xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision c0e297dc)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 
17 #include <asm/stackprotector.h>
18 #include <asm/perf_event.h>
19 #include <asm/mmu_context.h>
20 #include <asm/archrandom.h>
21 #include <asm/hypervisor.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/debugreg.h>
25 #include <asm/sections.h>
26 #include <asm/vsyscall.h>
27 #include <linux/topology.h>
28 #include <linux/cpumask.h>
29 #include <asm/pgtable.h>
30 #include <linux/atomic.h>
31 #include <asm/proto.h>
32 #include <asm/setup.h>
33 #include <asm/apic.h>
34 #include <asm/desc.h>
35 #include <asm/fpu/internal.h>
36 #include <asm/mtrr.h>
37 #include <linux/numa.h>
38 #include <asm/asm.h>
39 #include <asm/cpu.h>
40 #include <asm/mce.h>
41 #include <asm/msr.h>
42 #include <asm/pat.h>
43 #include <asm/microcode.h>
44 #include <asm/microcode_intel.h>
45 
46 #ifdef CONFIG_X86_LOCAL_APIC
47 #include <asm/uv/uv.h>
48 #endif
49 
50 #include "cpu.h"
51 
52 /* all of these masks are initialized in setup_cpu_local_masks() */
53 cpumask_var_t cpu_initialized_mask;
54 cpumask_var_t cpu_callout_mask;
55 cpumask_var_t cpu_callin_mask;
56 
57 /* representing cpus for which sibling maps can be computed */
58 cpumask_var_t cpu_sibling_setup_mask;
59 
60 /* correctly size the local cpu masks */
61 void __init setup_cpu_local_masks(void)
62 {
63 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
66 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67 }
68 
69 static void default_init(struct cpuinfo_x86 *c)
70 {
71 #ifdef CONFIG_X86_64
72 	cpu_detect_cache_sizes(c);
73 #else
74 	/* Not much we can do here... */
75 	/* Check if at least it has cpuid */
76 	if (c->cpuid_level == -1) {
77 		/* No cpuid. It must be an ancient CPU */
78 		if (c->x86 == 4)
79 			strcpy(c->x86_model_id, "486");
80 		else if (c->x86 == 3)
81 			strcpy(c->x86_model_id, "386");
82 	}
83 #endif
84 }
85 
86 static const struct cpu_dev default_cpu = {
87 	.c_init		= default_init,
88 	.c_vendor	= "Unknown",
89 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
90 };
91 
92 static const struct cpu_dev *this_cpu = &default_cpu;
93 
94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95 #ifdef CONFIG_X86_64
96 	/*
97 	 * We need valid kernel segments for data and code in long mode too
98 	 * IRET will check the segment types  kkeil 2000/10/28
99 	 * Also sysret mandates a special GDT layout
100 	 *
101 	 * TLS descriptors are currently at a different place compared to i386.
102 	 * Hopefully nobody expects them at a fixed place (Wine?)
103 	 */
104 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110 #else
111 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115 	/*
116 	 * Segments used for calling PnP BIOS have byte granularity.
117 	 * They code segments and data segments have fixed 64k limits,
118 	 * the transfer segment sizes are set at run time.
119 	 */
120 	/* 32-bit code */
121 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122 	/* 16-bit code */
123 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124 	/* 16-bit data */
125 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126 	/* 16-bit data */
127 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
128 	/* 16-bit data */
129 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
130 	/*
131 	 * The APM segments have byte granularity and their bases
132 	 * are set at run time.  All have 64k limits.
133 	 */
134 	/* 32-bit code */
135 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136 	/* 16-bit code */
137 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138 	/* data */
139 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140 
141 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	GDT_STACK_CANARY_INIT
144 #endif
145 } };
146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147 
148 static int __init x86_mpx_setup(char *s)
149 {
150 	/* require an exact match without trailing characters */
151 	if (strlen(s))
152 		return 0;
153 
154 	/* do not emit a message if the feature is not present */
155 	if (!boot_cpu_has(X86_FEATURE_MPX))
156 		return 1;
157 
158 	setup_clear_cpu_cap(X86_FEATURE_MPX);
159 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
160 	return 1;
161 }
162 __setup("nompx", x86_mpx_setup);
163 
164 #ifdef CONFIG_X86_32
165 static int cachesize_override = -1;
166 static int disable_x86_serial_nr = 1;
167 
168 static int __init cachesize_setup(char *str)
169 {
170 	get_option(&str, &cachesize_override);
171 	return 1;
172 }
173 __setup("cachesize=", cachesize_setup);
174 
175 static int __init x86_sep_setup(char *s)
176 {
177 	setup_clear_cpu_cap(X86_FEATURE_SEP);
178 	return 1;
179 }
180 __setup("nosep", x86_sep_setup);
181 
182 /* Standard macro to see if a specific flag is changeable */
183 static inline int flag_is_changeable_p(u32 flag)
184 {
185 	u32 f1, f2;
186 
187 	/*
188 	 * Cyrix and IDT cpus allow disabling of CPUID
189 	 * so the code below may return different results
190 	 * when it is executed before and after enabling
191 	 * the CPUID. Add "volatile" to not allow gcc to
192 	 * optimize the subsequent calls to this function.
193 	 */
194 	asm volatile ("pushfl		\n\t"
195 		      "pushfl		\n\t"
196 		      "popl %0		\n\t"
197 		      "movl %0, %1	\n\t"
198 		      "xorl %2, %0	\n\t"
199 		      "pushl %0		\n\t"
200 		      "popfl		\n\t"
201 		      "pushfl		\n\t"
202 		      "popl %0		\n\t"
203 		      "popfl		\n\t"
204 
205 		      : "=&r" (f1), "=&r" (f2)
206 		      : "ir" (flag));
207 
208 	return ((f1^f2) & flag) != 0;
209 }
210 
211 /* Probe for the CPUID instruction */
212 int have_cpuid_p(void)
213 {
214 	return flag_is_changeable_p(X86_EFLAGS_ID);
215 }
216 
217 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
218 {
219 	unsigned long lo, hi;
220 
221 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
222 		return;
223 
224 	/* Disable processor serial number: */
225 
226 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
227 	lo |= 0x200000;
228 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
229 
230 	printk(KERN_NOTICE "CPU serial number disabled.\n");
231 	clear_cpu_cap(c, X86_FEATURE_PN);
232 
233 	/* Disabling the serial number may affect the cpuid level */
234 	c->cpuid_level = cpuid_eax(0);
235 }
236 
237 static int __init x86_serial_nr_setup(char *s)
238 {
239 	disable_x86_serial_nr = 0;
240 	return 1;
241 }
242 __setup("serialnumber", x86_serial_nr_setup);
243 #else
244 static inline int flag_is_changeable_p(u32 flag)
245 {
246 	return 1;
247 }
248 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
249 {
250 }
251 #endif
252 
253 static __init int setup_disable_smep(char *arg)
254 {
255 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
256 	return 1;
257 }
258 __setup("nosmep", setup_disable_smep);
259 
260 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
261 {
262 	if (cpu_has(c, X86_FEATURE_SMEP))
263 		cr4_set_bits(X86_CR4_SMEP);
264 }
265 
266 static __init int setup_disable_smap(char *arg)
267 {
268 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
269 	return 1;
270 }
271 __setup("nosmap", setup_disable_smap);
272 
273 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
274 {
275 	unsigned long eflags;
276 
277 	/* This should have been cleared long ago */
278 	raw_local_save_flags(eflags);
279 	BUG_ON(eflags & X86_EFLAGS_AC);
280 
281 	if (cpu_has(c, X86_FEATURE_SMAP)) {
282 #ifdef CONFIG_X86_SMAP
283 		cr4_set_bits(X86_CR4_SMAP);
284 #else
285 		cr4_clear_bits(X86_CR4_SMAP);
286 #endif
287 	}
288 }
289 
290 /*
291  * Some CPU features depend on higher CPUID levels, which may not always
292  * be available due to CPUID level capping or broken virtualization
293  * software.  Add those features to this table to auto-disable them.
294  */
295 struct cpuid_dependent_feature {
296 	u32 feature;
297 	u32 level;
298 };
299 
300 static const struct cpuid_dependent_feature
301 cpuid_dependent_features[] = {
302 	{ X86_FEATURE_MWAIT,		0x00000005 },
303 	{ X86_FEATURE_DCA,		0x00000009 },
304 	{ X86_FEATURE_XSAVE,		0x0000000d },
305 	{ 0, 0 }
306 };
307 
308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309 {
310 	const struct cpuid_dependent_feature *df;
311 
312 	for (df = cpuid_dependent_features; df->feature; df++) {
313 
314 		if (!cpu_has(c, df->feature))
315 			continue;
316 		/*
317 		 * Note: cpuid_level is set to -1 if unavailable, but
318 		 * extended_extended_level is set to 0 if unavailable
319 		 * and the legitimate extended levels are all negative
320 		 * when signed; hence the weird messing around with
321 		 * signs here...
322 		 */
323 		if (!((s32)df->level < 0 ?
324 		     (u32)df->level > (u32)c->extended_cpuid_level :
325 		     (s32)df->level > (s32)c->cpuid_level))
326 			continue;
327 
328 		clear_cpu_cap(c, df->feature);
329 		if (!warn)
330 			continue;
331 
332 		printk(KERN_WARNING
333 		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
334 				x86_cap_flag(df->feature), df->level);
335 	}
336 }
337 
338 /*
339  * Naming convention should be: <Name> [(<Codename>)]
340  * This table only is used unless init_<vendor>() below doesn't set it;
341  * in particular, if CPUID levels 0x80000002..4 are supported, this
342  * isn't used
343  */
344 
345 /* Look up CPU names by table lookup. */
346 static const char *table_lookup_model(struct cpuinfo_x86 *c)
347 {
348 #ifdef CONFIG_X86_32
349 	const struct legacy_cpu_model_info *info;
350 
351 	if (c->x86_model >= 16)
352 		return NULL;	/* Range check */
353 
354 	if (!this_cpu)
355 		return NULL;
356 
357 	info = this_cpu->legacy_models;
358 
359 	while (info->family) {
360 		if (info->family == c->x86)
361 			return info->model_names[c->x86_model];
362 		info++;
363 	}
364 #endif
365 	return NULL;		/* Not found */
366 }
367 
368 __u32 cpu_caps_cleared[NCAPINTS];
369 __u32 cpu_caps_set[NCAPINTS];
370 
371 void load_percpu_segment(int cpu)
372 {
373 #ifdef CONFIG_X86_32
374 	loadsegment(fs, __KERNEL_PERCPU);
375 #else
376 	loadsegment(gs, 0);
377 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
378 #endif
379 	load_stack_canary_segment();
380 }
381 
382 /*
383  * Current gdt points %fs at the "master" per-cpu area: after this,
384  * it's on the real one.
385  */
386 void switch_to_new_gdt(int cpu)
387 {
388 	struct desc_ptr gdt_descr;
389 
390 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
391 	gdt_descr.size = GDT_SIZE - 1;
392 	load_gdt(&gdt_descr);
393 	/* Reload the per-cpu base */
394 
395 	load_percpu_segment(cpu);
396 }
397 
398 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
399 
400 static void get_model_name(struct cpuinfo_x86 *c)
401 {
402 	unsigned int *v;
403 	char *p, *q, *s;
404 
405 	if (c->extended_cpuid_level < 0x80000004)
406 		return;
407 
408 	v = (unsigned int *)c->x86_model_id;
409 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
410 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
411 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
412 	c->x86_model_id[48] = 0;
413 
414 	/* Trim whitespace */
415 	p = q = s = &c->x86_model_id[0];
416 
417 	while (*p == ' ')
418 		p++;
419 
420 	while (*p) {
421 		/* Note the last non-whitespace index */
422 		if (!isspace(*p))
423 			s = q;
424 
425 		*q++ = *p++;
426 	}
427 
428 	*(s + 1) = '\0';
429 }
430 
431 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
432 {
433 	unsigned int n, dummy, ebx, ecx, edx, l2size;
434 
435 	n = c->extended_cpuid_level;
436 
437 	if (n >= 0x80000005) {
438 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
439 		c->x86_cache_size = (ecx>>24) + (edx>>24);
440 #ifdef CONFIG_X86_64
441 		/* On K8 L1 TLB is inclusive, so don't count it */
442 		c->x86_tlbsize = 0;
443 #endif
444 	}
445 
446 	if (n < 0x80000006)	/* Some chips just has a large L1. */
447 		return;
448 
449 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
450 	l2size = ecx >> 16;
451 
452 #ifdef CONFIG_X86_64
453 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
454 #else
455 	/* do processor-specific cache resizing */
456 	if (this_cpu->legacy_cache_size)
457 		l2size = this_cpu->legacy_cache_size(c, l2size);
458 
459 	/* Allow user to override all this if necessary. */
460 	if (cachesize_override != -1)
461 		l2size = cachesize_override;
462 
463 	if (l2size == 0)
464 		return;		/* Again, no L2 cache is possible */
465 #endif
466 
467 	c->x86_cache_size = l2size;
468 }
469 
470 u16 __read_mostly tlb_lli_4k[NR_INFO];
471 u16 __read_mostly tlb_lli_2m[NR_INFO];
472 u16 __read_mostly tlb_lli_4m[NR_INFO];
473 u16 __read_mostly tlb_lld_4k[NR_INFO];
474 u16 __read_mostly tlb_lld_2m[NR_INFO];
475 u16 __read_mostly tlb_lld_4m[NR_INFO];
476 u16 __read_mostly tlb_lld_1g[NR_INFO];
477 
478 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
479 {
480 	if (this_cpu->c_detect_tlb)
481 		this_cpu->c_detect_tlb(c);
482 
483 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
484 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
485 		tlb_lli_4m[ENTRIES]);
486 
487 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
488 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
489 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
490 }
491 
492 void detect_ht(struct cpuinfo_x86 *c)
493 {
494 #ifdef CONFIG_SMP
495 	u32 eax, ebx, ecx, edx;
496 	int index_msb, core_bits;
497 	static bool printed;
498 
499 	if (!cpu_has(c, X86_FEATURE_HT))
500 		return;
501 
502 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
503 		goto out;
504 
505 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
506 		return;
507 
508 	cpuid(1, &eax, &ebx, &ecx, &edx);
509 
510 	smp_num_siblings = (ebx & 0xff0000) >> 16;
511 
512 	if (smp_num_siblings == 1) {
513 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
514 		goto out;
515 	}
516 
517 	if (smp_num_siblings <= 1)
518 		goto out;
519 
520 	index_msb = get_count_order(smp_num_siblings);
521 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
522 
523 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
524 
525 	index_msb = get_count_order(smp_num_siblings);
526 
527 	core_bits = get_count_order(c->x86_max_cores);
528 
529 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
530 				       ((1 << core_bits) - 1);
531 
532 out:
533 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
534 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
535 		       c->phys_proc_id);
536 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
537 		       c->cpu_core_id);
538 		printed = 1;
539 	}
540 #endif
541 }
542 
543 static void get_cpu_vendor(struct cpuinfo_x86 *c)
544 {
545 	char *v = c->x86_vendor_id;
546 	int i;
547 
548 	for (i = 0; i < X86_VENDOR_NUM; i++) {
549 		if (!cpu_devs[i])
550 			break;
551 
552 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
553 		    (cpu_devs[i]->c_ident[1] &&
554 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
555 
556 			this_cpu = cpu_devs[i];
557 			c->x86_vendor = this_cpu->c_x86_vendor;
558 			return;
559 		}
560 	}
561 
562 	printk_once(KERN_ERR
563 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
564 			"CPU: Your system may be unstable.\n", v);
565 
566 	c->x86_vendor = X86_VENDOR_UNKNOWN;
567 	this_cpu = &default_cpu;
568 }
569 
570 void cpu_detect(struct cpuinfo_x86 *c)
571 {
572 	/* Get vendor name */
573 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
574 	      (unsigned int *)&c->x86_vendor_id[0],
575 	      (unsigned int *)&c->x86_vendor_id[8],
576 	      (unsigned int *)&c->x86_vendor_id[4]);
577 
578 	c->x86 = 4;
579 	/* Intel-defined flags: level 0x00000001 */
580 	if (c->cpuid_level >= 0x00000001) {
581 		u32 junk, tfms, cap0, misc;
582 
583 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
584 		c->x86 = (tfms >> 8) & 0xf;
585 		c->x86_model = (tfms >> 4) & 0xf;
586 		c->x86_mask = tfms & 0xf;
587 
588 		if (c->x86 == 0xf)
589 			c->x86 += (tfms >> 20) & 0xff;
590 		if (c->x86 >= 0x6)
591 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
592 
593 		if (cap0 & (1<<19)) {
594 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
595 			c->x86_cache_alignment = c->x86_clflush_size;
596 		}
597 	}
598 }
599 
600 void get_cpu_cap(struct cpuinfo_x86 *c)
601 {
602 	u32 tfms, xlvl;
603 	u32 ebx;
604 
605 	/* Intel-defined flags: level 0x00000001 */
606 	if (c->cpuid_level >= 0x00000001) {
607 		u32 capability, excap;
608 
609 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
610 		c->x86_capability[0] = capability;
611 		c->x86_capability[4] = excap;
612 	}
613 
614 	/* Additional Intel-defined flags: level 0x00000007 */
615 	if (c->cpuid_level >= 0x00000007) {
616 		u32 eax, ebx, ecx, edx;
617 
618 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
619 
620 		c->x86_capability[9] = ebx;
621 	}
622 
623 	/* Extended state features: level 0x0000000d */
624 	if (c->cpuid_level >= 0x0000000d) {
625 		u32 eax, ebx, ecx, edx;
626 
627 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
628 
629 		c->x86_capability[10] = eax;
630 	}
631 
632 	/* Additional Intel-defined flags: level 0x0000000F */
633 	if (c->cpuid_level >= 0x0000000F) {
634 		u32 eax, ebx, ecx, edx;
635 
636 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
637 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
638 		c->x86_capability[11] = edx;
639 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
640 			/* will be overridden if occupancy monitoring exists */
641 			c->x86_cache_max_rmid = ebx;
642 
643 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
644 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
645 			c->x86_capability[12] = edx;
646 			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
647 				c->x86_cache_max_rmid = ecx;
648 				c->x86_cache_occ_scale = ebx;
649 			}
650 		} else {
651 			c->x86_cache_max_rmid = -1;
652 			c->x86_cache_occ_scale = -1;
653 		}
654 	}
655 
656 	/* AMD-defined flags: level 0x80000001 */
657 	xlvl = cpuid_eax(0x80000000);
658 	c->extended_cpuid_level = xlvl;
659 
660 	if ((xlvl & 0xffff0000) == 0x80000000) {
661 		if (xlvl >= 0x80000001) {
662 			c->x86_capability[1] = cpuid_edx(0x80000001);
663 			c->x86_capability[6] = cpuid_ecx(0x80000001);
664 		}
665 	}
666 
667 	if (c->extended_cpuid_level >= 0x80000008) {
668 		u32 eax = cpuid_eax(0x80000008);
669 
670 		c->x86_virt_bits = (eax >> 8) & 0xff;
671 		c->x86_phys_bits = eax & 0xff;
672 	}
673 #ifdef CONFIG_X86_32
674 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
675 		c->x86_phys_bits = 36;
676 #endif
677 
678 	if (c->extended_cpuid_level >= 0x80000007)
679 		c->x86_power = cpuid_edx(0x80000007);
680 
681 	init_scattered_cpuid_features(c);
682 }
683 
684 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 	int i;
688 
689 	/*
690 	 * First of all, decide if this is a 486 or higher
691 	 * It's a 486 if we can modify the AC flag
692 	 */
693 	if (flag_is_changeable_p(X86_EFLAGS_AC))
694 		c->x86 = 4;
695 	else
696 		c->x86 = 3;
697 
698 	for (i = 0; i < X86_VENDOR_NUM; i++)
699 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
700 			c->x86_vendor_id[0] = 0;
701 			cpu_devs[i]->c_identify(c);
702 			if (c->x86_vendor_id[0]) {
703 				get_cpu_vendor(c);
704 				break;
705 			}
706 		}
707 #endif
708 }
709 
710 /*
711  * Do minimum CPU detection early.
712  * Fields really needed: vendor, cpuid_level, family, model, mask,
713  * cache alignment.
714  * The others are not touched to avoid unwanted side effects.
715  *
716  * WARNING: this function is only called on the BP.  Don't add code here
717  * that is supposed to run on all CPUs.
718  */
719 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
720 {
721 #ifdef CONFIG_X86_64
722 	c->x86_clflush_size = 64;
723 	c->x86_phys_bits = 36;
724 	c->x86_virt_bits = 48;
725 #else
726 	c->x86_clflush_size = 32;
727 	c->x86_phys_bits = 32;
728 	c->x86_virt_bits = 32;
729 #endif
730 	c->x86_cache_alignment = c->x86_clflush_size;
731 
732 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
733 	c->extended_cpuid_level = 0;
734 
735 	if (!have_cpuid_p())
736 		identify_cpu_without_cpuid(c);
737 
738 	/* cyrix could have cpuid enabled via c_identify()*/
739 	if (!have_cpuid_p())
740 		return;
741 
742 	cpu_detect(c);
743 	get_cpu_vendor(c);
744 	get_cpu_cap(c);
745 
746 	if (this_cpu->c_early_init)
747 		this_cpu->c_early_init(c);
748 
749 	c->cpu_index = 0;
750 	filter_cpuid_features(c, false);
751 
752 	if (this_cpu->c_bsp_init)
753 		this_cpu->c_bsp_init(c);
754 
755 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
756 	fpu__init_system(c);
757 }
758 
759 void __init early_cpu_init(void)
760 {
761 	const struct cpu_dev *const *cdev;
762 	int count = 0;
763 
764 #ifdef CONFIG_PROCESSOR_SELECT
765 	printk(KERN_INFO "KERNEL supported cpus:\n");
766 #endif
767 
768 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
769 		const struct cpu_dev *cpudev = *cdev;
770 
771 		if (count >= X86_VENDOR_NUM)
772 			break;
773 		cpu_devs[count] = cpudev;
774 		count++;
775 
776 #ifdef CONFIG_PROCESSOR_SELECT
777 		{
778 			unsigned int j;
779 
780 			for (j = 0; j < 2; j++) {
781 				if (!cpudev->c_ident[j])
782 					continue;
783 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
784 					cpudev->c_ident[j]);
785 			}
786 		}
787 #endif
788 	}
789 	early_identify_cpu(&boot_cpu_data);
790 }
791 
792 /*
793  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
794  * unfortunately, that's not true in practice because of early VIA
795  * chips and (more importantly) broken virtualizers that are not easy
796  * to detect. In the latter case it doesn't even *fail* reliably, so
797  * probing for it doesn't even work. Disable it completely on 32-bit
798  * unless we can find a reliable way to detect all the broken cases.
799  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
800  */
801 static void detect_nopl(struct cpuinfo_x86 *c)
802 {
803 #ifdef CONFIG_X86_32
804 	clear_cpu_cap(c, X86_FEATURE_NOPL);
805 #else
806 	set_cpu_cap(c, X86_FEATURE_NOPL);
807 #endif
808 }
809 
810 static void generic_identify(struct cpuinfo_x86 *c)
811 {
812 	c->extended_cpuid_level = 0;
813 
814 	if (!have_cpuid_p())
815 		identify_cpu_without_cpuid(c);
816 
817 	/* cyrix could have cpuid enabled via c_identify()*/
818 	if (!have_cpuid_p())
819 		return;
820 
821 	cpu_detect(c);
822 
823 	get_cpu_vendor(c);
824 
825 	get_cpu_cap(c);
826 
827 	if (c->cpuid_level >= 0x00000001) {
828 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
829 #ifdef CONFIG_X86_32
830 # ifdef CONFIG_SMP
831 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
832 # else
833 		c->apicid = c->initial_apicid;
834 # endif
835 #endif
836 		c->phys_proc_id = c->initial_apicid;
837 	}
838 
839 	get_model_name(c); /* Default name */
840 
841 	detect_nopl(c);
842 }
843 
844 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
845 {
846 	/*
847 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
848 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
849 	 * in case CQM bits really aren't there in this CPU.
850 	 */
851 	if (c != &boot_cpu_data) {
852 		boot_cpu_data.x86_cache_max_rmid =
853 			min(boot_cpu_data.x86_cache_max_rmid,
854 			    c->x86_cache_max_rmid);
855 	}
856 }
857 
858 /*
859  * This does the hard work of actually picking apart the CPU stuff...
860  */
861 static void identify_cpu(struct cpuinfo_x86 *c)
862 {
863 	int i;
864 
865 	c->loops_per_jiffy = loops_per_jiffy;
866 	c->x86_cache_size = -1;
867 	c->x86_vendor = X86_VENDOR_UNKNOWN;
868 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
869 	c->x86_vendor_id[0] = '\0'; /* Unset */
870 	c->x86_model_id[0] = '\0';  /* Unset */
871 	c->x86_max_cores = 1;
872 	c->x86_coreid_bits = 0;
873 #ifdef CONFIG_X86_64
874 	c->x86_clflush_size = 64;
875 	c->x86_phys_bits = 36;
876 	c->x86_virt_bits = 48;
877 #else
878 	c->cpuid_level = -1;	/* CPUID not detected */
879 	c->x86_clflush_size = 32;
880 	c->x86_phys_bits = 32;
881 	c->x86_virt_bits = 32;
882 #endif
883 	c->x86_cache_alignment = c->x86_clflush_size;
884 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
885 
886 	generic_identify(c);
887 
888 	if (this_cpu->c_identify)
889 		this_cpu->c_identify(c);
890 
891 	/* Clear/Set all flags overriden by options, after probe */
892 	for (i = 0; i < NCAPINTS; i++) {
893 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
894 		c->x86_capability[i] |= cpu_caps_set[i];
895 	}
896 
897 #ifdef CONFIG_X86_64
898 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
899 #endif
900 
901 	/*
902 	 * Vendor-specific initialization.  In this section we
903 	 * canonicalize the feature flags, meaning if there are
904 	 * features a certain CPU supports which CPUID doesn't
905 	 * tell us, CPUID claiming incorrect flags, or other bugs,
906 	 * we handle them here.
907 	 *
908 	 * At the end of this section, c->x86_capability better
909 	 * indicate the features this CPU genuinely supports!
910 	 */
911 	if (this_cpu->c_init)
912 		this_cpu->c_init(c);
913 
914 	/* Disable the PN if appropriate */
915 	squash_the_stupid_serial_number(c);
916 
917 	/* Set up SMEP/SMAP */
918 	setup_smep(c);
919 	setup_smap(c);
920 
921 	/*
922 	 * The vendor-specific functions might have changed features.
923 	 * Now we do "generic changes."
924 	 */
925 
926 	/* Filter out anything that depends on CPUID levels we don't have */
927 	filter_cpuid_features(c, true);
928 
929 	/* If the model name is still unset, do table lookup. */
930 	if (!c->x86_model_id[0]) {
931 		const char *p;
932 		p = table_lookup_model(c);
933 		if (p)
934 			strcpy(c->x86_model_id, p);
935 		else
936 			/* Last resort... */
937 			sprintf(c->x86_model_id, "%02x/%02x",
938 				c->x86, c->x86_model);
939 	}
940 
941 #ifdef CONFIG_X86_64
942 	detect_ht(c);
943 #endif
944 
945 	init_hypervisor(c);
946 	x86_init_rdrand(c);
947 	x86_init_cache_qos(c);
948 
949 	/*
950 	 * Clear/Set all flags overriden by options, need do it
951 	 * before following smp all cpus cap AND.
952 	 */
953 	for (i = 0; i < NCAPINTS; i++) {
954 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
955 		c->x86_capability[i] |= cpu_caps_set[i];
956 	}
957 
958 	/*
959 	 * On SMP, boot_cpu_data holds the common feature set between
960 	 * all CPUs; so make sure that we indicate which features are
961 	 * common between the CPUs.  The first time this routine gets
962 	 * executed, c == &boot_cpu_data.
963 	 */
964 	if (c != &boot_cpu_data) {
965 		/* AND the already accumulated flags with these */
966 		for (i = 0; i < NCAPINTS; i++)
967 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
968 
969 		/* OR, i.e. replicate the bug flags */
970 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
971 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
972 	}
973 
974 	/* Init Machine Check Exception if available. */
975 	mcheck_cpu_init(c);
976 
977 	select_idle_routine(c);
978 
979 #ifdef CONFIG_NUMA
980 	numa_add_cpu(smp_processor_id());
981 #endif
982 }
983 
984 /*
985  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
986  * on 32-bit kernels:
987  */
988 #ifdef CONFIG_X86_32
989 void enable_sep_cpu(void)
990 {
991 	struct tss_struct *tss;
992 	int cpu;
993 
994 	cpu = get_cpu();
995 	tss = &per_cpu(cpu_tss, cpu);
996 
997 	if (!boot_cpu_has(X86_FEATURE_SEP))
998 		goto out;
999 
1000 	/*
1001 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1002 	 * see the big comment in struct x86_hw_tss's definition.
1003 	 */
1004 
1005 	tss->x86_tss.ss1 = __KERNEL_CS;
1006 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1007 
1008 	wrmsr(MSR_IA32_SYSENTER_ESP,
1009 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1010 	      0);
1011 
1012 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1013 
1014 out:
1015 	put_cpu();
1016 }
1017 #endif
1018 
1019 void __init identify_boot_cpu(void)
1020 {
1021 	identify_cpu(&boot_cpu_data);
1022 	init_amd_e400_c1e_mask();
1023 #ifdef CONFIG_X86_32
1024 	sysenter_setup();
1025 	enable_sep_cpu();
1026 #endif
1027 	cpu_detect_tlb(&boot_cpu_data);
1028 }
1029 
1030 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1031 {
1032 	BUG_ON(c == &boot_cpu_data);
1033 	identify_cpu(c);
1034 #ifdef CONFIG_X86_32
1035 	enable_sep_cpu();
1036 #endif
1037 	mtrr_ap_init();
1038 }
1039 
1040 struct msr_range {
1041 	unsigned	min;
1042 	unsigned	max;
1043 };
1044 
1045 static const struct msr_range msr_range_array[] = {
1046 	{ 0x00000000, 0x00000418},
1047 	{ 0xc0000000, 0xc000040b},
1048 	{ 0xc0010000, 0xc0010142},
1049 	{ 0xc0011000, 0xc001103b},
1050 };
1051 
1052 static void __print_cpu_msr(void)
1053 {
1054 	unsigned index_min, index_max;
1055 	unsigned index;
1056 	u64 val;
1057 	int i;
1058 
1059 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1060 		index_min = msr_range_array[i].min;
1061 		index_max = msr_range_array[i].max;
1062 
1063 		for (index = index_min; index < index_max; index++) {
1064 			if (rdmsrl_safe(index, &val))
1065 				continue;
1066 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1067 		}
1068 	}
1069 }
1070 
1071 static int show_msr;
1072 
1073 static __init int setup_show_msr(char *arg)
1074 {
1075 	int num;
1076 
1077 	get_option(&arg, &num);
1078 
1079 	if (num > 0)
1080 		show_msr = num;
1081 	return 1;
1082 }
1083 __setup("show_msr=", setup_show_msr);
1084 
1085 static __init int setup_noclflush(char *arg)
1086 {
1087 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1088 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1089 	return 1;
1090 }
1091 __setup("noclflush", setup_noclflush);
1092 
1093 void print_cpu_info(struct cpuinfo_x86 *c)
1094 {
1095 	const char *vendor = NULL;
1096 
1097 	if (c->x86_vendor < X86_VENDOR_NUM) {
1098 		vendor = this_cpu->c_vendor;
1099 	} else {
1100 		if (c->cpuid_level >= 0)
1101 			vendor = c->x86_vendor_id;
1102 	}
1103 
1104 	if (vendor && !strstr(c->x86_model_id, vendor))
1105 		printk(KERN_CONT "%s ", vendor);
1106 
1107 	if (c->x86_model_id[0])
1108 		printk(KERN_CONT "%s", c->x86_model_id);
1109 	else
1110 		printk(KERN_CONT "%d86", c->x86);
1111 
1112 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1113 
1114 	if (c->x86_mask || c->cpuid_level >= 0)
1115 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1116 	else
1117 		printk(KERN_CONT ")\n");
1118 
1119 	print_cpu_msr(c);
1120 }
1121 
1122 void print_cpu_msr(struct cpuinfo_x86 *c)
1123 {
1124 	if (c->cpu_index < show_msr)
1125 		__print_cpu_msr();
1126 }
1127 
1128 static __init int setup_disablecpuid(char *arg)
1129 {
1130 	int bit;
1131 
1132 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1133 		setup_clear_cpu_cap(bit);
1134 	else
1135 		return 0;
1136 
1137 	return 1;
1138 }
1139 __setup("clearcpuid=", setup_disablecpuid);
1140 
1141 #ifdef CONFIG_X86_64
1142 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1143 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1144 				    (unsigned long) debug_idt_table };
1145 
1146 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1147 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1148 
1149 /*
1150  * The following percpu variables are hot.  Align current_task to
1151  * cacheline size such that they fall in the same cacheline.
1152  */
1153 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1154 	&init_task;
1155 EXPORT_PER_CPU_SYMBOL(current_task);
1156 
1157 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1158 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1159 
1160 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1161 
1162 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1163 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1164 
1165 /*
1166  * Special IST stacks which the CPU switches to when it calls
1167  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1168  * limit), all of them are 4K, except the debug stack which
1169  * is 8K.
1170  */
1171 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1172 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1173 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1174 };
1175 
1176 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1177 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1178 
1179 /* May not be marked __init: used by software suspend */
1180 void syscall_init(void)
1181 {
1182 	/*
1183 	 * LSTAR and STAR live in a bit strange symbiosis.
1184 	 * They both write to the same internal register. STAR allows to
1185 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1186 	 */
1187 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1188 	wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
1189 
1190 #ifdef CONFIG_IA32_EMULATION
1191 	wrmsrl(MSR_CSTAR, entry_SYSCALL_compat);
1192 	/*
1193 	 * This only works on Intel CPUs.
1194 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1195 	 * This does not cause SYSENTER to jump to the wrong location, because
1196 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1197 	 */
1198 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1199 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1200 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1201 #else
1202 	wrmsrl(MSR_CSTAR, ignore_sysret);
1203 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1204 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1205 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1206 #endif
1207 
1208 	/* Flags to clear on syscall */
1209 	wrmsrl(MSR_SYSCALL_MASK,
1210 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1211 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1212 }
1213 
1214 /*
1215  * Copies of the original ist values from the tss are only accessed during
1216  * debugging, no special alignment required.
1217  */
1218 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1219 
1220 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1221 DEFINE_PER_CPU(int, debug_stack_usage);
1222 
1223 int is_debug_stack(unsigned long addr)
1224 {
1225 	return __this_cpu_read(debug_stack_usage) ||
1226 		(addr <= __this_cpu_read(debug_stack_addr) &&
1227 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1228 }
1229 NOKPROBE_SYMBOL(is_debug_stack);
1230 
1231 DEFINE_PER_CPU(u32, debug_idt_ctr);
1232 
1233 void debug_stack_set_zero(void)
1234 {
1235 	this_cpu_inc(debug_idt_ctr);
1236 	load_current_idt();
1237 }
1238 NOKPROBE_SYMBOL(debug_stack_set_zero);
1239 
1240 void debug_stack_reset(void)
1241 {
1242 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1243 		return;
1244 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1245 		load_current_idt();
1246 }
1247 NOKPROBE_SYMBOL(debug_stack_reset);
1248 
1249 #else	/* CONFIG_X86_64 */
1250 
1251 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1252 EXPORT_PER_CPU_SYMBOL(current_task);
1253 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1254 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1255 
1256 /*
1257  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1258  * the top of the kernel stack.  Use an extra percpu variable to track the
1259  * top of the kernel stack directly.
1260  */
1261 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1262 	(unsigned long)&init_thread_union + THREAD_SIZE;
1263 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1264 
1265 #ifdef CONFIG_CC_STACKPROTECTOR
1266 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1267 #endif
1268 
1269 #endif	/* CONFIG_X86_64 */
1270 
1271 /*
1272  * Clear all 6 debug registers:
1273  */
1274 static void clear_all_debug_regs(void)
1275 {
1276 	int i;
1277 
1278 	for (i = 0; i < 8; i++) {
1279 		/* Ignore db4, db5 */
1280 		if ((i == 4) || (i == 5))
1281 			continue;
1282 
1283 		set_debugreg(0, i);
1284 	}
1285 }
1286 
1287 #ifdef CONFIG_KGDB
1288 /*
1289  * Restore debug regs if using kgdbwait and you have a kernel debugger
1290  * connection established.
1291  */
1292 static void dbg_restore_debug_regs(void)
1293 {
1294 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1295 		arch_kgdb_ops.correct_hw_break();
1296 }
1297 #else /* ! CONFIG_KGDB */
1298 #define dbg_restore_debug_regs()
1299 #endif /* ! CONFIG_KGDB */
1300 
1301 static void wait_for_master_cpu(int cpu)
1302 {
1303 #ifdef CONFIG_SMP
1304 	/*
1305 	 * wait for ACK from master CPU before continuing
1306 	 * with AP initialization
1307 	 */
1308 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1309 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1310 		cpu_relax();
1311 #endif
1312 }
1313 
1314 /*
1315  * cpu_init() initializes state that is per-CPU. Some data is already
1316  * initialized (naturally) in the bootstrap process, such as the GDT
1317  * and IDT. We reload them nevertheless, this function acts as a
1318  * 'CPU state barrier', nothing should get across.
1319  * A lot of state is already set up in PDA init for 64 bit
1320  */
1321 #ifdef CONFIG_X86_64
1322 
1323 void cpu_init(void)
1324 {
1325 	struct orig_ist *oist;
1326 	struct task_struct *me;
1327 	struct tss_struct *t;
1328 	unsigned long v;
1329 	int cpu = stack_smp_processor_id();
1330 	int i;
1331 
1332 	wait_for_master_cpu(cpu);
1333 
1334 	/*
1335 	 * Initialize the CR4 shadow before doing anything that could
1336 	 * try to read it.
1337 	 */
1338 	cr4_init_shadow();
1339 
1340 	/*
1341 	 * Load microcode on this cpu if a valid microcode is available.
1342 	 * This is early microcode loading procedure.
1343 	 */
1344 	load_ucode_ap();
1345 
1346 	t = &per_cpu(cpu_tss, cpu);
1347 	oist = &per_cpu(orig_ist, cpu);
1348 
1349 #ifdef CONFIG_NUMA
1350 	if (this_cpu_read(numa_node) == 0 &&
1351 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1352 		set_numa_node(early_cpu_to_node(cpu));
1353 #endif
1354 
1355 	me = current;
1356 
1357 	pr_debug("Initializing CPU#%d\n", cpu);
1358 
1359 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1360 
1361 	/*
1362 	 * Initialize the per-CPU GDT with the boot GDT,
1363 	 * and set up the GDT descriptor:
1364 	 */
1365 
1366 	switch_to_new_gdt(cpu);
1367 	loadsegment(fs, 0);
1368 
1369 	load_current_idt();
1370 
1371 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1372 	syscall_init();
1373 
1374 	wrmsrl(MSR_FS_BASE, 0);
1375 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1376 	barrier();
1377 
1378 	x86_configure_nx();
1379 	x2apic_setup();
1380 
1381 	/*
1382 	 * set up and load the per-CPU TSS
1383 	 */
1384 	if (!oist->ist[0]) {
1385 		char *estacks = per_cpu(exception_stacks, cpu);
1386 
1387 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1388 			estacks += exception_stack_sizes[v];
1389 			oist->ist[v] = t->x86_tss.ist[v] =
1390 					(unsigned long)estacks;
1391 			if (v == DEBUG_STACK-1)
1392 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1393 		}
1394 	}
1395 
1396 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1397 
1398 	/*
1399 	 * <= is required because the CPU will access up to
1400 	 * 8 bits beyond the end of the IO permission bitmap.
1401 	 */
1402 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1403 		t->io_bitmap[i] = ~0UL;
1404 
1405 	atomic_inc(&init_mm.mm_count);
1406 	me->active_mm = &init_mm;
1407 	BUG_ON(me->mm);
1408 	enter_lazy_tlb(&init_mm, me);
1409 
1410 	load_sp0(t, &current->thread);
1411 	set_tss_desc(cpu, t);
1412 	load_TR_desc();
1413 	load_mm_ldt(&init_mm);
1414 
1415 	clear_all_debug_regs();
1416 	dbg_restore_debug_regs();
1417 
1418 	fpu__init_cpu();
1419 
1420 	if (is_uv_system())
1421 		uv_cpu_init();
1422 }
1423 
1424 #else
1425 
1426 void cpu_init(void)
1427 {
1428 	int cpu = smp_processor_id();
1429 	struct task_struct *curr = current;
1430 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1431 	struct thread_struct *thread = &curr->thread;
1432 
1433 	wait_for_master_cpu(cpu);
1434 
1435 	/*
1436 	 * Initialize the CR4 shadow before doing anything that could
1437 	 * try to read it.
1438 	 */
1439 	cr4_init_shadow();
1440 
1441 	show_ucode_info_early();
1442 
1443 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1444 
1445 	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1446 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1447 
1448 	load_current_idt();
1449 	switch_to_new_gdt(cpu);
1450 
1451 	/*
1452 	 * Set up and load the per-CPU TSS and LDT
1453 	 */
1454 	atomic_inc(&init_mm.mm_count);
1455 	curr->active_mm = &init_mm;
1456 	BUG_ON(curr->mm);
1457 	enter_lazy_tlb(&init_mm, curr);
1458 
1459 	load_sp0(t, thread);
1460 	set_tss_desc(cpu, t);
1461 	load_TR_desc();
1462 	load_mm_ldt(&init_mm);
1463 
1464 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1465 
1466 #ifdef CONFIG_DOUBLEFAULT
1467 	/* Set up doublefault TSS pointer in the GDT */
1468 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1469 #endif
1470 
1471 	clear_all_debug_regs();
1472 	dbg_restore_debug_regs();
1473 
1474 	fpu__init_cpu();
1475 }
1476 #endif
1477 
1478 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1479 void warn_pre_alternatives(void)
1480 {
1481 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1482 }
1483 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1484 #endif
1485 
1486 inline bool __static_cpu_has_safe(u16 bit)
1487 {
1488 	return boot_cpu_has(bit);
1489 }
1490 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1491