xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision ca481398)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54 
55 #include "cpu.h"
56 
57 u32 elf_hwcap2 __read_mostly;
58 
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63 
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66 
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75 
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 	cpu_detect_cache_sizes(c);
80 #else
81 	/* Not much we can do here... */
82 	/* Check if at least it has cpuid */
83 	if (c->cpuid_level == -1) {
84 		/* No cpuid. It must be an ancient CPU */
85 		if (c->x86 == 4)
86 			strcpy(c->x86_model_id, "486");
87 		else if (c->x86 == 3)
88 			strcpy(c->x86_model_id, "386");
89 	}
90 #endif
91 }
92 
93 static const struct cpu_dev default_cpu = {
94 	.c_init		= default_init,
95 	.c_vendor	= "Unknown",
96 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
97 };
98 
99 static const struct cpu_dev *this_cpu = &default_cpu;
100 
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 	/*
104 	 * We need valid kernel segments for data and code in long mode too
105 	 * IRET will check the segment types  kkeil 2000/10/28
106 	 * Also sysret mandates a special GDT layout
107 	 *
108 	 * TLS descriptors are currently at a different place compared to i386.
109 	 * Hopefully nobody expects them at a fixed place (Wine?)
110 	 */
111 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 	/*
123 	 * Segments used for calling PnP BIOS have byte granularity.
124 	 * They code segments and data segments have fixed 64k limits,
125 	 * the transfer segment sizes are set at run time.
126 	 */
127 	/* 32-bit code */
128 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 	/* 16-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 	/* 16-bit data */
132 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/*
138 	 * The APM segments have byte granularity and their bases
139 	 * are set at run time.  All have 64k limits.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* data */
146 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147 
148 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 	GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154 
155 static int __init x86_mpx_setup(char *s)
156 {
157 	/* require an exact match without trailing characters */
158 	if (strlen(s))
159 		return 0;
160 
161 	/* do not emit a message if the feature is not present */
162 	if (!boot_cpu_has(X86_FEATURE_MPX))
163 		return 1;
164 
165 	setup_clear_cpu_cap(X86_FEATURE_MPX);
166 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 	return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170 
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 	/* nopcid doesn't accept parameters */
175 	if (s)
176 		return -EINVAL;
177 
178 	/* do not emit a message if the feature is not present */
179 	if (!boot_cpu_has(X86_FEATURE_PCID))
180 		return 0;
181 
182 	setup_clear_cpu_cap(X86_FEATURE_PCID);
183 	pr_info("nopcid: PCID feature disabled\n");
184 	return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188 
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 	/* noinvpcid doesn't accept parameters */
192 	if (s)
193 		return -EINVAL;
194 
195 	/* do not emit a message if the feature is not present */
196 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 		return 0;
198 
199 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 	pr_info("noinvpcid: INVPCID feature disabled\n");
201 	return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204 
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208 
209 static int __init cachesize_setup(char *str)
210 {
211 	get_option(&str, &cachesize_override);
212 	return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215 
216 static int __init x86_sep_setup(char *s)
217 {
218 	setup_clear_cpu_cap(X86_FEATURE_SEP);
219 	return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222 
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 	u32 f1, f2;
227 
228 	/*
229 	 * Cyrix and IDT cpus allow disabling of CPUID
230 	 * so the code below may return different results
231 	 * when it is executed before and after enabling
232 	 * the CPUID. Add "volatile" to not allow gcc to
233 	 * optimize the subsequent calls to this function.
234 	 */
235 	asm volatile ("pushfl		\n\t"
236 		      "pushfl		\n\t"
237 		      "popl %0		\n\t"
238 		      "movl %0, %1	\n\t"
239 		      "xorl %2, %0	\n\t"
240 		      "pushl %0		\n\t"
241 		      "popfl		\n\t"
242 		      "pushfl		\n\t"
243 		      "popl %0		\n\t"
244 		      "popfl		\n\t"
245 
246 		      : "=&r" (f1), "=&r" (f2)
247 		      : "ir" (flag));
248 
249 	return ((f1^f2) & flag) != 0;
250 }
251 
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 	return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257 
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 	unsigned long lo, hi;
261 
262 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 		return;
264 
265 	/* Disable processor serial number: */
266 
267 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 	lo |= 0x200000;
269 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 
271 	pr_notice("CPU serial number disabled.\n");
272 	clear_cpu_cap(c, X86_FEATURE_PN);
273 
274 	/* Disabling the serial number may affect the cpuid level */
275 	c->cpuid_level = cpuid_eax(0);
276 }
277 
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 	disable_x86_serial_nr = 0;
281 	return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 	return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293 
294 static __init int setup_disable_smep(char *arg)
295 {
296 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 	/* Check for things that depend on SMEP being enabled: */
298 	check_mpx_erratum(&boot_cpu_data);
299 	return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302 
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 	if (cpu_has(c, X86_FEATURE_SMEP))
306 		cr4_set_bits(X86_CR4_SMEP);
307 }
308 
309 static __init int setup_disable_smap(char *arg)
310 {
311 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 	return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315 
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 	unsigned long eflags = native_save_fl();
319 
320 	/* This should have been cleared long ago */
321 	BUG_ON(eflags & X86_EFLAGS_AC);
322 
323 	if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 		cr4_set_bits(X86_CR4_SMAP);
326 #else
327 		cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 	}
330 }
331 
332 /*
333  * Protection Keys are not available in 32-bit mode.
334  */
335 static bool pku_disabled;
336 
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 	/* check the boot processor, plus compile options for PKU: */
340 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 		return;
342 	/* checks the actual processor's cpuid bits: */
343 	if (!cpu_has(c, X86_FEATURE_PKU))
344 		return;
345 	if (pku_disabled)
346 		return;
347 
348 	cr4_set_bits(X86_CR4_PKE);
349 	/*
350 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 	 * cpuid bit to be set.  We need to ensure that we
352 	 * update that bit in this CPU's "cpu_info".
353 	 */
354 	get_cpu_cap(c);
355 }
356 
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 	/*
361 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
362 	 * runtime checks are against OSPKE so clearing the
363 	 * bit does nothing.
364 	 *
365 	 * This way, we will see "pku" in cpuinfo, but not
366 	 * "ospke", which is exactly what we want.  It shows
367 	 * that the CPU has PKU, but the OS has not enabled it.
368 	 * This happens to be exactly how a system would look
369 	 * if we disabled the config option.
370 	 */
371 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 	pku_disabled = true;
373 	return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377 
378 /*
379  * Some CPU features depend on higher CPUID levels, which may not always
380  * be available due to CPUID level capping or broken virtualization
381  * software.  Add those features to this table to auto-disable them.
382  */
383 struct cpuid_dependent_feature {
384 	u32 feature;
385 	u32 level;
386 };
387 
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 	{ X86_FEATURE_MWAIT,		0x00000005 },
391 	{ X86_FEATURE_DCA,		0x00000009 },
392 	{ X86_FEATURE_XSAVE,		0x0000000d },
393 	{ 0, 0 }
394 };
395 
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 	const struct cpuid_dependent_feature *df;
399 
400 	for (df = cpuid_dependent_features; df->feature; df++) {
401 
402 		if (!cpu_has(c, df->feature))
403 			continue;
404 		/*
405 		 * Note: cpuid_level is set to -1 if unavailable, but
406 		 * extended_extended_level is set to 0 if unavailable
407 		 * and the legitimate extended levels are all negative
408 		 * when signed; hence the weird messing around with
409 		 * signs here...
410 		 */
411 		if (!((s32)df->level < 0 ?
412 		     (u32)df->level > (u32)c->extended_cpuid_level :
413 		     (s32)df->level > (s32)c->cpuid_level))
414 			continue;
415 
416 		clear_cpu_cap(c, df->feature);
417 		if (!warn)
418 			continue;
419 
420 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 			x86_cap_flag(df->feature), df->level);
422 	}
423 }
424 
425 /*
426  * Naming convention should be: <Name> [(<Codename>)]
427  * This table only is used unless init_<vendor>() below doesn't set it;
428  * in particular, if CPUID levels 0x80000002..4 are supported, this
429  * isn't used
430  */
431 
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 	const struct legacy_cpu_model_info *info;
437 
438 	if (c->x86_model >= 16)
439 		return NULL;	/* Range check */
440 
441 	if (!this_cpu)
442 		return NULL;
443 
444 	info = this_cpu->legacy_models;
445 
446 	while (info->family) {
447 		if (info->family == c->x86)
448 			return info->model_names[c->x86_model];
449 		info++;
450 	}
451 #endif
452 	return NULL;		/* Not found */
453 }
454 
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457 
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 	loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 	__loadsegment_simple(gs, 0);
464 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 	load_stack_canary_segment();
467 }
468 
469 /* Setup the fixmap mapping only once per-processor */
470 static inline void setup_fixmap_gdt(int cpu)
471 {
472 #ifdef CONFIG_X86_64
473 	/* On 64-bit systems, we use a read-only fixmap GDT. */
474 	pgprot_t prot = PAGE_KERNEL_RO;
475 #else
476 	/*
477 	 * On native 32-bit systems, the GDT cannot be read-only because
478 	 * our double fault handler uses a task gate, and entering through
479 	 * a task gate needs to change an available TSS to busy.  If the GDT
480 	 * is read-only, that will triple fault.
481 	 *
482 	 * On Xen PV, the GDT must be read-only because the hypervisor requires
483 	 * it.
484 	 */
485 	pgprot_t prot = boot_cpu_has(X86_FEATURE_XENPV) ?
486 		PAGE_KERNEL_RO : PAGE_KERNEL;
487 #endif
488 
489 	__set_fixmap(get_cpu_gdt_ro_index(cpu), get_cpu_gdt_paddr(cpu), prot);
490 }
491 
492 /* Load the original GDT from the per-cpu structure */
493 void load_direct_gdt(int cpu)
494 {
495 	struct desc_ptr gdt_descr;
496 
497 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
498 	gdt_descr.size = GDT_SIZE - 1;
499 	load_gdt(&gdt_descr);
500 }
501 EXPORT_SYMBOL_GPL(load_direct_gdt);
502 
503 /* Load a fixmap remapping of the per-cpu GDT */
504 void load_fixmap_gdt(int cpu)
505 {
506 	struct desc_ptr gdt_descr;
507 
508 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
509 	gdt_descr.size = GDT_SIZE - 1;
510 	load_gdt(&gdt_descr);
511 }
512 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
513 
514 /*
515  * Current gdt points %fs at the "master" per-cpu area: after this,
516  * it's on the real one.
517  */
518 void switch_to_new_gdt(int cpu)
519 {
520 	/* Load the original GDT */
521 	load_direct_gdt(cpu);
522 	/* Reload the per-cpu base */
523 	load_percpu_segment(cpu);
524 }
525 
526 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
527 
528 static void get_model_name(struct cpuinfo_x86 *c)
529 {
530 	unsigned int *v;
531 	char *p, *q, *s;
532 
533 	if (c->extended_cpuid_level < 0x80000004)
534 		return;
535 
536 	v = (unsigned int *)c->x86_model_id;
537 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
538 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
539 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
540 	c->x86_model_id[48] = 0;
541 
542 	/* Trim whitespace */
543 	p = q = s = &c->x86_model_id[0];
544 
545 	while (*p == ' ')
546 		p++;
547 
548 	while (*p) {
549 		/* Note the last non-whitespace index */
550 		if (!isspace(*p))
551 			s = q;
552 
553 		*q++ = *p++;
554 	}
555 
556 	*(s + 1) = '\0';
557 }
558 
559 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
560 {
561 	unsigned int n, dummy, ebx, ecx, edx, l2size;
562 
563 	n = c->extended_cpuid_level;
564 
565 	if (n >= 0x80000005) {
566 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
567 		c->x86_cache_size = (ecx>>24) + (edx>>24);
568 #ifdef CONFIG_X86_64
569 		/* On K8 L1 TLB is inclusive, so don't count it */
570 		c->x86_tlbsize = 0;
571 #endif
572 	}
573 
574 	if (n < 0x80000006)	/* Some chips just has a large L1. */
575 		return;
576 
577 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
578 	l2size = ecx >> 16;
579 
580 #ifdef CONFIG_X86_64
581 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
582 #else
583 	/* do processor-specific cache resizing */
584 	if (this_cpu->legacy_cache_size)
585 		l2size = this_cpu->legacy_cache_size(c, l2size);
586 
587 	/* Allow user to override all this if necessary. */
588 	if (cachesize_override != -1)
589 		l2size = cachesize_override;
590 
591 	if (l2size == 0)
592 		return;		/* Again, no L2 cache is possible */
593 #endif
594 
595 	c->x86_cache_size = l2size;
596 }
597 
598 u16 __read_mostly tlb_lli_4k[NR_INFO];
599 u16 __read_mostly tlb_lli_2m[NR_INFO];
600 u16 __read_mostly tlb_lli_4m[NR_INFO];
601 u16 __read_mostly tlb_lld_4k[NR_INFO];
602 u16 __read_mostly tlb_lld_2m[NR_INFO];
603 u16 __read_mostly tlb_lld_4m[NR_INFO];
604 u16 __read_mostly tlb_lld_1g[NR_INFO];
605 
606 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
607 {
608 	if (this_cpu->c_detect_tlb)
609 		this_cpu->c_detect_tlb(c);
610 
611 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
612 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
613 		tlb_lli_4m[ENTRIES]);
614 
615 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
616 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
617 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
618 }
619 
620 void detect_ht(struct cpuinfo_x86 *c)
621 {
622 #ifdef CONFIG_SMP
623 	u32 eax, ebx, ecx, edx;
624 	int index_msb, core_bits;
625 	static bool printed;
626 
627 	if (!cpu_has(c, X86_FEATURE_HT))
628 		return;
629 
630 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
631 		goto out;
632 
633 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
634 		return;
635 
636 	cpuid(1, &eax, &ebx, &ecx, &edx);
637 
638 	smp_num_siblings = (ebx & 0xff0000) >> 16;
639 
640 	if (smp_num_siblings == 1) {
641 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
642 		goto out;
643 	}
644 
645 	if (smp_num_siblings <= 1)
646 		goto out;
647 
648 	index_msb = get_count_order(smp_num_siblings);
649 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
650 
651 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
652 
653 	index_msb = get_count_order(smp_num_siblings);
654 
655 	core_bits = get_count_order(c->x86_max_cores);
656 
657 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
658 				       ((1 << core_bits) - 1);
659 
660 out:
661 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
662 		pr_info("CPU: Physical Processor ID: %d\n",
663 			c->phys_proc_id);
664 		pr_info("CPU: Processor Core ID: %d\n",
665 			c->cpu_core_id);
666 		printed = 1;
667 	}
668 #endif
669 }
670 
671 static void get_cpu_vendor(struct cpuinfo_x86 *c)
672 {
673 	char *v = c->x86_vendor_id;
674 	int i;
675 
676 	for (i = 0; i < X86_VENDOR_NUM; i++) {
677 		if (!cpu_devs[i])
678 			break;
679 
680 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
681 		    (cpu_devs[i]->c_ident[1] &&
682 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
683 
684 			this_cpu = cpu_devs[i];
685 			c->x86_vendor = this_cpu->c_x86_vendor;
686 			return;
687 		}
688 	}
689 
690 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
691 		    "CPU: Your system may be unstable.\n", v);
692 
693 	c->x86_vendor = X86_VENDOR_UNKNOWN;
694 	this_cpu = &default_cpu;
695 }
696 
697 void cpu_detect(struct cpuinfo_x86 *c)
698 {
699 	/* Get vendor name */
700 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
701 	      (unsigned int *)&c->x86_vendor_id[0],
702 	      (unsigned int *)&c->x86_vendor_id[8],
703 	      (unsigned int *)&c->x86_vendor_id[4]);
704 
705 	c->x86 = 4;
706 	/* Intel-defined flags: level 0x00000001 */
707 	if (c->cpuid_level >= 0x00000001) {
708 		u32 junk, tfms, cap0, misc;
709 
710 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
711 		c->x86		= x86_family(tfms);
712 		c->x86_model	= x86_model(tfms);
713 		c->x86_mask	= x86_stepping(tfms);
714 
715 		if (cap0 & (1<<19)) {
716 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
717 			c->x86_cache_alignment = c->x86_clflush_size;
718 		}
719 	}
720 }
721 
722 static void apply_forced_caps(struct cpuinfo_x86 *c)
723 {
724 	int i;
725 
726 	for (i = 0; i < NCAPINTS; i++) {
727 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
728 		c->x86_capability[i] |= cpu_caps_set[i];
729 	}
730 }
731 
732 void get_cpu_cap(struct cpuinfo_x86 *c)
733 {
734 	u32 eax, ebx, ecx, edx;
735 
736 	/* Intel-defined flags: level 0x00000001 */
737 	if (c->cpuid_level >= 0x00000001) {
738 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
739 
740 		c->x86_capability[CPUID_1_ECX] = ecx;
741 		c->x86_capability[CPUID_1_EDX] = edx;
742 	}
743 
744 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
745 	if (c->cpuid_level >= 0x00000006)
746 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
747 
748 	/* Additional Intel-defined flags: level 0x00000007 */
749 	if (c->cpuid_level >= 0x00000007) {
750 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
751 		c->x86_capability[CPUID_7_0_EBX] = ebx;
752 		c->x86_capability[CPUID_7_ECX] = ecx;
753 	}
754 
755 	/* Extended state features: level 0x0000000d */
756 	if (c->cpuid_level >= 0x0000000d) {
757 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
758 
759 		c->x86_capability[CPUID_D_1_EAX] = eax;
760 	}
761 
762 	/* Additional Intel-defined flags: level 0x0000000F */
763 	if (c->cpuid_level >= 0x0000000F) {
764 
765 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
766 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
767 		c->x86_capability[CPUID_F_0_EDX] = edx;
768 
769 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
770 			/* will be overridden if occupancy monitoring exists */
771 			c->x86_cache_max_rmid = ebx;
772 
773 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
774 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
775 			c->x86_capability[CPUID_F_1_EDX] = edx;
776 
777 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
778 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
779 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
780 				c->x86_cache_max_rmid = ecx;
781 				c->x86_cache_occ_scale = ebx;
782 			}
783 		} else {
784 			c->x86_cache_max_rmid = -1;
785 			c->x86_cache_occ_scale = -1;
786 		}
787 	}
788 
789 	/* AMD-defined flags: level 0x80000001 */
790 	eax = cpuid_eax(0x80000000);
791 	c->extended_cpuid_level = eax;
792 
793 	if ((eax & 0xffff0000) == 0x80000000) {
794 		if (eax >= 0x80000001) {
795 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
796 
797 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
798 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
799 		}
800 	}
801 
802 	if (c->extended_cpuid_level >= 0x80000007) {
803 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
804 
805 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
806 		c->x86_power = edx;
807 	}
808 
809 	if (c->extended_cpuid_level >= 0x80000008) {
810 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
811 
812 		c->x86_virt_bits = (eax >> 8) & 0xff;
813 		c->x86_phys_bits = eax & 0xff;
814 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
815 	}
816 #ifdef CONFIG_X86_32
817 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
818 		c->x86_phys_bits = 36;
819 #endif
820 
821 	if (c->extended_cpuid_level >= 0x8000000a)
822 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
823 
824 	init_scattered_cpuid_features(c);
825 
826 	/*
827 	 * Clear/Set all flags overridden by options, after probe.
828 	 * This needs to happen each time we re-probe, which may happen
829 	 * several times during CPU initialization.
830 	 */
831 	apply_forced_caps(c);
832 }
833 
834 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
835 {
836 #ifdef CONFIG_X86_32
837 	int i;
838 
839 	/*
840 	 * First of all, decide if this is a 486 or higher
841 	 * It's a 486 if we can modify the AC flag
842 	 */
843 	if (flag_is_changeable_p(X86_EFLAGS_AC))
844 		c->x86 = 4;
845 	else
846 		c->x86 = 3;
847 
848 	for (i = 0; i < X86_VENDOR_NUM; i++)
849 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
850 			c->x86_vendor_id[0] = 0;
851 			cpu_devs[i]->c_identify(c);
852 			if (c->x86_vendor_id[0]) {
853 				get_cpu_vendor(c);
854 				break;
855 			}
856 		}
857 #endif
858 }
859 
860 /*
861  * Do minimum CPU detection early.
862  * Fields really needed: vendor, cpuid_level, family, model, mask,
863  * cache alignment.
864  * The others are not touched to avoid unwanted side effects.
865  *
866  * WARNING: this function is only called on the BP.  Don't add code here
867  * that is supposed to run on all CPUs.
868  */
869 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_X86_64
872 	c->x86_clflush_size = 64;
873 	c->x86_phys_bits = 36;
874 	c->x86_virt_bits = 48;
875 #else
876 	c->x86_clflush_size = 32;
877 	c->x86_phys_bits = 32;
878 	c->x86_virt_bits = 32;
879 #endif
880 	c->x86_cache_alignment = c->x86_clflush_size;
881 
882 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
883 	c->extended_cpuid_level = 0;
884 
885 	/* cyrix could have cpuid enabled via c_identify()*/
886 	if (have_cpuid_p()) {
887 		cpu_detect(c);
888 		get_cpu_vendor(c);
889 		get_cpu_cap(c);
890 		setup_force_cpu_cap(X86_FEATURE_CPUID);
891 
892 		if (this_cpu->c_early_init)
893 			this_cpu->c_early_init(c);
894 
895 		c->cpu_index = 0;
896 		filter_cpuid_features(c, false);
897 
898 		if (this_cpu->c_bsp_init)
899 			this_cpu->c_bsp_init(c);
900 	} else {
901 		identify_cpu_without_cpuid(c);
902 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
903 	}
904 
905 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
906 	fpu__init_system(c);
907 
908 #ifdef CONFIG_X86_32
909 	/*
910 	 * Regardless of whether PCID is enumerated, the SDM says
911 	 * that it can't be enabled in 32-bit mode.
912 	 */
913 	setup_clear_cpu_cap(X86_FEATURE_PCID);
914 #endif
915 }
916 
917 void __init early_cpu_init(void)
918 {
919 	const struct cpu_dev *const *cdev;
920 	int count = 0;
921 
922 #ifdef CONFIG_PROCESSOR_SELECT
923 	pr_info("KERNEL supported cpus:\n");
924 #endif
925 
926 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
927 		const struct cpu_dev *cpudev = *cdev;
928 
929 		if (count >= X86_VENDOR_NUM)
930 			break;
931 		cpu_devs[count] = cpudev;
932 		count++;
933 
934 #ifdef CONFIG_PROCESSOR_SELECT
935 		{
936 			unsigned int j;
937 
938 			for (j = 0; j < 2; j++) {
939 				if (!cpudev->c_ident[j])
940 					continue;
941 				pr_info("  %s %s\n", cpudev->c_vendor,
942 					cpudev->c_ident[j]);
943 			}
944 		}
945 #endif
946 	}
947 	early_identify_cpu(&boot_cpu_data);
948 }
949 
950 /*
951  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
952  * unfortunately, that's not true in practice because of early VIA
953  * chips and (more importantly) broken virtualizers that are not easy
954  * to detect. In the latter case it doesn't even *fail* reliably, so
955  * probing for it doesn't even work. Disable it completely on 32-bit
956  * unless we can find a reliable way to detect all the broken cases.
957  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
958  */
959 static void detect_nopl(struct cpuinfo_x86 *c)
960 {
961 #ifdef CONFIG_X86_32
962 	clear_cpu_cap(c, X86_FEATURE_NOPL);
963 #else
964 	set_cpu_cap(c, X86_FEATURE_NOPL);
965 #endif
966 }
967 
968 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
969 {
970 #ifdef CONFIG_X86_64
971 	/*
972 	 * Empirically, writing zero to a segment selector on AMD does
973 	 * not clear the base, whereas writing zero to a segment
974 	 * selector on Intel does clear the base.  Intel's behavior
975 	 * allows slightly faster context switches in the common case
976 	 * where GS is unused by the prev and next threads.
977 	 *
978 	 * Since neither vendor documents this anywhere that I can see,
979 	 * detect it directly instead of hardcoding the choice by
980 	 * vendor.
981 	 *
982 	 * I've designated AMD's behavior as the "bug" because it's
983 	 * counterintuitive and less friendly.
984 	 */
985 
986 	unsigned long old_base, tmp;
987 	rdmsrl(MSR_FS_BASE, old_base);
988 	wrmsrl(MSR_FS_BASE, 1);
989 	loadsegment(fs, 0);
990 	rdmsrl(MSR_FS_BASE, tmp);
991 	if (tmp != 0)
992 		set_cpu_bug(c, X86_BUG_NULL_SEG);
993 	wrmsrl(MSR_FS_BASE, old_base);
994 #endif
995 }
996 
997 static void generic_identify(struct cpuinfo_x86 *c)
998 {
999 	c->extended_cpuid_level = 0;
1000 
1001 	if (!have_cpuid_p())
1002 		identify_cpu_without_cpuid(c);
1003 
1004 	/* cyrix could have cpuid enabled via c_identify()*/
1005 	if (!have_cpuid_p())
1006 		return;
1007 
1008 	cpu_detect(c);
1009 
1010 	get_cpu_vendor(c);
1011 
1012 	get_cpu_cap(c);
1013 
1014 	if (c->cpuid_level >= 0x00000001) {
1015 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1016 #ifdef CONFIG_X86_32
1017 # ifdef CONFIG_SMP
1018 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1019 # else
1020 		c->apicid = c->initial_apicid;
1021 # endif
1022 #endif
1023 		c->phys_proc_id = c->initial_apicid;
1024 	}
1025 
1026 	get_model_name(c); /* Default name */
1027 
1028 	detect_nopl(c);
1029 
1030 	detect_null_seg_behavior(c);
1031 
1032 	/*
1033 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1034 	 * systems that run Linux at CPL > 0 may or may not have the
1035 	 * issue, but, even if they have the issue, there's absolutely
1036 	 * nothing we can do about it because we can't use the real IRET
1037 	 * instruction.
1038 	 *
1039 	 * NB: For the time being, only 32-bit kernels support
1040 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1041 	 * whether to apply espfix using paravirt hooks.  If any
1042 	 * non-paravirt system ever shows up that does *not* have the
1043 	 * ESPFIX issue, we can change this.
1044 	 */
1045 #ifdef CONFIG_X86_32
1046 # ifdef CONFIG_PARAVIRT
1047 	do {
1048 		extern void native_iret(void);
1049 		if (pv_cpu_ops.iret == native_iret)
1050 			set_cpu_bug(c, X86_BUG_ESPFIX);
1051 	} while (0);
1052 # else
1053 	set_cpu_bug(c, X86_BUG_ESPFIX);
1054 # endif
1055 #endif
1056 }
1057 
1058 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1059 {
1060 	/*
1061 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1062 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1063 	 * in case CQM bits really aren't there in this CPU.
1064 	 */
1065 	if (c != &boot_cpu_data) {
1066 		boot_cpu_data.x86_cache_max_rmid =
1067 			min(boot_cpu_data.x86_cache_max_rmid,
1068 			    c->x86_cache_max_rmid);
1069 	}
1070 }
1071 
1072 /*
1073  * Validate that ACPI/mptables have the same information about the
1074  * effective APIC id and update the package map.
1075  */
1076 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1077 {
1078 #ifdef CONFIG_SMP
1079 	unsigned int apicid, cpu = smp_processor_id();
1080 
1081 	apicid = apic->cpu_present_to_apicid(cpu);
1082 
1083 	if (apicid != c->apicid) {
1084 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1085 		       cpu, apicid, c->initial_apicid);
1086 	}
1087 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1088 #else
1089 	c->logical_proc_id = 0;
1090 #endif
1091 }
1092 
1093 /*
1094  * This does the hard work of actually picking apart the CPU stuff...
1095  */
1096 static void identify_cpu(struct cpuinfo_x86 *c)
1097 {
1098 	int i;
1099 
1100 	c->loops_per_jiffy = loops_per_jiffy;
1101 	c->x86_cache_size = -1;
1102 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1103 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1104 	c->x86_vendor_id[0] = '\0'; /* Unset */
1105 	c->x86_model_id[0] = '\0';  /* Unset */
1106 	c->x86_max_cores = 1;
1107 	c->x86_coreid_bits = 0;
1108 	c->cu_id = 0xff;
1109 #ifdef CONFIG_X86_64
1110 	c->x86_clflush_size = 64;
1111 	c->x86_phys_bits = 36;
1112 	c->x86_virt_bits = 48;
1113 #else
1114 	c->cpuid_level = -1;	/* CPUID not detected */
1115 	c->x86_clflush_size = 32;
1116 	c->x86_phys_bits = 32;
1117 	c->x86_virt_bits = 32;
1118 #endif
1119 	c->x86_cache_alignment = c->x86_clflush_size;
1120 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1121 
1122 	generic_identify(c);
1123 
1124 	if (this_cpu->c_identify)
1125 		this_cpu->c_identify(c);
1126 
1127 	/* Clear/Set all flags overridden by options, after probe */
1128 	apply_forced_caps(c);
1129 
1130 #ifdef CONFIG_X86_64
1131 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1132 #endif
1133 
1134 	/*
1135 	 * Vendor-specific initialization.  In this section we
1136 	 * canonicalize the feature flags, meaning if there are
1137 	 * features a certain CPU supports which CPUID doesn't
1138 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1139 	 * we handle them here.
1140 	 *
1141 	 * At the end of this section, c->x86_capability better
1142 	 * indicate the features this CPU genuinely supports!
1143 	 */
1144 	if (this_cpu->c_init)
1145 		this_cpu->c_init(c);
1146 
1147 	/* Disable the PN if appropriate */
1148 	squash_the_stupid_serial_number(c);
1149 
1150 	/* Set up SMEP/SMAP */
1151 	setup_smep(c);
1152 	setup_smap(c);
1153 
1154 	/*
1155 	 * The vendor-specific functions might have changed features.
1156 	 * Now we do "generic changes."
1157 	 */
1158 
1159 	/* Filter out anything that depends on CPUID levels we don't have */
1160 	filter_cpuid_features(c, true);
1161 
1162 	/* If the model name is still unset, do table lookup. */
1163 	if (!c->x86_model_id[0]) {
1164 		const char *p;
1165 		p = table_lookup_model(c);
1166 		if (p)
1167 			strcpy(c->x86_model_id, p);
1168 		else
1169 			/* Last resort... */
1170 			sprintf(c->x86_model_id, "%02x/%02x",
1171 				c->x86, c->x86_model);
1172 	}
1173 
1174 #ifdef CONFIG_X86_64
1175 	detect_ht(c);
1176 #endif
1177 
1178 	x86_init_rdrand(c);
1179 	x86_init_cache_qos(c);
1180 	setup_pku(c);
1181 
1182 	/*
1183 	 * Clear/Set all flags overridden by options, need do it
1184 	 * before following smp all cpus cap AND.
1185 	 */
1186 	apply_forced_caps(c);
1187 
1188 	/*
1189 	 * On SMP, boot_cpu_data holds the common feature set between
1190 	 * all CPUs; so make sure that we indicate which features are
1191 	 * common between the CPUs.  The first time this routine gets
1192 	 * executed, c == &boot_cpu_data.
1193 	 */
1194 	if (c != &boot_cpu_data) {
1195 		/* AND the already accumulated flags with these */
1196 		for (i = 0; i < NCAPINTS; i++)
1197 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1198 
1199 		/* OR, i.e. replicate the bug flags */
1200 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1201 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1202 	}
1203 
1204 	/* Init Machine Check Exception if available. */
1205 	mcheck_cpu_init(c);
1206 
1207 	select_idle_routine(c);
1208 
1209 #ifdef CONFIG_NUMA
1210 	numa_add_cpu(smp_processor_id());
1211 #endif
1212 }
1213 
1214 /*
1215  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1216  * on 32-bit kernels:
1217  */
1218 #ifdef CONFIG_X86_32
1219 void enable_sep_cpu(void)
1220 {
1221 	struct tss_struct *tss;
1222 	int cpu;
1223 
1224 	if (!boot_cpu_has(X86_FEATURE_SEP))
1225 		return;
1226 
1227 	cpu = get_cpu();
1228 	tss = &per_cpu(cpu_tss, cpu);
1229 
1230 	/*
1231 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1232 	 * see the big comment in struct x86_hw_tss's definition.
1233 	 */
1234 
1235 	tss->x86_tss.ss1 = __KERNEL_CS;
1236 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1237 
1238 	wrmsr(MSR_IA32_SYSENTER_ESP,
1239 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1240 	      0);
1241 
1242 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1243 
1244 	put_cpu();
1245 }
1246 #endif
1247 
1248 void __init identify_boot_cpu(void)
1249 {
1250 	identify_cpu(&boot_cpu_data);
1251 #ifdef CONFIG_X86_32
1252 	sysenter_setup();
1253 	enable_sep_cpu();
1254 #endif
1255 	cpu_detect_tlb(&boot_cpu_data);
1256 }
1257 
1258 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1259 {
1260 	BUG_ON(c == &boot_cpu_data);
1261 	identify_cpu(c);
1262 #ifdef CONFIG_X86_32
1263 	enable_sep_cpu();
1264 #endif
1265 	mtrr_ap_init();
1266 	validate_apic_and_package_id(c);
1267 }
1268 
1269 static __init int setup_noclflush(char *arg)
1270 {
1271 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1272 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1273 	return 1;
1274 }
1275 __setup("noclflush", setup_noclflush);
1276 
1277 void print_cpu_info(struct cpuinfo_x86 *c)
1278 {
1279 	const char *vendor = NULL;
1280 
1281 	if (c->x86_vendor < X86_VENDOR_NUM) {
1282 		vendor = this_cpu->c_vendor;
1283 	} else {
1284 		if (c->cpuid_level >= 0)
1285 			vendor = c->x86_vendor_id;
1286 	}
1287 
1288 	if (vendor && !strstr(c->x86_model_id, vendor))
1289 		pr_cont("%s ", vendor);
1290 
1291 	if (c->x86_model_id[0])
1292 		pr_cont("%s", c->x86_model_id);
1293 	else
1294 		pr_cont("%d86", c->x86);
1295 
1296 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1297 
1298 	if (c->x86_mask || c->cpuid_level >= 0)
1299 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1300 	else
1301 		pr_cont(")\n");
1302 }
1303 
1304 static __init int setup_disablecpuid(char *arg)
1305 {
1306 	int bit;
1307 
1308 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1309 		setup_clear_cpu_cap(bit);
1310 	else
1311 		return 0;
1312 
1313 	return 1;
1314 }
1315 __setup("clearcpuid=", setup_disablecpuid);
1316 
1317 #ifdef CONFIG_X86_64
1318 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1319 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1320 
1321 /*
1322  * The following percpu variables are hot.  Align current_task to
1323  * cacheline size such that they fall in the same cacheline.
1324  */
1325 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1326 	&init_task;
1327 EXPORT_PER_CPU_SYMBOL(current_task);
1328 
1329 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1330 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1331 
1332 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1333 
1334 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1335 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1336 
1337 /*
1338  * Special IST stacks which the CPU switches to when it calls
1339  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1340  * limit), all of them are 4K, except the debug stack which
1341  * is 8K.
1342  */
1343 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1344 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1345 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1346 };
1347 
1348 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1349 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1350 
1351 /* May not be marked __init: used by software suspend */
1352 void syscall_init(void)
1353 {
1354 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1355 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1356 
1357 #ifdef CONFIG_IA32_EMULATION
1358 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1359 	/*
1360 	 * This only works on Intel CPUs.
1361 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1362 	 * This does not cause SYSENTER to jump to the wrong location, because
1363 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1364 	 */
1365 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1366 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1367 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1368 #else
1369 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1370 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1371 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1372 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1373 #endif
1374 
1375 	/* Flags to clear on syscall */
1376 	wrmsrl(MSR_SYSCALL_MASK,
1377 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1378 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1379 }
1380 
1381 /*
1382  * Copies of the original ist values from the tss are only accessed during
1383  * debugging, no special alignment required.
1384  */
1385 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1386 
1387 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1388 DEFINE_PER_CPU(int, debug_stack_usage);
1389 
1390 int is_debug_stack(unsigned long addr)
1391 {
1392 	return __this_cpu_read(debug_stack_usage) ||
1393 		(addr <= __this_cpu_read(debug_stack_addr) &&
1394 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1395 }
1396 NOKPROBE_SYMBOL(is_debug_stack);
1397 
1398 DEFINE_PER_CPU(u32, debug_idt_ctr);
1399 
1400 void debug_stack_set_zero(void)
1401 {
1402 	this_cpu_inc(debug_idt_ctr);
1403 	load_current_idt();
1404 }
1405 NOKPROBE_SYMBOL(debug_stack_set_zero);
1406 
1407 void debug_stack_reset(void)
1408 {
1409 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1410 		return;
1411 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1412 		load_current_idt();
1413 }
1414 NOKPROBE_SYMBOL(debug_stack_reset);
1415 
1416 #else	/* CONFIG_X86_64 */
1417 
1418 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1419 EXPORT_PER_CPU_SYMBOL(current_task);
1420 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1421 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1422 
1423 /*
1424  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1425  * the top of the kernel stack.  Use an extra percpu variable to track the
1426  * top of the kernel stack directly.
1427  */
1428 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1429 	(unsigned long)&init_thread_union + THREAD_SIZE;
1430 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1431 
1432 #ifdef CONFIG_CC_STACKPROTECTOR
1433 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1434 #endif
1435 
1436 #endif	/* CONFIG_X86_64 */
1437 
1438 /*
1439  * Clear all 6 debug registers:
1440  */
1441 static void clear_all_debug_regs(void)
1442 {
1443 	int i;
1444 
1445 	for (i = 0; i < 8; i++) {
1446 		/* Ignore db4, db5 */
1447 		if ((i == 4) || (i == 5))
1448 			continue;
1449 
1450 		set_debugreg(0, i);
1451 	}
1452 }
1453 
1454 #ifdef CONFIG_KGDB
1455 /*
1456  * Restore debug regs if using kgdbwait and you have a kernel debugger
1457  * connection established.
1458  */
1459 static void dbg_restore_debug_regs(void)
1460 {
1461 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1462 		arch_kgdb_ops.correct_hw_break();
1463 }
1464 #else /* ! CONFIG_KGDB */
1465 #define dbg_restore_debug_regs()
1466 #endif /* ! CONFIG_KGDB */
1467 
1468 static void wait_for_master_cpu(int cpu)
1469 {
1470 #ifdef CONFIG_SMP
1471 	/*
1472 	 * wait for ACK from master CPU before continuing
1473 	 * with AP initialization
1474 	 */
1475 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1476 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1477 		cpu_relax();
1478 #endif
1479 }
1480 
1481 /*
1482  * cpu_init() initializes state that is per-CPU. Some data is already
1483  * initialized (naturally) in the bootstrap process, such as the GDT
1484  * and IDT. We reload them nevertheless, this function acts as a
1485  * 'CPU state barrier', nothing should get across.
1486  * A lot of state is already set up in PDA init for 64 bit
1487  */
1488 #ifdef CONFIG_X86_64
1489 
1490 void cpu_init(void)
1491 {
1492 	struct orig_ist *oist;
1493 	struct task_struct *me;
1494 	struct tss_struct *t;
1495 	unsigned long v;
1496 	int cpu = raw_smp_processor_id();
1497 	int i;
1498 
1499 	wait_for_master_cpu(cpu);
1500 
1501 	/*
1502 	 * Initialize the CR4 shadow before doing anything that could
1503 	 * try to read it.
1504 	 */
1505 	cr4_init_shadow();
1506 
1507 	if (cpu)
1508 		load_ucode_ap();
1509 
1510 	t = &per_cpu(cpu_tss, cpu);
1511 	oist = &per_cpu(orig_ist, cpu);
1512 
1513 #ifdef CONFIG_NUMA
1514 	if (this_cpu_read(numa_node) == 0 &&
1515 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1516 		set_numa_node(early_cpu_to_node(cpu));
1517 #endif
1518 
1519 	me = current;
1520 
1521 	pr_debug("Initializing CPU#%d\n", cpu);
1522 
1523 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1524 
1525 	/*
1526 	 * Initialize the per-CPU GDT with the boot GDT,
1527 	 * and set up the GDT descriptor:
1528 	 */
1529 
1530 	switch_to_new_gdt(cpu);
1531 	loadsegment(fs, 0);
1532 
1533 	load_current_idt();
1534 
1535 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1536 	syscall_init();
1537 
1538 	wrmsrl(MSR_FS_BASE, 0);
1539 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1540 	barrier();
1541 
1542 	x86_configure_nx();
1543 	x2apic_setup();
1544 
1545 	/*
1546 	 * set up and load the per-CPU TSS
1547 	 */
1548 	if (!oist->ist[0]) {
1549 		char *estacks = per_cpu(exception_stacks, cpu);
1550 
1551 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1552 			estacks += exception_stack_sizes[v];
1553 			oist->ist[v] = t->x86_tss.ist[v] =
1554 					(unsigned long)estacks;
1555 			if (v == DEBUG_STACK-1)
1556 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1557 		}
1558 	}
1559 
1560 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1561 
1562 	/*
1563 	 * <= is required because the CPU will access up to
1564 	 * 8 bits beyond the end of the IO permission bitmap.
1565 	 */
1566 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1567 		t->io_bitmap[i] = ~0UL;
1568 
1569 	mmgrab(&init_mm);
1570 	me->active_mm = &init_mm;
1571 	BUG_ON(me->mm);
1572 	initialize_tlbstate_and_flush();
1573 	enter_lazy_tlb(&init_mm, me);
1574 
1575 	load_sp0(t, &current->thread);
1576 	set_tss_desc(cpu, t);
1577 	load_TR_desc();
1578 	load_mm_ldt(&init_mm);
1579 
1580 	clear_all_debug_regs();
1581 	dbg_restore_debug_regs();
1582 
1583 	fpu__init_cpu();
1584 
1585 	if (is_uv_system())
1586 		uv_cpu_init();
1587 
1588 	setup_fixmap_gdt(cpu);
1589 	load_fixmap_gdt(cpu);
1590 }
1591 
1592 #else
1593 
1594 void cpu_init(void)
1595 {
1596 	int cpu = smp_processor_id();
1597 	struct task_struct *curr = current;
1598 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1599 	struct thread_struct *thread = &curr->thread;
1600 
1601 	wait_for_master_cpu(cpu);
1602 
1603 	/*
1604 	 * Initialize the CR4 shadow before doing anything that could
1605 	 * try to read it.
1606 	 */
1607 	cr4_init_shadow();
1608 
1609 	show_ucode_info_early();
1610 
1611 	pr_info("Initializing CPU#%d\n", cpu);
1612 
1613 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1614 	    boot_cpu_has(X86_FEATURE_TSC) ||
1615 	    boot_cpu_has(X86_FEATURE_DE))
1616 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1617 
1618 	load_current_idt();
1619 	switch_to_new_gdt(cpu);
1620 
1621 	/*
1622 	 * Set up and load the per-CPU TSS and LDT
1623 	 */
1624 	mmgrab(&init_mm);
1625 	curr->active_mm = &init_mm;
1626 	BUG_ON(curr->mm);
1627 	initialize_tlbstate_and_flush();
1628 	enter_lazy_tlb(&init_mm, curr);
1629 
1630 	load_sp0(t, thread);
1631 	set_tss_desc(cpu, t);
1632 	load_TR_desc();
1633 	load_mm_ldt(&init_mm);
1634 
1635 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1636 
1637 #ifdef CONFIG_DOUBLEFAULT
1638 	/* Set up doublefault TSS pointer in the GDT */
1639 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1640 #endif
1641 
1642 	clear_all_debug_regs();
1643 	dbg_restore_debug_regs();
1644 
1645 	fpu__init_cpu();
1646 
1647 	setup_fixmap_gdt(cpu);
1648 	load_fixmap_gdt(cpu);
1649 }
1650 #endif
1651 
1652 static void bsp_resume(void)
1653 {
1654 	if (this_cpu->c_bsp_resume)
1655 		this_cpu->c_bsp_resume(&boot_cpu_data);
1656 }
1657 
1658 static struct syscore_ops cpu_syscore_ops = {
1659 	.resume		= bsp_resume,
1660 };
1661 
1662 static int __init init_cpu_syscore(void)
1663 {
1664 	register_syscore_ops(&cpu_syscore_ops);
1665 	return 0;
1666 }
1667 core_initcall(init_cpu_syscore);
1668