
1249 	pr_debug("Initializing CPU#%d\n", cpu);
1250 
1251 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1252 
1253 	/*
1254 	 * Initialize the per-CPU GDT with the boot GDT,
1255 	 * and set up the GDT descriptor:
1256 	 */
1257 
1258 	switch_to_new_gdt(cpu);
1259 	loadsegment(fs, 0);
1260 
1261 	load_current_idt();
1262 
1263 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1264 	syscall_init();
1265 
1266 	wrmsrl(MSR_FS_BASE, 0);
1267 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1268 	barrier();
1269 
1270 	x86_configure_nx();
1271 	enable_x2apic();
1272 
1273 	/*
1274 	 * set up and load the per-CPU TSS
1275 	 */
1276 	if (!oist->ist[0]) {
1277 		char *estacks = per_cpu(exception_stacks, cpu);
1278 
1279 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1280 			estacks += exception_stack_sizes[v];
1281 			oist->ist[v] = t->x86_tss.ist[v] =
1282 					(unsigned long)estacks;
1283 			if (v == DEBUG_STACK-1)
1284 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1285 		}
1286 	}
1287 
1288 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1289 
1290 	/*
1291 	 * <= is required because the CPU will access up to
1292 	 * 8 bits beyond the end of the IO permission bitmap.
1293 	 */
1294 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1295 		t->io_bitmap[i] = ~0UL;
1296 
1297 	atomic_inc(&init_mm.mm_count);
1298 	me->active_mm = &init_mm;
1299 	BUG_ON(me->mm);
1300 	enter_lazy_tlb(&init_mm, me);
1301 
1302 	load_sp0(t, &current->thread);
1303 	set_tss_desc(cpu, t);
1304 	load_TR_desc();
1305 	load_LDT(&init_mm.context);
1306 
1307 	clear_all_debug_regs();
1308 	dbg_restore_debug_regs();
1309 
1310 	fpu_init();
1311 
1312 	if (is_uv_system())
1313 		uv_cpu_init();
1314 }
1315 
1316 #else
1317 
1318 void cpu_init(void)
1319 {
1320 	int cpu = smp_processor_id();
1321 	struct task_struct *curr = current;
1322 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1323 	struct thread_struct *thread = &curr->thread;
1324 
1325 	show_ucode_info_early();
1326 
1327 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1328 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1329 		for (;;)
1330 			local_irq_enable();
1331 	}
1332 
1333 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1334 
1335 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1336 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1337 
1338 	load_current_idt();
1339 	switch_to_new_gdt(cpu);
1340 
1341 	/*
1342 	 * Set up and load the per-CPU TSS and LDT
1343 	 */
1344 	atomic_inc(&init_mm.mm_count);
1345 	curr->active_mm = &init_mm;
1346 	BUG_ON(curr->mm);
1347 	enter_lazy_tlb(&init_mm, curr);
1348 
1349 	load_sp0(t, thread);
1350 	set_tss_desc(cpu, t);
1351 	load_TR_desc();
1352 	load_LDT(&init_mm.context);
1353 
1354 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1355 
1356 #ifdef CONFIG_DOUBLEFAULT
1357 	/* Set up doublefault TSS pointer in the GDT */
1358 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1359 #endif
1360 
1361 	clear_all_debug_regs();
1362 	dbg_restore_debug_regs();
1363 
1364 	fpu_init();
1365 }
1366 #endif
1367 
1368 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1369 void warn_pre_alternatives(void)
1370 {
1371 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1372 }
1373 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1374 #endif
1375 
1376 inline bool __static_cpu_has_safe(u16 bit)
1377 {
1378 	return boot_cpu_has(bit);
1379 }
1380 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1381