xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision cd4d09ec)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46 
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50 
51 #include "cpu.h"
52 
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57 
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60 
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69 
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 	cpu_detect_cache_sizes(c);
74 #else
75 	/* Not much we can do here... */
76 	/* Check if at least it has cpuid */
77 	if (c->cpuid_level == -1) {
78 		/* No cpuid. It must be an ancient CPU */
79 		if (c->x86 == 4)
80 			strcpy(c->x86_model_id, "486");
81 		else if (c->x86 == 3)
82 			strcpy(c->x86_model_id, "386");
83 	}
84 #endif
85 }
86 
87 static const struct cpu_dev default_cpu = {
88 	.c_init		= default_init,
89 	.c_vendor	= "Unknown",
90 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
91 };
92 
93 static const struct cpu_dev *this_cpu = &default_cpu;
94 
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 	/*
98 	 * We need valid kernel segments for data and code in long mode too
99 	 * IRET will check the segment types  kkeil 2000/10/28
100 	 * Also sysret mandates a special GDT layout
101 	 *
102 	 * TLS descriptors are currently at a different place compared to i386.
103 	 * Hopefully nobody expects them at a fixed place (Wine?)
104 	 */
105 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 	/*
117 	 * Segments used for calling PnP BIOS have byte granularity.
118 	 * They code segments and data segments have fixed 64k limits,
119 	 * the transfer segment sizes are set at run time.
120 	 */
121 	/* 32-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 	/* 16-bit code */
124 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/* 16-bit data */
130 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
131 	/*
132 	 * The APM segments have byte granularity and their bases
133 	 * are set at run time.  All have 64k limits.
134 	 */
135 	/* 32-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 	/* 16-bit code */
138 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 	/* data */
140 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141 
142 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148 
149 static int __init x86_mpx_setup(char *s)
150 {
151 	/* require an exact match without trailing characters */
152 	if (strlen(s))
153 		return 0;
154 
155 	/* do not emit a message if the feature is not present */
156 	if (!boot_cpu_has(X86_FEATURE_MPX))
157 		return 1;
158 
159 	setup_clear_cpu_cap(X86_FEATURE_MPX);
160 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 	return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164 
165 #ifdef CONFIG_X86_32
166 static int cachesize_override = -1;
167 static int disable_x86_serial_nr = 1;
168 
169 static int __init cachesize_setup(char *str)
170 {
171 	get_option(&str, &cachesize_override);
172 	return 1;
173 }
174 __setup("cachesize=", cachesize_setup);
175 
176 static int __init x86_sep_setup(char *s)
177 {
178 	setup_clear_cpu_cap(X86_FEATURE_SEP);
179 	return 1;
180 }
181 __setup("nosep", x86_sep_setup);
182 
183 /* Standard macro to see if a specific flag is changeable */
184 static inline int flag_is_changeable_p(u32 flag)
185 {
186 	u32 f1, f2;
187 
188 	/*
189 	 * Cyrix and IDT cpus allow disabling of CPUID
190 	 * so the code below may return different results
191 	 * when it is executed before and after enabling
192 	 * the CPUID. Add "volatile" to not allow gcc to
193 	 * optimize the subsequent calls to this function.
194 	 */
195 	asm volatile ("pushfl		\n\t"
196 		      "pushfl		\n\t"
197 		      "popl %0		\n\t"
198 		      "movl %0, %1	\n\t"
199 		      "xorl %2, %0	\n\t"
200 		      "pushl %0		\n\t"
201 		      "popfl		\n\t"
202 		      "pushfl		\n\t"
203 		      "popl %0		\n\t"
204 		      "popfl		\n\t"
205 
206 		      : "=&r" (f1), "=&r" (f2)
207 		      : "ir" (flag));
208 
209 	return ((f1^f2) & flag) != 0;
210 }
211 
212 /* Probe for the CPUID instruction */
213 int have_cpuid_p(void)
214 {
215 	return flag_is_changeable_p(X86_EFLAGS_ID);
216 }
217 
218 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
219 {
220 	unsigned long lo, hi;
221 
222 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
223 		return;
224 
225 	/* Disable processor serial number: */
226 
227 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228 	lo |= 0x200000;
229 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
230 
231 	printk(KERN_NOTICE "CPU serial number disabled.\n");
232 	clear_cpu_cap(c, X86_FEATURE_PN);
233 
234 	/* Disabling the serial number may affect the cpuid level */
235 	c->cpuid_level = cpuid_eax(0);
236 }
237 
238 static int __init x86_serial_nr_setup(char *s)
239 {
240 	disable_x86_serial_nr = 0;
241 	return 1;
242 }
243 __setup("serialnumber", x86_serial_nr_setup);
244 #else
245 static inline int flag_is_changeable_p(u32 flag)
246 {
247 	return 1;
248 }
249 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
250 {
251 }
252 #endif
253 
254 static __init int setup_disable_smep(char *arg)
255 {
256 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
257 	return 1;
258 }
259 __setup("nosmep", setup_disable_smep);
260 
261 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
262 {
263 	if (cpu_has(c, X86_FEATURE_SMEP))
264 		cr4_set_bits(X86_CR4_SMEP);
265 }
266 
267 static __init int setup_disable_smap(char *arg)
268 {
269 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
270 	return 1;
271 }
272 __setup("nosmap", setup_disable_smap);
273 
274 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
275 {
276 	unsigned long eflags = native_save_fl();
277 
278 	/* This should have been cleared long ago */
279 	BUG_ON(eflags & X86_EFLAGS_AC);
280 
281 	if (cpu_has(c, X86_FEATURE_SMAP)) {
282 #ifdef CONFIG_X86_SMAP
283 		cr4_set_bits(X86_CR4_SMAP);
284 #else
285 		cr4_clear_bits(X86_CR4_SMAP);
286 #endif
287 	}
288 }
289 
290 /*
291  * Some CPU features depend on higher CPUID levels, which may not always
292  * be available due to CPUID level capping or broken virtualization
293  * software.  Add those features to this table to auto-disable them.
294  */
295 struct cpuid_dependent_feature {
296 	u32 feature;
297 	u32 level;
298 };
299 
300 static const struct cpuid_dependent_feature
301 cpuid_dependent_features[] = {
302 	{ X86_FEATURE_MWAIT,		0x00000005 },
303 	{ X86_FEATURE_DCA,		0x00000009 },
304 	{ X86_FEATURE_XSAVE,		0x0000000d },
305 	{ 0, 0 }
306 };
307 
308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309 {
310 	const struct cpuid_dependent_feature *df;
311 
312 	for (df = cpuid_dependent_features; df->feature; df++) {
313 
314 		if (!cpu_has(c, df->feature))
315 			continue;
316 		/*
317 		 * Note: cpuid_level is set to -1 if unavailable, but
318 		 * extended_extended_level is set to 0 if unavailable
319 		 * and the legitimate extended levels are all negative
320 		 * when signed; hence the weird messing around with
321 		 * signs here...
322 		 */
323 		if (!((s32)df->level < 0 ?
324 		     (u32)df->level > (u32)c->extended_cpuid_level :
325 		     (s32)df->level > (s32)c->cpuid_level))
326 			continue;
327 
328 		clear_cpu_cap(c, df->feature);
329 		if (!warn)
330 			continue;
331 
332 		printk(KERN_WARNING
333 		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
334 				x86_cap_flag(df->feature), df->level);
335 	}
336 }
337 
338 /*
339  * Naming convention should be: <Name> [(<Codename>)]
340  * This table only is used unless init_<vendor>() below doesn't set it;
341  * in particular, if CPUID levels 0x80000002..4 are supported, this
342  * isn't used
343  */
344 
345 /* Look up CPU names by table lookup. */
346 static const char *table_lookup_model(struct cpuinfo_x86 *c)
347 {
348 #ifdef CONFIG_X86_32
349 	const struct legacy_cpu_model_info *info;
350 
351 	if (c->x86_model >= 16)
352 		return NULL;	/* Range check */
353 
354 	if (!this_cpu)
355 		return NULL;
356 
357 	info = this_cpu->legacy_models;
358 
359 	while (info->family) {
360 		if (info->family == c->x86)
361 			return info->model_names[c->x86_model];
362 		info++;
363 	}
364 #endif
365 	return NULL;		/* Not found */
366 }
367 
368 __u32 cpu_caps_cleared[NCAPINTS];
369 __u32 cpu_caps_set[NCAPINTS];
370 
371 void load_percpu_segment(int cpu)
372 {
373 #ifdef CONFIG_X86_32
374 	loadsegment(fs, __KERNEL_PERCPU);
375 #else
376 	loadsegment(gs, 0);
377 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
378 #endif
379 	load_stack_canary_segment();
380 }
381 
382 /*
383  * Current gdt points %fs at the "master" per-cpu area: after this,
384  * it's on the real one.
385  */
386 void switch_to_new_gdt(int cpu)
387 {
388 	struct desc_ptr gdt_descr;
389 
390 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
391 	gdt_descr.size = GDT_SIZE - 1;
392 	load_gdt(&gdt_descr);
393 	/* Reload the per-cpu base */
394 
395 	load_percpu_segment(cpu);
396 }
397 
398 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
399 
400 static void get_model_name(struct cpuinfo_x86 *c)
401 {
402 	unsigned int *v;
403 	char *p, *q, *s;
404 
405 	if (c->extended_cpuid_level < 0x80000004)
406 		return;
407 
408 	v = (unsigned int *)c->x86_model_id;
409 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
410 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
411 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
412 	c->x86_model_id[48] = 0;
413 
414 	/* Trim whitespace */
415 	p = q = s = &c->x86_model_id[0];
416 
417 	while (*p == ' ')
418 		p++;
419 
420 	while (*p) {
421 		/* Note the last non-whitespace index */
422 		if (!isspace(*p))
423 			s = q;
424 
425 		*q++ = *p++;
426 	}
427 
428 	*(s + 1) = '\0';
429 }
430 
431 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
432 {
433 	unsigned int n, dummy, ebx, ecx, edx, l2size;
434 
435 	n = c->extended_cpuid_level;
436 
437 	if (n >= 0x80000005) {
438 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
439 		c->x86_cache_size = (ecx>>24) + (edx>>24);
440 #ifdef CONFIG_X86_64
441 		/* On K8 L1 TLB is inclusive, so don't count it */
442 		c->x86_tlbsize = 0;
443 #endif
444 	}
445 
446 	if (n < 0x80000006)	/* Some chips just has a large L1. */
447 		return;
448 
449 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
450 	l2size = ecx >> 16;
451 
452 #ifdef CONFIG_X86_64
453 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
454 #else
455 	/* do processor-specific cache resizing */
456 	if (this_cpu->legacy_cache_size)
457 		l2size = this_cpu->legacy_cache_size(c, l2size);
458 
459 	/* Allow user to override all this if necessary. */
460 	if (cachesize_override != -1)
461 		l2size = cachesize_override;
462 
463 	if (l2size == 0)
464 		return;		/* Again, no L2 cache is possible */
465 #endif
466 
467 	c->x86_cache_size = l2size;
468 }
469 
470 u16 __read_mostly tlb_lli_4k[NR_INFO];
471 u16 __read_mostly tlb_lli_2m[NR_INFO];
472 u16 __read_mostly tlb_lli_4m[NR_INFO];
473 u16 __read_mostly tlb_lld_4k[NR_INFO];
474 u16 __read_mostly tlb_lld_2m[NR_INFO];
475 u16 __read_mostly tlb_lld_4m[NR_INFO];
476 u16 __read_mostly tlb_lld_1g[NR_INFO];
477 
478 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
479 {
480 	if (this_cpu->c_detect_tlb)
481 		this_cpu->c_detect_tlb(c);
482 
483 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
484 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
485 		tlb_lli_4m[ENTRIES]);
486 
487 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
488 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
489 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
490 }
491 
492 void detect_ht(struct cpuinfo_x86 *c)
493 {
494 #ifdef CONFIG_SMP
495 	u32 eax, ebx, ecx, edx;
496 	int index_msb, core_bits;
497 	static bool printed;
498 
499 	if (!cpu_has(c, X86_FEATURE_HT))
500 		return;
501 
502 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
503 		goto out;
504 
505 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
506 		return;
507 
508 	cpuid(1, &eax, &ebx, &ecx, &edx);
509 
510 	smp_num_siblings = (ebx & 0xff0000) >> 16;
511 
512 	if (smp_num_siblings == 1) {
513 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
514 		goto out;
515 	}
516 
517 	if (smp_num_siblings <= 1)
518 		goto out;
519 
520 	index_msb = get_count_order(smp_num_siblings);
521 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
522 
523 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
524 
525 	index_msb = get_count_order(smp_num_siblings);
526 
527 	core_bits = get_count_order(c->x86_max_cores);
528 
529 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
530 				       ((1 << core_bits) - 1);
531 
532 out:
533 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
534 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
535 		       c->phys_proc_id);
536 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
537 		       c->cpu_core_id);
538 		printed = 1;
539 	}
540 #endif
541 }
542 
543 static void get_cpu_vendor(struct cpuinfo_x86 *c)
544 {
545 	char *v = c->x86_vendor_id;
546 	int i;
547 
548 	for (i = 0; i < X86_VENDOR_NUM; i++) {
549 		if (!cpu_devs[i])
550 			break;
551 
552 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
553 		    (cpu_devs[i]->c_ident[1] &&
554 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
555 
556 			this_cpu = cpu_devs[i];
557 			c->x86_vendor = this_cpu->c_x86_vendor;
558 			return;
559 		}
560 	}
561 
562 	printk_once(KERN_ERR
563 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
564 			"CPU: Your system may be unstable.\n", v);
565 
566 	c->x86_vendor = X86_VENDOR_UNKNOWN;
567 	this_cpu = &default_cpu;
568 }
569 
570 void cpu_detect(struct cpuinfo_x86 *c)
571 {
572 	/* Get vendor name */
573 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
574 	      (unsigned int *)&c->x86_vendor_id[0],
575 	      (unsigned int *)&c->x86_vendor_id[8],
576 	      (unsigned int *)&c->x86_vendor_id[4]);
577 
578 	c->x86 = 4;
579 	/* Intel-defined flags: level 0x00000001 */
580 	if (c->cpuid_level >= 0x00000001) {
581 		u32 junk, tfms, cap0, misc;
582 
583 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
584 		c->x86		= x86_family(tfms);
585 		c->x86_model	= x86_model(tfms);
586 		c->x86_mask	= x86_stepping(tfms);
587 
588 		if (cap0 & (1<<19)) {
589 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
590 			c->x86_cache_alignment = c->x86_clflush_size;
591 		}
592 	}
593 }
594 
595 void get_cpu_cap(struct cpuinfo_x86 *c)
596 {
597 	u32 eax, ebx, ecx, edx;
598 
599 	/* Intel-defined flags: level 0x00000001 */
600 	if (c->cpuid_level >= 0x00000001) {
601 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
602 
603 		c->x86_capability[CPUID_1_ECX] = ecx;
604 		c->x86_capability[CPUID_1_EDX] = edx;
605 	}
606 
607 	/* Additional Intel-defined flags: level 0x00000007 */
608 	if (c->cpuid_level >= 0x00000007) {
609 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
610 
611 		c->x86_capability[CPUID_7_0_EBX] = ebx;
612 
613 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
614 	}
615 
616 	/* Extended state features: level 0x0000000d */
617 	if (c->cpuid_level >= 0x0000000d) {
618 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
619 
620 		c->x86_capability[CPUID_D_1_EAX] = eax;
621 	}
622 
623 	/* Additional Intel-defined flags: level 0x0000000F */
624 	if (c->cpuid_level >= 0x0000000F) {
625 
626 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
627 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
628 		c->x86_capability[CPUID_F_0_EDX] = edx;
629 
630 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
631 			/* will be overridden if occupancy monitoring exists */
632 			c->x86_cache_max_rmid = ebx;
633 
634 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
635 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
636 			c->x86_capability[CPUID_F_1_EDX] = edx;
637 
638 			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
639 				c->x86_cache_max_rmid = ecx;
640 				c->x86_cache_occ_scale = ebx;
641 			}
642 		} else {
643 			c->x86_cache_max_rmid = -1;
644 			c->x86_cache_occ_scale = -1;
645 		}
646 	}
647 
648 	/* AMD-defined flags: level 0x80000001 */
649 	eax = cpuid_eax(0x80000000);
650 	c->extended_cpuid_level = eax;
651 
652 	if ((eax & 0xffff0000) == 0x80000000) {
653 		if (eax >= 0x80000001) {
654 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
655 
656 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
657 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
658 		}
659 	}
660 
661 	if (c->extended_cpuid_level >= 0x80000008) {
662 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
663 
664 		c->x86_virt_bits = (eax >> 8) & 0xff;
665 		c->x86_phys_bits = eax & 0xff;
666 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
667 	}
668 #ifdef CONFIG_X86_32
669 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
670 		c->x86_phys_bits = 36;
671 #endif
672 
673 	if (c->extended_cpuid_level >= 0x80000007)
674 		c->x86_power = cpuid_edx(0x80000007);
675 
676 	if (c->extended_cpuid_level >= 0x8000000a)
677 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
678 
679 	init_scattered_cpuid_features(c);
680 }
681 
682 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
683 {
684 #ifdef CONFIG_X86_32
685 	int i;
686 
687 	/*
688 	 * First of all, decide if this is a 486 or higher
689 	 * It's a 486 if we can modify the AC flag
690 	 */
691 	if (flag_is_changeable_p(X86_EFLAGS_AC))
692 		c->x86 = 4;
693 	else
694 		c->x86 = 3;
695 
696 	for (i = 0; i < X86_VENDOR_NUM; i++)
697 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
698 			c->x86_vendor_id[0] = 0;
699 			cpu_devs[i]->c_identify(c);
700 			if (c->x86_vendor_id[0]) {
701 				get_cpu_vendor(c);
702 				break;
703 			}
704 		}
705 #endif
706 }
707 
708 /*
709  * Do minimum CPU detection early.
710  * Fields really needed: vendor, cpuid_level, family, model, mask,
711  * cache alignment.
712  * The others are not touched to avoid unwanted side effects.
713  *
714  * WARNING: this function is only called on the BP.  Don't add code here
715  * that is supposed to run on all CPUs.
716  */
717 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
718 {
719 #ifdef CONFIG_X86_64
720 	c->x86_clflush_size = 64;
721 	c->x86_phys_bits = 36;
722 	c->x86_virt_bits = 48;
723 #else
724 	c->x86_clflush_size = 32;
725 	c->x86_phys_bits = 32;
726 	c->x86_virt_bits = 32;
727 #endif
728 	c->x86_cache_alignment = c->x86_clflush_size;
729 
730 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
731 	c->extended_cpuid_level = 0;
732 
733 	if (!have_cpuid_p())
734 		identify_cpu_without_cpuid(c);
735 
736 	/* cyrix could have cpuid enabled via c_identify()*/
737 	if (!have_cpuid_p())
738 		return;
739 
740 	cpu_detect(c);
741 	get_cpu_vendor(c);
742 	get_cpu_cap(c);
743 
744 	if (this_cpu->c_early_init)
745 		this_cpu->c_early_init(c);
746 
747 	c->cpu_index = 0;
748 	filter_cpuid_features(c, false);
749 
750 	if (this_cpu->c_bsp_init)
751 		this_cpu->c_bsp_init(c);
752 
753 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
754 	fpu__init_system(c);
755 }
756 
757 void __init early_cpu_init(void)
758 {
759 	const struct cpu_dev *const *cdev;
760 	int count = 0;
761 
762 #ifdef CONFIG_PROCESSOR_SELECT
763 	printk(KERN_INFO "KERNEL supported cpus:\n");
764 #endif
765 
766 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
767 		const struct cpu_dev *cpudev = *cdev;
768 
769 		if (count >= X86_VENDOR_NUM)
770 			break;
771 		cpu_devs[count] = cpudev;
772 		count++;
773 
774 #ifdef CONFIG_PROCESSOR_SELECT
775 		{
776 			unsigned int j;
777 
778 			for (j = 0; j < 2; j++) {
779 				if (!cpudev->c_ident[j])
780 					continue;
781 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
782 					cpudev->c_ident[j]);
783 			}
784 		}
785 #endif
786 	}
787 	early_identify_cpu(&boot_cpu_data);
788 }
789 
790 /*
791  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
792  * unfortunately, that's not true in practice because of early VIA
793  * chips and (more importantly) broken virtualizers that are not easy
794  * to detect. In the latter case it doesn't even *fail* reliably, so
795  * probing for it doesn't even work. Disable it completely on 32-bit
796  * unless we can find a reliable way to detect all the broken cases.
797  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
798  */
799 static void detect_nopl(struct cpuinfo_x86 *c)
800 {
801 #ifdef CONFIG_X86_32
802 	clear_cpu_cap(c, X86_FEATURE_NOPL);
803 #else
804 	set_cpu_cap(c, X86_FEATURE_NOPL);
805 #endif
806 }
807 
808 static void generic_identify(struct cpuinfo_x86 *c)
809 {
810 	c->extended_cpuid_level = 0;
811 
812 	if (!have_cpuid_p())
813 		identify_cpu_without_cpuid(c);
814 
815 	/* cyrix could have cpuid enabled via c_identify()*/
816 	if (!have_cpuid_p())
817 		return;
818 
819 	cpu_detect(c);
820 
821 	get_cpu_vendor(c);
822 
823 	get_cpu_cap(c);
824 
825 	if (c->cpuid_level >= 0x00000001) {
826 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
827 #ifdef CONFIG_X86_32
828 # ifdef CONFIG_SMP
829 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
830 # else
831 		c->apicid = c->initial_apicid;
832 # endif
833 #endif
834 		c->phys_proc_id = c->initial_apicid;
835 	}
836 
837 	get_model_name(c); /* Default name */
838 
839 	detect_nopl(c);
840 }
841 
842 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
843 {
844 	/*
845 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
846 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
847 	 * in case CQM bits really aren't there in this CPU.
848 	 */
849 	if (c != &boot_cpu_data) {
850 		boot_cpu_data.x86_cache_max_rmid =
851 			min(boot_cpu_data.x86_cache_max_rmid,
852 			    c->x86_cache_max_rmid);
853 	}
854 }
855 
856 /*
857  * This does the hard work of actually picking apart the CPU stuff...
858  */
859 static void identify_cpu(struct cpuinfo_x86 *c)
860 {
861 	int i;
862 
863 	c->loops_per_jiffy = loops_per_jiffy;
864 	c->x86_cache_size = -1;
865 	c->x86_vendor = X86_VENDOR_UNKNOWN;
866 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
867 	c->x86_vendor_id[0] = '\0'; /* Unset */
868 	c->x86_model_id[0] = '\0';  /* Unset */
869 	c->x86_max_cores = 1;
870 	c->x86_coreid_bits = 0;
871 #ifdef CONFIG_X86_64
872 	c->x86_clflush_size = 64;
873 	c->x86_phys_bits = 36;
874 	c->x86_virt_bits = 48;
875 #else
876 	c->cpuid_level = -1;	/* CPUID not detected */
877 	c->x86_clflush_size = 32;
878 	c->x86_phys_bits = 32;
879 	c->x86_virt_bits = 32;
880 #endif
881 	c->x86_cache_alignment = c->x86_clflush_size;
882 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
883 
884 	generic_identify(c);
885 
886 	if (this_cpu->c_identify)
887 		this_cpu->c_identify(c);
888 
889 	/* Clear/Set all flags overriden by options, after probe */
890 	for (i = 0; i < NCAPINTS; i++) {
891 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
892 		c->x86_capability[i] |= cpu_caps_set[i];
893 	}
894 
895 #ifdef CONFIG_X86_64
896 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
897 #endif
898 
899 	/*
900 	 * Vendor-specific initialization.  In this section we
901 	 * canonicalize the feature flags, meaning if there are
902 	 * features a certain CPU supports which CPUID doesn't
903 	 * tell us, CPUID claiming incorrect flags, or other bugs,
904 	 * we handle them here.
905 	 *
906 	 * At the end of this section, c->x86_capability better
907 	 * indicate the features this CPU genuinely supports!
908 	 */
909 	if (this_cpu->c_init)
910 		this_cpu->c_init(c);
911 
912 	/* Disable the PN if appropriate */
913 	squash_the_stupid_serial_number(c);
914 
915 	/* Set up SMEP/SMAP */
916 	setup_smep(c);
917 	setup_smap(c);
918 
919 	/*
920 	 * The vendor-specific functions might have changed features.
921 	 * Now we do "generic changes."
922 	 */
923 
924 	/* Filter out anything that depends on CPUID levels we don't have */
925 	filter_cpuid_features(c, true);
926 
927 	/* If the model name is still unset, do table lookup. */
928 	if (!c->x86_model_id[0]) {
929 		const char *p;
930 		p = table_lookup_model(c);
931 		if (p)
932 			strcpy(c->x86_model_id, p);
933 		else
934 			/* Last resort... */
935 			sprintf(c->x86_model_id, "%02x/%02x",
936 				c->x86, c->x86_model);
937 	}
938 
939 #ifdef CONFIG_X86_64
940 	detect_ht(c);
941 #endif
942 
943 	init_hypervisor(c);
944 	x86_init_rdrand(c);
945 	x86_init_cache_qos(c);
946 
947 	/*
948 	 * Clear/Set all flags overriden by options, need do it
949 	 * before following smp all cpus cap AND.
950 	 */
951 	for (i = 0; i < NCAPINTS; i++) {
952 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
953 		c->x86_capability[i] |= cpu_caps_set[i];
954 	}
955 
956 	/*
957 	 * On SMP, boot_cpu_data holds the common feature set between
958 	 * all CPUs; so make sure that we indicate which features are
959 	 * common between the CPUs.  The first time this routine gets
960 	 * executed, c == &boot_cpu_data.
961 	 */
962 	if (c != &boot_cpu_data) {
963 		/* AND the already accumulated flags with these */
964 		for (i = 0; i < NCAPINTS; i++)
965 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
966 
967 		/* OR, i.e. replicate the bug flags */
968 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
969 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
970 	}
971 
972 	/* Init Machine Check Exception if available. */
973 	mcheck_cpu_init(c);
974 
975 	select_idle_routine(c);
976 
977 #ifdef CONFIG_NUMA
978 	numa_add_cpu(smp_processor_id());
979 #endif
980 }
981 
982 /*
983  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
984  * on 32-bit kernels:
985  */
986 #ifdef CONFIG_X86_32
987 void enable_sep_cpu(void)
988 {
989 	struct tss_struct *tss;
990 	int cpu;
991 
992 	cpu = get_cpu();
993 	tss = &per_cpu(cpu_tss, cpu);
994 
995 	if (!boot_cpu_has(X86_FEATURE_SEP))
996 		goto out;
997 
998 	/*
999 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1000 	 * see the big comment in struct x86_hw_tss's definition.
1001 	 */
1002 
1003 	tss->x86_tss.ss1 = __KERNEL_CS;
1004 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1005 
1006 	wrmsr(MSR_IA32_SYSENTER_ESP,
1007 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1008 	      0);
1009 
1010 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1011 
1012 out:
1013 	put_cpu();
1014 }
1015 #endif
1016 
1017 void __init identify_boot_cpu(void)
1018 {
1019 	identify_cpu(&boot_cpu_data);
1020 	init_amd_e400_c1e_mask();
1021 #ifdef CONFIG_X86_32
1022 	sysenter_setup();
1023 	enable_sep_cpu();
1024 #endif
1025 	cpu_detect_tlb(&boot_cpu_data);
1026 }
1027 
1028 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1029 {
1030 	BUG_ON(c == &boot_cpu_data);
1031 	identify_cpu(c);
1032 #ifdef CONFIG_X86_32
1033 	enable_sep_cpu();
1034 #endif
1035 	mtrr_ap_init();
1036 }
1037 
1038 struct msr_range {
1039 	unsigned	min;
1040 	unsigned	max;
1041 };
1042 
1043 static const struct msr_range msr_range_array[] = {
1044 	{ 0x00000000, 0x00000418},
1045 	{ 0xc0000000, 0xc000040b},
1046 	{ 0xc0010000, 0xc0010142},
1047 	{ 0xc0011000, 0xc001103b},
1048 };
1049 
1050 static void __print_cpu_msr(void)
1051 {
1052 	unsigned index_min, index_max;
1053 	unsigned index;
1054 	u64 val;
1055 	int i;
1056 
1057 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1058 		index_min = msr_range_array[i].min;
1059 		index_max = msr_range_array[i].max;
1060 
1061 		for (index = index_min; index < index_max; index++) {
1062 			if (rdmsrl_safe(index, &val))
1063 				continue;
1064 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1065 		}
1066 	}
1067 }
1068 
1069 static int show_msr;
1070 
1071 static __init int setup_show_msr(char *arg)
1072 {
1073 	int num;
1074 
1075 	get_option(&arg, &num);
1076 
1077 	if (num > 0)
1078 		show_msr = num;
1079 	return 1;
1080 }
1081 __setup("show_msr=", setup_show_msr);
1082 
1083 static __init int setup_noclflush(char *arg)
1084 {
1085 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1086 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1087 	return 1;
1088 }
1089 __setup("noclflush", setup_noclflush);
1090 
1091 void print_cpu_info(struct cpuinfo_x86 *c)
1092 {
1093 	const char *vendor = NULL;
1094 
1095 	if (c->x86_vendor < X86_VENDOR_NUM) {
1096 		vendor = this_cpu->c_vendor;
1097 	} else {
1098 		if (c->cpuid_level >= 0)
1099 			vendor = c->x86_vendor_id;
1100 	}
1101 
1102 	if (vendor && !strstr(c->x86_model_id, vendor))
1103 		printk(KERN_CONT "%s ", vendor);
1104 
1105 	if (c->x86_model_id[0])
1106 		printk(KERN_CONT "%s", c->x86_model_id);
1107 	else
1108 		printk(KERN_CONT "%d86", c->x86);
1109 
1110 	printk(KERN_CONT " (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1111 
1112 	if (c->x86_mask || c->cpuid_level >= 0)
1113 		printk(KERN_CONT ", stepping: 0x%x)\n", c->x86_mask);
1114 	else
1115 		printk(KERN_CONT ")\n");
1116 
1117 	print_cpu_msr(c);
1118 }
1119 
1120 void print_cpu_msr(struct cpuinfo_x86 *c)
1121 {
1122 	if (c->cpu_index < show_msr)
1123 		__print_cpu_msr();
1124 }
1125 
1126 static __init int setup_disablecpuid(char *arg)
1127 {
1128 	int bit;
1129 
1130 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1131 		setup_clear_cpu_cap(bit);
1132 	else
1133 		return 0;
1134 
1135 	return 1;
1136 }
1137 __setup("clearcpuid=", setup_disablecpuid);
1138 
1139 #ifdef CONFIG_X86_64
1140 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1141 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1142 				    (unsigned long) debug_idt_table };
1143 
1144 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1145 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1146 
1147 /*
1148  * The following percpu variables are hot.  Align current_task to
1149  * cacheline size such that they fall in the same cacheline.
1150  */
1151 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1152 	&init_task;
1153 EXPORT_PER_CPU_SYMBOL(current_task);
1154 
1155 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1156 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1157 
1158 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1159 
1160 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1161 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1162 
1163 /*
1164  * Special IST stacks which the CPU switches to when it calls
1165  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1166  * limit), all of them are 4K, except the debug stack which
1167  * is 8K.
1168  */
1169 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1170 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1171 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1172 };
1173 
1174 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1175 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1176 
1177 /* May not be marked __init: used by software suspend */
1178 void syscall_init(void)
1179 {
1180 	/*
1181 	 * LSTAR and STAR live in a bit strange symbiosis.
1182 	 * They both write to the same internal register. STAR allows to
1183 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1184 	 */
1185 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1186 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1187 
1188 #ifdef CONFIG_IA32_EMULATION
1189 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1190 	/*
1191 	 * This only works on Intel CPUs.
1192 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1193 	 * This does not cause SYSENTER to jump to the wrong location, because
1194 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1195 	 */
1196 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1197 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1198 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1199 #else
1200 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1201 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1202 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1203 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1204 #endif
1205 
1206 	/* Flags to clear on syscall */
1207 	wrmsrl(MSR_SYSCALL_MASK,
1208 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1209 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1210 }
1211 
1212 /*
1213  * Copies of the original ist values from the tss are only accessed during
1214  * debugging, no special alignment required.
1215  */
1216 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1217 
1218 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1219 DEFINE_PER_CPU(int, debug_stack_usage);
1220 
1221 int is_debug_stack(unsigned long addr)
1222 {
1223 	return __this_cpu_read(debug_stack_usage) ||
1224 		(addr <= __this_cpu_read(debug_stack_addr) &&
1225 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1226 }
1227 NOKPROBE_SYMBOL(is_debug_stack);
1228 
1229 DEFINE_PER_CPU(u32, debug_idt_ctr);
1230 
1231 void debug_stack_set_zero(void)
1232 {
1233 	this_cpu_inc(debug_idt_ctr);
1234 	load_current_idt();
1235 }
1236 NOKPROBE_SYMBOL(debug_stack_set_zero);
1237 
1238 void debug_stack_reset(void)
1239 {
1240 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1241 		return;
1242 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1243 		load_current_idt();
1244 }
1245 NOKPROBE_SYMBOL(debug_stack_reset);
1246 
1247 #else	/* CONFIG_X86_64 */
1248 
1249 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1250 EXPORT_PER_CPU_SYMBOL(current_task);
1251 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1252 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1253 
1254 /*
1255  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1256  * the top of the kernel stack.  Use an extra percpu variable to track the
1257  * top of the kernel stack directly.
1258  */
1259 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1260 	(unsigned long)&init_thread_union + THREAD_SIZE;
1261 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1262 
1263 #ifdef CONFIG_CC_STACKPROTECTOR
1264 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1265 #endif
1266 
1267 #endif	/* CONFIG_X86_64 */
1268 
1269 /*
1270  * Clear all 6 debug registers:
1271  */
1272 static void clear_all_debug_regs(void)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < 8; i++) {
1277 		/* Ignore db4, db5 */
1278 		if ((i == 4) || (i == 5))
1279 			continue;
1280 
1281 		set_debugreg(0, i);
1282 	}
1283 }
1284 
1285 #ifdef CONFIG_KGDB
1286 /*
1287  * Restore debug regs if using kgdbwait and you have a kernel debugger
1288  * connection established.
1289  */
1290 static void dbg_restore_debug_regs(void)
1291 {
1292 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1293 		arch_kgdb_ops.correct_hw_break();
1294 }
1295 #else /* ! CONFIG_KGDB */
1296 #define dbg_restore_debug_regs()
1297 #endif /* ! CONFIG_KGDB */
1298 
1299 static void wait_for_master_cpu(int cpu)
1300 {
1301 #ifdef CONFIG_SMP
1302 	/*
1303 	 * wait for ACK from master CPU before continuing
1304 	 * with AP initialization
1305 	 */
1306 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1307 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1308 		cpu_relax();
1309 #endif
1310 }
1311 
1312 /*
1313  * cpu_init() initializes state that is per-CPU. Some data is already
1314  * initialized (naturally) in the bootstrap process, such as the GDT
1315  * and IDT. We reload them nevertheless, this function acts as a
1316  * 'CPU state barrier', nothing should get across.
1317  * A lot of state is already set up in PDA init for 64 bit
1318  */
1319 #ifdef CONFIG_X86_64
1320 
1321 void cpu_init(void)
1322 {
1323 	struct orig_ist *oist;
1324 	struct task_struct *me;
1325 	struct tss_struct *t;
1326 	unsigned long v;
1327 	int cpu = stack_smp_processor_id();
1328 	int i;
1329 
1330 	wait_for_master_cpu(cpu);
1331 
1332 	/*
1333 	 * Initialize the CR4 shadow before doing anything that could
1334 	 * try to read it.
1335 	 */
1336 	cr4_init_shadow();
1337 
1338 	/*
1339 	 * Load microcode on this cpu if a valid microcode is available.
1340 	 * This is early microcode loading procedure.
1341 	 */
1342 	load_ucode_ap();
1343 
1344 	t = &per_cpu(cpu_tss, cpu);
1345 	oist = &per_cpu(orig_ist, cpu);
1346 
1347 #ifdef CONFIG_NUMA
1348 	if (this_cpu_read(numa_node) == 0 &&
1349 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1350 		set_numa_node(early_cpu_to_node(cpu));
1351 #endif
1352 
1353 	me = current;
1354 
1355 	pr_debug("Initializing CPU#%d\n", cpu);
1356 
1357 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1358 
1359 	/*
1360 	 * Initialize the per-CPU GDT with the boot GDT,
1361 	 * and set up the GDT descriptor:
1362 	 */
1363 
1364 	switch_to_new_gdt(cpu);
1365 	loadsegment(fs, 0);
1366 
1367 	load_current_idt();
1368 
1369 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1370 	syscall_init();
1371 
1372 	wrmsrl(MSR_FS_BASE, 0);
1373 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1374 	barrier();
1375 
1376 	x86_configure_nx();
1377 	x2apic_setup();
1378 
1379 	/*
1380 	 * set up and load the per-CPU TSS
1381 	 */
1382 	if (!oist->ist[0]) {
1383 		char *estacks = per_cpu(exception_stacks, cpu);
1384 
1385 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1386 			estacks += exception_stack_sizes[v];
1387 			oist->ist[v] = t->x86_tss.ist[v] =
1388 					(unsigned long)estacks;
1389 			if (v == DEBUG_STACK-1)
1390 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1391 		}
1392 	}
1393 
1394 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1395 
1396 	/*
1397 	 * <= is required because the CPU will access up to
1398 	 * 8 bits beyond the end of the IO permission bitmap.
1399 	 */
1400 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1401 		t->io_bitmap[i] = ~0UL;
1402 
1403 	atomic_inc(&init_mm.mm_count);
1404 	me->active_mm = &init_mm;
1405 	BUG_ON(me->mm);
1406 	enter_lazy_tlb(&init_mm, me);
1407 
1408 	load_sp0(t, &current->thread);
1409 	set_tss_desc(cpu, t);
1410 	load_TR_desc();
1411 	load_mm_ldt(&init_mm);
1412 
1413 	clear_all_debug_regs();
1414 	dbg_restore_debug_regs();
1415 
1416 	fpu__init_cpu();
1417 
1418 	if (is_uv_system())
1419 		uv_cpu_init();
1420 }
1421 
1422 #else
1423 
1424 void cpu_init(void)
1425 {
1426 	int cpu = smp_processor_id();
1427 	struct task_struct *curr = current;
1428 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1429 	struct thread_struct *thread = &curr->thread;
1430 
1431 	wait_for_master_cpu(cpu);
1432 
1433 	/*
1434 	 * Initialize the CR4 shadow before doing anything that could
1435 	 * try to read it.
1436 	 */
1437 	cr4_init_shadow();
1438 
1439 	show_ucode_info_early();
1440 
1441 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1442 
1443 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1444 	    cpu_has_tsc ||
1445 	    boot_cpu_has(X86_FEATURE_DE))
1446 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1447 
1448 	load_current_idt();
1449 	switch_to_new_gdt(cpu);
1450 
1451 	/*
1452 	 * Set up and load the per-CPU TSS and LDT
1453 	 */
1454 	atomic_inc(&init_mm.mm_count);
1455 	curr->active_mm = &init_mm;
1456 	BUG_ON(curr->mm);
1457 	enter_lazy_tlb(&init_mm, curr);
1458 
1459 	load_sp0(t, thread);
1460 	set_tss_desc(cpu, t);
1461 	load_TR_desc();
1462 	load_mm_ldt(&init_mm);
1463 
1464 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1465 
1466 #ifdef CONFIG_DOUBLEFAULT
1467 	/* Set up doublefault TSS pointer in the GDT */
1468 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1469 #endif
1470 
1471 	clear_all_debug_regs();
1472 	dbg_restore_debug_regs();
1473 
1474 	fpu__init_cpu();
1475 }
1476 #endif
1477 
1478 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1479 void warn_pre_alternatives(void)
1480 {
1481 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1482 }
1483 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1484 #endif
1485 
1486 inline bool __static_cpu_has_safe(u16 bit)
1487 {
1488 	return boot_cpu_has(bit);
1489 }
1490 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1491 
1492 static void bsp_resume(void)
1493 {
1494 	if (this_cpu->c_bsp_resume)
1495 		this_cpu->c_bsp_resume(&boot_cpu_data);
1496 }
1497 
1498 static struct syscore_ops cpu_syscore_ops = {
1499 	.resume		= bsp_resume,
1500 };
1501 
1502 static int __init init_cpu_syscore(void)
1503 {
1504 	register_syscore_ops(&cpu_syscore_ops);
1505 	return 0;
1506 }
1507 core_initcall(init_cpu_syscore);
1508