xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision c819e2cf)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15 
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/debugreg.h>
23 #include <asm/sections.h>
24 #include <asm/vsyscall.h>
25 #include <linux/topology.h>
26 #include <linux/cpumask.h>
27 #include <asm/pgtable.h>
28 #include <linux/atomic.h>
29 #include <asm/proto.h>
30 #include <asm/setup.h>
31 #include <asm/apic.h>
32 #include <asm/desc.h>
33 #include <asm/i387.h>
34 #include <asm/fpu-internal.h>
35 #include <asm/mtrr.h>
36 #include <linux/numa.h>
37 #include <asm/asm.h>
38 #include <asm/cpu.h>
39 #include <asm/mce.h>
40 #include <asm/msr.h>
41 #include <asm/pat.h>
42 #include <asm/microcode.h>
43 #include <asm/microcode_intel.h>
44 
45 #ifdef CONFIG_X86_LOCAL_APIC
46 #include <asm/uv/uv.h>
47 #endif
48 
49 #include "cpu.h"
50 
51 /* all of these masks are initialized in setup_cpu_local_masks() */
52 cpumask_var_t cpu_initialized_mask;
53 cpumask_var_t cpu_callout_mask;
54 cpumask_var_t cpu_callin_mask;
55 
56 /* representing cpus for which sibling maps can be computed */
57 cpumask_var_t cpu_sibling_setup_mask;
58 
59 /* correctly size the local cpu masks */
60 void __init setup_cpu_local_masks(void)
61 {
62 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
63 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
64 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
65 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
66 }
67 
68 static void default_init(struct cpuinfo_x86 *c)
69 {
70 #ifdef CONFIG_X86_64
71 	cpu_detect_cache_sizes(c);
72 #else
73 	/* Not much we can do here... */
74 	/* Check if at least it has cpuid */
75 	if (c->cpuid_level == -1) {
76 		/* No cpuid. It must be an ancient CPU */
77 		if (c->x86 == 4)
78 			strcpy(c->x86_model_id, "486");
79 		else if (c->x86 == 3)
80 			strcpy(c->x86_model_id, "386");
81 	}
82 #endif
83 }
84 
85 static const struct cpu_dev default_cpu = {
86 	.c_init		= default_init,
87 	.c_vendor	= "Unknown",
88 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
89 };
90 
91 static const struct cpu_dev *this_cpu = &default_cpu;
92 
93 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
94 #ifdef CONFIG_X86_64
95 	/*
96 	 * We need valid kernel segments for data and code in long mode too
97 	 * IRET will check the segment types  kkeil 2000/10/28
98 	 * Also sysret mandates a special GDT layout
99 	 *
100 	 * TLS descriptors are currently at a different place compared to i386.
101 	 * Hopefully nobody expects them at a fixed place (Wine?)
102 	 */
103 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
104 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
105 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
106 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
107 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
109 #else
110 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
111 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
112 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
114 	/*
115 	 * Segments used for calling PnP BIOS have byte granularity.
116 	 * They code segments and data segments have fixed 64k limits,
117 	 * the transfer segment sizes are set at run time.
118 	 */
119 	/* 32-bit code */
120 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
121 	/* 16-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/*
130 	 * The APM segments have byte granularity and their bases
131 	 * are set at run time.  All have 64k limits.
132 	 */
133 	/* 32-bit code */
134 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
135 	/* 16-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
137 	/* data */
138 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
139 
140 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 	GDT_STACK_CANARY_INIT
143 #endif
144 } };
145 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
146 
147 static int __init x86_xsave_setup(char *s)
148 {
149 	if (strlen(s))
150 		return 0;
151 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
152 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
153 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
154 	setup_clear_cpu_cap(X86_FEATURE_AVX);
155 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
156 	return 1;
157 }
158 __setup("noxsave", x86_xsave_setup);
159 
160 static int __init x86_xsaveopt_setup(char *s)
161 {
162 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
163 	return 1;
164 }
165 __setup("noxsaveopt", x86_xsaveopt_setup);
166 
167 static int __init x86_xsaves_setup(char *s)
168 {
169 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
170 	return 1;
171 }
172 __setup("noxsaves", x86_xsaves_setup);
173 
174 #ifdef CONFIG_X86_32
175 static int cachesize_override = -1;
176 static int disable_x86_serial_nr = 1;
177 
178 static int __init cachesize_setup(char *str)
179 {
180 	get_option(&str, &cachesize_override);
181 	return 1;
182 }
183 __setup("cachesize=", cachesize_setup);
184 
185 static int __init x86_fxsr_setup(char *s)
186 {
187 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
188 	setup_clear_cpu_cap(X86_FEATURE_XMM);
189 	return 1;
190 }
191 __setup("nofxsr", x86_fxsr_setup);
192 
193 static int __init x86_sep_setup(char *s)
194 {
195 	setup_clear_cpu_cap(X86_FEATURE_SEP);
196 	return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199 
200 /* Standard macro to see if a specific flag is changeable */
201 static inline int flag_is_changeable_p(u32 flag)
202 {
203 	u32 f1, f2;
204 
205 	/*
206 	 * Cyrix and IDT cpus allow disabling of CPUID
207 	 * so the code below may return different results
208 	 * when it is executed before and after enabling
209 	 * the CPUID. Add "volatile" to not allow gcc to
210 	 * optimize the subsequent calls to this function.
211 	 */
212 	asm volatile ("pushfl		\n\t"
213 		      "pushfl		\n\t"
214 		      "popl %0		\n\t"
215 		      "movl %0, %1	\n\t"
216 		      "xorl %2, %0	\n\t"
217 		      "pushl %0		\n\t"
218 		      "popfl		\n\t"
219 		      "pushfl		\n\t"
220 		      "popl %0		\n\t"
221 		      "popfl		\n\t"
222 
223 		      : "=&r" (f1), "=&r" (f2)
224 		      : "ir" (flag));
225 
226 	return ((f1^f2) & flag) != 0;
227 }
228 
229 /* Probe for the CPUID instruction */
230 int have_cpuid_p(void)
231 {
232 	return flag_is_changeable_p(X86_EFLAGS_ID);
233 }
234 
235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
236 {
237 	unsigned long lo, hi;
238 
239 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240 		return;
241 
242 	/* Disable processor serial number: */
243 
244 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 	lo |= 0x200000;
246 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247 
248 	printk(KERN_NOTICE "CPU serial number disabled.\n");
249 	clear_cpu_cap(c, X86_FEATURE_PN);
250 
251 	/* Disabling the serial number may affect the cpuid level */
252 	c->cpuid_level = cpuid_eax(0);
253 }
254 
255 static int __init x86_serial_nr_setup(char *s)
256 {
257 	disable_x86_serial_nr = 0;
258 	return 1;
259 }
260 __setup("serialnumber", x86_serial_nr_setup);
261 #else
262 static inline int flag_is_changeable_p(u32 flag)
263 {
264 	return 1;
265 }
266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 }
269 #endif
270 
271 static __init int setup_disable_smep(char *arg)
272 {
273 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
274 	return 1;
275 }
276 __setup("nosmep", setup_disable_smep);
277 
278 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
279 {
280 	if (cpu_has(c, X86_FEATURE_SMEP))
281 		set_in_cr4(X86_CR4_SMEP);
282 }
283 
284 static __init int setup_disable_smap(char *arg)
285 {
286 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
287 	return 1;
288 }
289 __setup("nosmap", setup_disable_smap);
290 
291 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
292 {
293 	unsigned long eflags;
294 
295 	/* This should have been cleared long ago */
296 	raw_local_save_flags(eflags);
297 	BUG_ON(eflags & X86_EFLAGS_AC);
298 
299 	if (cpu_has(c, X86_FEATURE_SMAP)) {
300 #ifdef CONFIG_X86_SMAP
301 		set_in_cr4(X86_CR4_SMAP);
302 #else
303 		clear_in_cr4(X86_CR4_SMAP);
304 #endif
305 	}
306 }
307 
308 /*
309  * Some CPU features depend on higher CPUID levels, which may not always
310  * be available due to CPUID level capping or broken virtualization
311  * software.  Add those features to this table to auto-disable them.
312  */
313 struct cpuid_dependent_feature {
314 	u32 feature;
315 	u32 level;
316 };
317 
318 static const struct cpuid_dependent_feature
319 cpuid_dependent_features[] = {
320 	{ X86_FEATURE_MWAIT,		0x00000005 },
321 	{ X86_FEATURE_DCA,		0x00000009 },
322 	{ X86_FEATURE_XSAVE,		0x0000000d },
323 	{ 0, 0 }
324 };
325 
326 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
327 {
328 	const struct cpuid_dependent_feature *df;
329 
330 	for (df = cpuid_dependent_features; df->feature; df++) {
331 
332 		if (!cpu_has(c, df->feature))
333 			continue;
334 		/*
335 		 * Note: cpuid_level is set to -1 if unavailable, but
336 		 * extended_extended_level is set to 0 if unavailable
337 		 * and the legitimate extended levels are all negative
338 		 * when signed; hence the weird messing around with
339 		 * signs here...
340 		 */
341 		if (!((s32)df->level < 0 ?
342 		     (u32)df->level > (u32)c->extended_cpuid_level :
343 		     (s32)df->level > (s32)c->cpuid_level))
344 			continue;
345 
346 		clear_cpu_cap(c, df->feature);
347 		if (!warn)
348 			continue;
349 
350 		printk(KERN_WARNING
351 		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
352 				x86_cap_flag(df->feature), df->level);
353 	}
354 }
355 
356 /*
357  * Naming convention should be: <Name> [(<Codename>)]
358  * This table only is used unless init_<vendor>() below doesn't set it;
359  * in particular, if CPUID levels 0x80000002..4 are supported, this
360  * isn't used
361  */
362 
363 /* Look up CPU names by table lookup. */
364 static const char *table_lookup_model(struct cpuinfo_x86 *c)
365 {
366 #ifdef CONFIG_X86_32
367 	const struct legacy_cpu_model_info *info;
368 
369 	if (c->x86_model >= 16)
370 		return NULL;	/* Range check */
371 
372 	if (!this_cpu)
373 		return NULL;
374 
375 	info = this_cpu->legacy_models;
376 
377 	while (info->family) {
378 		if (info->family == c->x86)
379 			return info->model_names[c->x86_model];
380 		info++;
381 	}
382 #endif
383 	return NULL;		/* Not found */
384 }
385 
386 __u32 cpu_caps_cleared[NCAPINTS];
387 __u32 cpu_caps_set[NCAPINTS];
388 
389 void load_percpu_segment(int cpu)
390 {
391 #ifdef CONFIG_X86_32
392 	loadsegment(fs, __KERNEL_PERCPU);
393 #else
394 	loadsegment(gs, 0);
395 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
396 #endif
397 	load_stack_canary_segment();
398 }
399 
400 /*
401  * Current gdt points %fs at the "master" per-cpu area: after this,
402  * it's on the real one.
403  */
404 void switch_to_new_gdt(int cpu)
405 {
406 	struct desc_ptr gdt_descr;
407 
408 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
409 	gdt_descr.size = GDT_SIZE - 1;
410 	load_gdt(&gdt_descr);
411 	/* Reload the per-cpu base */
412 
413 	load_percpu_segment(cpu);
414 }
415 
416 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
417 
418 static void get_model_name(struct cpuinfo_x86 *c)
419 {
420 	unsigned int *v;
421 	char *p, *q;
422 
423 	if (c->extended_cpuid_level < 0x80000004)
424 		return;
425 
426 	v = (unsigned int *)c->x86_model_id;
427 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430 	c->x86_model_id[48] = 0;
431 
432 	/*
433 	 * Intel chips right-justify this string for some dumb reason;
434 	 * undo that brain damage:
435 	 */
436 	p = q = &c->x86_model_id[0];
437 	while (*p == ' ')
438 		p++;
439 	if (p != q) {
440 		while (*p)
441 			*q++ = *p++;
442 		while (q <= &c->x86_model_id[48])
443 			*q++ = '\0';	/* Zero-pad the rest */
444 	}
445 }
446 
447 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
448 {
449 	unsigned int n, dummy, ebx, ecx, edx, l2size;
450 
451 	n = c->extended_cpuid_level;
452 
453 	if (n >= 0x80000005) {
454 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
455 		c->x86_cache_size = (ecx>>24) + (edx>>24);
456 #ifdef CONFIG_X86_64
457 		/* On K8 L1 TLB is inclusive, so don't count it */
458 		c->x86_tlbsize = 0;
459 #endif
460 	}
461 
462 	if (n < 0x80000006)	/* Some chips just has a large L1. */
463 		return;
464 
465 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
466 	l2size = ecx >> 16;
467 
468 #ifdef CONFIG_X86_64
469 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
470 #else
471 	/* do processor-specific cache resizing */
472 	if (this_cpu->legacy_cache_size)
473 		l2size = this_cpu->legacy_cache_size(c, l2size);
474 
475 	/* Allow user to override all this if necessary. */
476 	if (cachesize_override != -1)
477 		l2size = cachesize_override;
478 
479 	if (l2size == 0)
480 		return;		/* Again, no L2 cache is possible */
481 #endif
482 
483 	c->x86_cache_size = l2size;
484 }
485 
486 u16 __read_mostly tlb_lli_4k[NR_INFO];
487 u16 __read_mostly tlb_lli_2m[NR_INFO];
488 u16 __read_mostly tlb_lli_4m[NR_INFO];
489 u16 __read_mostly tlb_lld_4k[NR_INFO];
490 u16 __read_mostly tlb_lld_2m[NR_INFO];
491 u16 __read_mostly tlb_lld_4m[NR_INFO];
492 u16 __read_mostly tlb_lld_1g[NR_INFO];
493 
494 void cpu_detect_tlb(struct cpuinfo_x86 *c)
495 {
496 	if (this_cpu->c_detect_tlb)
497 		this_cpu->c_detect_tlb(c);
498 
499 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
500 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
501 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
502 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
503 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
504 		tlb_lld_1g[ENTRIES]);
505 }
506 
507 void detect_ht(struct cpuinfo_x86 *c)
508 {
509 #ifdef CONFIG_X86_HT
510 	u32 eax, ebx, ecx, edx;
511 	int index_msb, core_bits;
512 	static bool printed;
513 
514 	if (!cpu_has(c, X86_FEATURE_HT))
515 		return;
516 
517 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
518 		goto out;
519 
520 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
521 		return;
522 
523 	cpuid(1, &eax, &ebx, &ecx, &edx);
524 
525 	smp_num_siblings = (ebx & 0xff0000) >> 16;
526 
527 	if (smp_num_siblings == 1) {
528 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
529 		goto out;
530 	}
531 
532 	if (smp_num_siblings <= 1)
533 		goto out;
534 
535 	index_msb = get_count_order(smp_num_siblings);
536 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
537 
538 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
539 
540 	index_msb = get_count_order(smp_num_siblings);
541 
542 	core_bits = get_count_order(c->x86_max_cores);
543 
544 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
545 				       ((1 << core_bits) - 1);
546 
547 out:
548 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
549 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
550 		       c->phys_proc_id);
551 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
552 		       c->cpu_core_id);
553 		printed = 1;
554 	}
555 #endif
556 }
557 
558 static void get_cpu_vendor(struct cpuinfo_x86 *c)
559 {
560 	char *v = c->x86_vendor_id;
561 	int i;
562 
563 	for (i = 0; i < X86_VENDOR_NUM; i++) {
564 		if (!cpu_devs[i])
565 			break;
566 
567 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
568 		    (cpu_devs[i]->c_ident[1] &&
569 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
570 
571 			this_cpu = cpu_devs[i];
572 			c->x86_vendor = this_cpu->c_x86_vendor;
573 			return;
574 		}
575 	}
576 
577 	printk_once(KERN_ERR
578 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
579 			"CPU: Your system may be unstable.\n", v);
580 
581 	c->x86_vendor = X86_VENDOR_UNKNOWN;
582 	this_cpu = &default_cpu;
583 }
584 
585 void cpu_detect(struct cpuinfo_x86 *c)
586 {
587 	/* Get vendor name */
588 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
589 	      (unsigned int *)&c->x86_vendor_id[0],
590 	      (unsigned int *)&c->x86_vendor_id[8],
591 	      (unsigned int *)&c->x86_vendor_id[4]);
592 
593 	c->x86 = 4;
594 	/* Intel-defined flags: level 0x00000001 */
595 	if (c->cpuid_level >= 0x00000001) {
596 		u32 junk, tfms, cap0, misc;
597 
598 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
599 		c->x86 = (tfms >> 8) & 0xf;
600 		c->x86_model = (tfms >> 4) & 0xf;
601 		c->x86_mask = tfms & 0xf;
602 
603 		if (c->x86 == 0xf)
604 			c->x86 += (tfms >> 20) & 0xff;
605 		if (c->x86 >= 0x6)
606 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
607 
608 		if (cap0 & (1<<19)) {
609 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
610 			c->x86_cache_alignment = c->x86_clflush_size;
611 		}
612 	}
613 }
614 
615 void get_cpu_cap(struct cpuinfo_x86 *c)
616 {
617 	u32 tfms, xlvl;
618 	u32 ebx;
619 
620 	/* Intel-defined flags: level 0x00000001 */
621 	if (c->cpuid_level >= 0x00000001) {
622 		u32 capability, excap;
623 
624 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
625 		c->x86_capability[0] = capability;
626 		c->x86_capability[4] = excap;
627 	}
628 
629 	/* Additional Intel-defined flags: level 0x00000007 */
630 	if (c->cpuid_level >= 0x00000007) {
631 		u32 eax, ebx, ecx, edx;
632 
633 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
634 
635 		c->x86_capability[9] = ebx;
636 	}
637 
638 	/* Extended state features: level 0x0000000d */
639 	if (c->cpuid_level >= 0x0000000d) {
640 		u32 eax, ebx, ecx, edx;
641 
642 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
643 
644 		c->x86_capability[10] = eax;
645 	}
646 
647 	/* AMD-defined flags: level 0x80000001 */
648 	xlvl = cpuid_eax(0x80000000);
649 	c->extended_cpuid_level = xlvl;
650 
651 	if ((xlvl & 0xffff0000) == 0x80000000) {
652 		if (xlvl >= 0x80000001) {
653 			c->x86_capability[1] = cpuid_edx(0x80000001);
654 			c->x86_capability[6] = cpuid_ecx(0x80000001);
655 		}
656 	}
657 
658 	if (c->extended_cpuid_level >= 0x80000008) {
659 		u32 eax = cpuid_eax(0x80000008);
660 
661 		c->x86_virt_bits = (eax >> 8) & 0xff;
662 		c->x86_phys_bits = eax & 0xff;
663 	}
664 #ifdef CONFIG_X86_32
665 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
666 		c->x86_phys_bits = 36;
667 #endif
668 
669 	if (c->extended_cpuid_level >= 0x80000007)
670 		c->x86_power = cpuid_edx(0x80000007);
671 
672 	init_scattered_cpuid_features(c);
673 }
674 
675 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
676 {
677 #ifdef CONFIG_X86_32
678 	int i;
679 
680 	/*
681 	 * First of all, decide if this is a 486 or higher
682 	 * It's a 486 if we can modify the AC flag
683 	 */
684 	if (flag_is_changeable_p(X86_EFLAGS_AC))
685 		c->x86 = 4;
686 	else
687 		c->x86 = 3;
688 
689 	for (i = 0; i < X86_VENDOR_NUM; i++)
690 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
691 			c->x86_vendor_id[0] = 0;
692 			cpu_devs[i]->c_identify(c);
693 			if (c->x86_vendor_id[0]) {
694 				get_cpu_vendor(c);
695 				break;
696 			}
697 		}
698 #endif
699 }
700 
701 /*
702  * Do minimum CPU detection early.
703  * Fields really needed: vendor, cpuid_level, family, model, mask,
704  * cache alignment.
705  * The others are not touched to avoid unwanted side effects.
706  *
707  * WARNING: this function is only called on the BP.  Don't add code here
708  * that is supposed to run on all CPUs.
709  */
710 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
711 {
712 #ifdef CONFIG_X86_64
713 	c->x86_clflush_size = 64;
714 	c->x86_phys_bits = 36;
715 	c->x86_virt_bits = 48;
716 #else
717 	c->x86_clflush_size = 32;
718 	c->x86_phys_bits = 32;
719 	c->x86_virt_bits = 32;
720 #endif
721 	c->x86_cache_alignment = c->x86_clflush_size;
722 
723 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
724 	c->extended_cpuid_level = 0;
725 
726 	if (!have_cpuid_p())
727 		identify_cpu_without_cpuid(c);
728 
729 	/* cyrix could have cpuid enabled via c_identify()*/
730 	if (!have_cpuid_p())
731 		return;
732 
733 	cpu_detect(c);
734 	get_cpu_vendor(c);
735 	get_cpu_cap(c);
736 	fpu_detect(c);
737 
738 	if (this_cpu->c_early_init)
739 		this_cpu->c_early_init(c);
740 
741 	c->cpu_index = 0;
742 	filter_cpuid_features(c, false);
743 
744 	if (this_cpu->c_bsp_init)
745 		this_cpu->c_bsp_init(c);
746 
747 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
748 }
749 
750 void __init early_cpu_init(void)
751 {
752 	const struct cpu_dev *const *cdev;
753 	int count = 0;
754 
755 #ifdef CONFIG_PROCESSOR_SELECT
756 	printk(KERN_INFO "KERNEL supported cpus:\n");
757 #endif
758 
759 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
760 		const struct cpu_dev *cpudev = *cdev;
761 
762 		if (count >= X86_VENDOR_NUM)
763 			break;
764 		cpu_devs[count] = cpudev;
765 		count++;
766 
767 #ifdef CONFIG_PROCESSOR_SELECT
768 		{
769 			unsigned int j;
770 
771 			for (j = 0; j < 2; j++) {
772 				if (!cpudev->c_ident[j])
773 					continue;
774 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
775 					cpudev->c_ident[j]);
776 			}
777 		}
778 #endif
779 	}
780 	early_identify_cpu(&boot_cpu_data);
781 }
782 
783 /*
784  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
785  * unfortunately, that's not true in practice because of early VIA
786  * chips and (more importantly) broken virtualizers that are not easy
787  * to detect. In the latter case it doesn't even *fail* reliably, so
788  * probing for it doesn't even work. Disable it completely on 32-bit
789  * unless we can find a reliable way to detect all the broken cases.
790  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
791  */
792 static void detect_nopl(struct cpuinfo_x86 *c)
793 {
794 #ifdef CONFIG_X86_32
795 	clear_cpu_cap(c, X86_FEATURE_NOPL);
796 #else
797 	set_cpu_cap(c, X86_FEATURE_NOPL);
798 #endif
799 }
800 
801 static void generic_identify(struct cpuinfo_x86 *c)
802 {
803 	c->extended_cpuid_level = 0;
804 
805 	if (!have_cpuid_p())
806 		identify_cpu_without_cpuid(c);
807 
808 	/* cyrix could have cpuid enabled via c_identify()*/
809 	if (!have_cpuid_p())
810 		return;
811 
812 	cpu_detect(c);
813 
814 	get_cpu_vendor(c);
815 
816 	get_cpu_cap(c);
817 
818 	if (c->cpuid_level >= 0x00000001) {
819 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
820 #ifdef CONFIG_X86_32
821 # ifdef CONFIG_X86_HT
822 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
823 # else
824 		c->apicid = c->initial_apicid;
825 # endif
826 #endif
827 		c->phys_proc_id = c->initial_apicid;
828 	}
829 
830 	get_model_name(c); /* Default name */
831 
832 	detect_nopl(c);
833 }
834 
835 /*
836  * This does the hard work of actually picking apart the CPU stuff...
837  */
838 static void identify_cpu(struct cpuinfo_x86 *c)
839 {
840 	int i;
841 
842 	c->loops_per_jiffy = loops_per_jiffy;
843 	c->x86_cache_size = -1;
844 	c->x86_vendor = X86_VENDOR_UNKNOWN;
845 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
846 	c->x86_vendor_id[0] = '\0'; /* Unset */
847 	c->x86_model_id[0] = '\0';  /* Unset */
848 	c->x86_max_cores = 1;
849 	c->x86_coreid_bits = 0;
850 #ifdef CONFIG_X86_64
851 	c->x86_clflush_size = 64;
852 	c->x86_phys_bits = 36;
853 	c->x86_virt_bits = 48;
854 #else
855 	c->cpuid_level = -1;	/* CPUID not detected */
856 	c->x86_clflush_size = 32;
857 	c->x86_phys_bits = 32;
858 	c->x86_virt_bits = 32;
859 #endif
860 	c->x86_cache_alignment = c->x86_clflush_size;
861 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
862 
863 	generic_identify(c);
864 
865 	if (this_cpu->c_identify)
866 		this_cpu->c_identify(c);
867 
868 	/* Clear/Set all flags overriden by options, after probe */
869 	for (i = 0; i < NCAPINTS; i++) {
870 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
871 		c->x86_capability[i] |= cpu_caps_set[i];
872 	}
873 
874 #ifdef CONFIG_X86_64
875 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
876 #endif
877 
878 	/*
879 	 * Vendor-specific initialization.  In this section we
880 	 * canonicalize the feature flags, meaning if there are
881 	 * features a certain CPU supports which CPUID doesn't
882 	 * tell us, CPUID claiming incorrect flags, or other bugs,
883 	 * we handle them here.
884 	 *
885 	 * At the end of this section, c->x86_capability better
886 	 * indicate the features this CPU genuinely supports!
887 	 */
888 	if (this_cpu->c_init)
889 		this_cpu->c_init(c);
890 
891 	/* Disable the PN if appropriate */
892 	squash_the_stupid_serial_number(c);
893 
894 	/* Set up SMEP/SMAP */
895 	setup_smep(c);
896 	setup_smap(c);
897 
898 	/*
899 	 * The vendor-specific functions might have changed features.
900 	 * Now we do "generic changes."
901 	 */
902 
903 	/* Filter out anything that depends on CPUID levels we don't have */
904 	filter_cpuid_features(c, true);
905 
906 	/* If the model name is still unset, do table lookup. */
907 	if (!c->x86_model_id[0]) {
908 		const char *p;
909 		p = table_lookup_model(c);
910 		if (p)
911 			strcpy(c->x86_model_id, p);
912 		else
913 			/* Last resort... */
914 			sprintf(c->x86_model_id, "%02x/%02x",
915 				c->x86, c->x86_model);
916 	}
917 
918 #ifdef CONFIG_X86_64
919 	detect_ht(c);
920 #endif
921 
922 	init_hypervisor(c);
923 	x86_init_rdrand(c);
924 
925 	/*
926 	 * Clear/Set all flags overriden by options, need do it
927 	 * before following smp all cpus cap AND.
928 	 */
929 	for (i = 0; i < NCAPINTS; i++) {
930 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
931 		c->x86_capability[i] |= cpu_caps_set[i];
932 	}
933 
934 	/*
935 	 * On SMP, boot_cpu_data holds the common feature set between
936 	 * all CPUs; so make sure that we indicate which features are
937 	 * common between the CPUs.  The first time this routine gets
938 	 * executed, c == &boot_cpu_data.
939 	 */
940 	if (c != &boot_cpu_data) {
941 		/* AND the already accumulated flags with these */
942 		for (i = 0; i < NCAPINTS; i++)
943 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
944 
945 		/* OR, i.e. replicate the bug flags */
946 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
947 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
948 	}
949 
950 	/* Init Machine Check Exception if available. */
951 	mcheck_cpu_init(c);
952 
953 	select_idle_routine(c);
954 
955 #ifdef CONFIG_NUMA
956 	numa_add_cpu(smp_processor_id());
957 #endif
958 }
959 
960 #ifdef CONFIG_X86_64
961 #ifdef CONFIG_IA32_EMULATION
962 /* May not be __init: called during resume */
963 static void syscall32_cpu_init(void)
964 {
965 	/* Load these always in case some future AMD CPU supports
966 	   SYSENTER from compat mode too. */
967 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
968 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
969 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
970 
971 	wrmsrl(MSR_CSTAR, ia32_cstar_target);
972 }
973 #endif		/* CONFIG_IA32_EMULATION */
974 #endif		/* CONFIG_X86_64 */
975 
976 #ifdef CONFIG_X86_32
977 void enable_sep_cpu(void)
978 {
979 	int cpu = get_cpu();
980 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
981 
982 	if (!boot_cpu_has(X86_FEATURE_SEP)) {
983 		put_cpu();
984 		return;
985 	}
986 
987 	tss->x86_tss.ss1 = __KERNEL_CS;
988 	tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
989 	wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
990 	wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
991 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
992 	put_cpu();
993 }
994 #endif
995 
996 void __init identify_boot_cpu(void)
997 {
998 	identify_cpu(&boot_cpu_data);
999 	init_amd_e400_c1e_mask();
1000 #ifdef CONFIG_X86_32
1001 	sysenter_setup();
1002 	enable_sep_cpu();
1003 #endif
1004 	cpu_detect_tlb(&boot_cpu_data);
1005 }
1006 
1007 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1008 {
1009 	BUG_ON(c == &boot_cpu_data);
1010 	identify_cpu(c);
1011 #ifdef CONFIG_X86_32
1012 	enable_sep_cpu();
1013 #endif
1014 	mtrr_ap_init();
1015 }
1016 
1017 struct msr_range {
1018 	unsigned	min;
1019 	unsigned	max;
1020 };
1021 
1022 static const struct msr_range msr_range_array[] = {
1023 	{ 0x00000000, 0x00000418},
1024 	{ 0xc0000000, 0xc000040b},
1025 	{ 0xc0010000, 0xc0010142},
1026 	{ 0xc0011000, 0xc001103b},
1027 };
1028 
1029 static void __print_cpu_msr(void)
1030 {
1031 	unsigned index_min, index_max;
1032 	unsigned index;
1033 	u64 val;
1034 	int i;
1035 
1036 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1037 		index_min = msr_range_array[i].min;
1038 		index_max = msr_range_array[i].max;
1039 
1040 		for (index = index_min; index < index_max; index++) {
1041 			if (rdmsrl_safe(index, &val))
1042 				continue;
1043 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1044 		}
1045 	}
1046 }
1047 
1048 static int show_msr;
1049 
1050 static __init int setup_show_msr(char *arg)
1051 {
1052 	int num;
1053 
1054 	get_option(&arg, &num);
1055 
1056 	if (num > 0)
1057 		show_msr = num;
1058 	return 1;
1059 }
1060 __setup("show_msr=", setup_show_msr);
1061 
1062 static __init int setup_noclflush(char *arg)
1063 {
1064 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1065 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1066 	return 1;
1067 }
1068 __setup("noclflush", setup_noclflush);
1069 
1070 void print_cpu_info(struct cpuinfo_x86 *c)
1071 {
1072 	const char *vendor = NULL;
1073 
1074 	if (c->x86_vendor < X86_VENDOR_NUM) {
1075 		vendor = this_cpu->c_vendor;
1076 	} else {
1077 		if (c->cpuid_level >= 0)
1078 			vendor = c->x86_vendor_id;
1079 	}
1080 
1081 	if (vendor && !strstr(c->x86_model_id, vendor))
1082 		printk(KERN_CONT "%s ", vendor);
1083 
1084 	if (c->x86_model_id[0])
1085 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1086 	else
1087 		printk(KERN_CONT "%d86", c->x86);
1088 
1089 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1090 
1091 	if (c->x86_mask || c->cpuid_level >= 0)
1092 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1093 	else
1094 		printk(KERN_CONT ")\n");
1095 
1096 	print_cpu_msr(c);
1097 }
1098 
1099 void print_cpu_msr(struct cpuinfo_x86 *c)
1100 {
1101 	if (c->cpu_index < show_msr)
1102 		__print_cpu_msr();
1103 }
1104 
1105 static __init int setup_disablecpuid(char *arg)
1106 {
1107 	int bit;
1108 
1109 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1110 		setup_clear_cpu_cap(bit);
1111 	else
1112 		return 0;
1113 
1114 	return 1;
1115 }
1116 __setup("clearcpuid=", setup_disablecpuid);
1117 
1118 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1119 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1120 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1121 
1122 #ifdef CONFIG_X86_64
1123 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1124 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1125 				    (unsigned long) debug_idt_table };
1126 
1127 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1128 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1129 
1130 /*
1131  * The following four percpu variables are hot.  Align current_task to
1132  * cacheline size such that all four fall in the same cacheline.
1133  */
1134 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1135 	&init_task;
1136 EXPORT_PER_CPU_SYMBOL(current_task);
1137 
1138 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1139 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1140 
1141 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1142 
1143 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1144 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1145 
1146 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1147 
1148 /*
1149  * Special IST stacks which the CPU switches to when it calls
1150  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1151  * limit), all of them are 4K, except the debug stack which
1152  * is 8K.
1153  */
1154 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1155 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1156 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1157 };
1158 
1159 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1160 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1161 
1162 /* May not be marked __init: used by software suspend */
1163 void syscall_init(void)
1164 {
1165 	/*
1166 	 * LSTAR and STAR live in a bit strange symbiosis.
1167 	 * They both write to the same internal register. STAR allows to
1168 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1169 	 */
1170 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1171 	wrmsrl(MSR_LSTAR, system_call);
1172 	wrmsrl(MSR_CSTAR, ignore_sysret);
1173 
1174 #ifdef CONFIG_IA32_EMULATION
1175 	syscall32_cpu_init();
1176 #endif
1177 
1178 	/* Flags to clear on syscall */
1179 	wrmsrl(MSR_SYSCALL_MASK,
1180 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1181 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1182 }
1183 
1184 /*
1185  * Copies of the original ist values from the tss are only accessed during
1186  * debugging, no special alignment required.
1187  */
1188 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1189 
1190 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1191 DEFINE_PER_CPU(int, debug_stack_usage);
1192 
1193 int is_debug_stack(unsigned long addr)
1194 {
1195 	return __this_cpu_read(debug_stack_usage) ||
1196 		(addr <= __this_cpu_read(debug_stack_addr) &&
1197 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1198 }
1199 NOKPROBE_SYMBOL(is_debug_stack);
1200 
1201 DEFINE_PER_CPU(u32, debug_idt_ctr);
1202 
1203 void debug_stack_set_zero(void)
1204 {
1205 	this_cpu_inc(debug_idt_ctr);
1206 	load_current_idt();
1207 }
1208 NOKPROBE_SYMBOL(debug_stack_set_zero);
1209 
1210 void debug_stack_reset(void)
1211 {
1212 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1213 		return;
1214 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1215 		load_current_idt();
1216 }
1217 NOKPROBE_SYMBOL(debug_stack_reset);
1218 
1219 #else	/* CONFIG_X86_64 */
1220 
1221 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1222 EXPORT_PER_CPU_SYMBOL(current_task);
1223 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1224 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1225 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1226 
1227 #ifdef CONFIG_CC_STACKPROTECTOR
1228 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1229 #endif
1230 
1231 #endif	/* CONFIG_X86_64 */
1232 
1233 /*
1234  * Clear all 6 debug registers:
1235  */
1236 static void clear_all_debug_regs(void)
1237 {
1238 	int i;
1239 
1240 	for (i = 0; i < 8; i++) {
1241 		/* Ignore db4, db5 */
1242 		if ((i == 4) || (i == 5))
1243 			continue;
1244 
1245 		set_debugreg(0, i);
1246 	}
1247 }
1248 
1249 #ifdef CONFIG_KGDB
1250 /*
1251  * Restore debug regs if using kgdbwait and you have a kernel debugger
1252  * connection established.
1253  */
1254 static void dbg_restore_debug_regs(void)
1255 {
1256 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1257 		arch_kgdb_ops.correct_hw_break();
1258 }
1259 #else /* ! CONFIG_KGDB */
1260 #define dbg_restore_debug_regs()
1261 #endif /* ! CONFIG_KGDB */
1262 
1263 static void wait_for_master_cpu(int cpu)
1264 {
1265 #ifdef CONFIG_SMP
1266 	/*
1267 	 * wait for ACK from master CPU before continuing
1268 	 * with AP initialization
1269 	 */
1270 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1271 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1272 		cpu_relax();
1273 #endif
1274 }
1275 
1276 /*
1277  * cpu_init() initializes state that is per-CPU. Some data is already
1278  * initialized (naturally) in the bootstrap process, such as the GDT
1279  * and IDT. We reload them nevertheless, this function acts as a
1280  * 'CPU state barrier', nothing should get across.
1281  * A lot of state is already set up in PDA init for 64 bit
1282  */
1283 #ifdef CONFIG_X86_64
1284 
1285 void cpu_init(void)
1286 {
1287 	struct orig_ist *oist;
1288 	struct task_struct *me;
1289 	struct tss_struct *t;
1290 	unsigned long v;
1291 	int cpu = stack_smp_processor_id();
1292 	int i;
1293 
1294 	wait_for_master_cpu(cpu);
1295 
1296 	/*
1297 	 * Load microcode on this cpu if a valid microcode is available.
1298 	 * This is early microcode loading procedure.
1299 	 */
1300 	load_ucode_ap();
1301 
1302 	t = &per_cpu(init_tss, cpu);
1303 	oist = &per_cpu(orig_ist, cpu);
1304 
1305 #ifdef CONFIG_NUMA
1306 	if (this_cpu_read(numa_node) == 0 &&
1307 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1308 		set_numa_node(early_cpu_to_node(cpu));
1309 #endif
1310 
1311 	me = current;
1312 
1313 	pr_debug("Initializing CPU#%d\n", cpu);
1314 
1315 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1316 
1317 	/*
1318 	 * Initialize the per-CPU GDT with the boot GDT,
1319 	 * and set up the GDT descriptor:
1320 	 */
1321 
1322 	switch_to_new_gdt(cpu);
1323 	loadsegment(fs, 0);
1324 
1325 	load_current_idt();
1326 
1327 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1328 	syscall_init();
1329 
1330 	wrmsrl(MSR_FS_BASE, 0);
1331 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1332 	barrier();
1333 
1334 	x86_configure_nx();
1335 	enable_x2apic();
1336 
1337 	/*
1338 	 * set up and load the per-CPU TSS
1339 	 */
1340 	if (!oist->ist[0]) {
1341 		char *estacks = per_cpu(exception_stacks, cpu);
1342 
1343 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1344 			estacks += exception_stack_sizes[v];
1345 			oist->ist[v] = t->x86_tss.ist[v] =
1346 					(unsigned long)estacks;
1347 			if (v == DEBUG_STACK-1)
1348 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1349 		}
1350 	}
1351 
1352 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1353 
1354 	/*
1355 	 * <= is required because the CPU will access up to
1356 	 * 8 bits beyond the end of the IO permission bitmap.
1357 	 */
1358 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1359 		t->io_bitmap[i] = ~0UL;
1360 
1361 	atomic_inc(&init_mm.mm_count);
1362 	me->active_mm = &init_mm;
1363 	BUG_ON(me->mm);
1364 	enter_lazy_tlb(&init_mm, me);
1365 
1366 	load_sp0(t, &current->thread);
1367 	set_tss_desc(cpu, t);
1368 	load_TR_desc();
1369 	load_LDT(&init_mm.context);
1370 
1371 	clear_all_debug_regs();
1372 	dbg_restore_debug_regs();
1373 
1374 	fpu_init();
1375 
1376 	if (is_uv_system())
1377 		uv_cpu_init();
1378 }
1379 
1380 #else
1381 
1382 void cpu_init(void)
1383 {
1384 	int cpu = smp_processor_id();
1385 	struct task_struct *curr = current;
1386 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1387 	struct thread_struct *thread = &curr->thread;
1388 
1389 	wait_for_master_cpu(cpu);
1390 
1391 	show_ucode_info_early();
1392 
1393 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1394 
1395 	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1396 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1397 
1398 	load_current_idt();
1399 	switch_to_new_gdt(cpu);
1400 
1401 	/*
1402 	 * Set up and load the per-CPU TSS and LDT
1403 	 */
1404 	atomic_inc(&init_mm.mm_count);
1405 	curr->active_mm = &init_mm;
1406 	BUG_ON(curr->mm);
1407 	enter_lazy_tlb(&init_mm, curr);
1408 
1409 	load_sp0(t, thread);
1410 	set_tss_desc(cpu, t);
1411 	load_TR_desc();
1412 	load_LDT(&init_mm.context);
1413 
1414 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1415 
1416 #ifdef CONFIG_DOUBLEFAULT
1417 	/* Set up doublefault TSS pointer in the GDT */
1418 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1419 #endif
1420 
1421 	clear_all_debug_regs();
1422 	dbg_restore_debug_regs();
1423 
1424 	fpu_init();
1425 }
1426 #endif
1427 
1428 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1429 void warn_pre_alternatives(void)
1430 {
1431 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1432 }
1433 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1434 #endif
1435 
1436 inline bool __static_cpu_has_safe(u16 bit)
1437 {
1438 	return boot_cpu_has(bit);
1439 }
1440 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1441