xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision b9b77222)
1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
3 
4 #include <linux/bootmem.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/io.h>
21 #include <linux/syscore_ops.h>
22 
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
39 #include <asm/apic.h>
40 #include <asm/desc.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mtrr.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
45 #include <asm/asm.h>
46 #include <asm/bugs.h>
47 #include <asm/cpu.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 #include <asm/pat.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
55 
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
58 #endif
59 
60 #include "cpu.h"
61 
62 u32 elf_hwcap2 __read_mostly;
63 
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68 
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71 
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75 
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78 
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87 
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91 	cpu_detect_cache_sizes(c);
92 #else
93 	/* Not much we can do here... */
94 	/* Check if at least it has cpuid */
95 	if (c->cpuid_level == -1) {
96 		/* No cpuid. It must be an ancient CPU */
97 		if (c->x86 == 4)
98 			strcpy(c->x86_model_id, "486");
99 		else if (c->x86 == 3)
100 			strcpy(c->x86_model_id, "386");
101 	}
102 #endif
103 }
104 
105 static const struct cpu_dev default_cpu = {
106 	.c_init		= default_init,
107 	.c_vendor	= "Unknown",
108 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
109 };
110 
111 static const struct cpu_dev *this_cpu = &default_cpu;
112 
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115 	/*
116 	 * We need valid kernel segments for data and code in long mode too
117 	 * IRET will check the segment types  kkeil 2000/10/28
118 	 * Also sysret mandates a special GDT layout
119 	 *
120 	 * TLS descriptors are currently at a different place compared to i386.
121 	 * Hopefully nobody expects them at a fixed place (Wine?)
122 	 */
123 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134 	/*
135 	 * Segments used for calling PnP BIOS have byte granularity.
136 	 * They code segments and data segments have fixed 64k limits,
137 	 * the transfer segment sizes are set at run time.
138 	 */
139 	/* 32-bit code */
140 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141 	/* 16-bit code */
142 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143 	/* 16-bit data */
144 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145 	/* 16-bit data */
146 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
147 	/* 16-bit data */
148 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
149 	/*
150 	 * The APM segments have byte granularity and their bases
151 	 * are set at run time.  All have 64k limits.
152 	 */
153 	/* 32-bit code */
154 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155 	/* 16-bit code */
156 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157 	/* data */
158 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159 
160 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 	GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166 
167 static int __init x86_mpx_setup(char *s)
168 {
169 	/* require an exact match without trailing characters */
170 	if (strlen(s))
171 		return 0;
172 
173 	/* do not emit a message if the feature is not present */
174 	if (!boot_cpu_has(X86_FEATURE_MPX))
175 		return 1;
176 
177 	setup_clear_cpu_cap(X86_FEATURE_MPX);
178 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
179 	return 1;
180 }
181 __setup("nompx", x86_mpx_setup);
182 
183 #ifdef CONFIG_X86_64
184 static int __init x86_nopcid_setup(char *s)
185 {
186 	/* nopcid doesn't accept parameters */
187 	if (s)
188 		return -EINVAL;
189 
190 	/* do not emit a message if the feature is not present */
191 	if (!boot_cpu_has(X86_FEATURE_PCID))
192 		return 0;
193 
194 	setup_clear_cpu_cap(X86_FEATURE_PCID);
195 	pr_info("nopcid: PCID feature disabled\n");
196 	return 0;
197 }
198 early_param("nopcid", x86_nopcid_setup);
199 #endif
200 
201 static int __init x86_noinvpcid_setup(char *s)
202 {
203 	/* noinvpcid doesn't accept parameters */
204 	if (s)
205 		return -EINVAL;
206 
207 	/* do not emit a message if the feature is not present */
208 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
209 		return 0;
210 
211 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212 	pr_info("noinvpcid: INVPCID feature disabled\n");
213 	return 0;
214 }
215 early_param("noinvpcid", x86_noinvpcid_setup);
216 
217 #ifdef CONFIG_X86_32
218 static int cachesize_override = -1;
219 static int disable_x86_serial_nr = 1;
220 
221 static int __init cachesize_setup(char *str)
222 {
223 	get_option(&str, &cachesize_override);
224 	return 1;
225 }
226 __setup("cachesize=", cachesize_setup);
227 
228 static int __init x86_sep_setup(char *s)
229 {
230 	setup_clear_cpu_cap(X86_FEATURE_SEP);
231 	return 1;
232 }
233 __setup("nosep", x86_sep_setup);
234 
235 /* Standard macro to see if a specific flag is changeable */
236 static inline int flag_is_changeable_p(u32 flag)
237 {
238 	u32 f1, f2;
239 
240 	/*
241 	 * Cyrix and IDT cpus allow disabling of CPUID
242 	 * so the code below may return different results
243 	 * when it is executed before and after enabling
244 	 * the CPUID. Add "volatile" to not allow gcc to
245 	 * optimize the subsequent calls to this function.
246 	 */
247 	asm volatile ("pushfl		\n\t"
248 		      "pushfl		\n\t"
249 		      "popl %0		\n\t"
250 		      "movl %0, %1	\n\t"
251 		      "xorl %2, %0	\n\t"
252 		      "pushl %0		\n\t"
253 		      "popfl		\n\t"
254 		      "pushfl		\n\t"
255 		      "popl %0		\n\t"
256 		      "popfl		\n\t"
257 
258 		      : "=&r" (f1), "=&r" (f2)
259 		      : "ir" (flag));
260 
261 	return ((f1^f2) & flag) != 0;
262 }
263 
264 /* Probe for the CPUID instruction */
265 int have_cpuid_p(void)
266 {
267 	return flag_is_changeable_p(X86_EFLAGS_ID);
268 }
269 
270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272 	unsigned long lo, hi;
273 
274 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275 		return;
276 
277 	/* Disable processor serial number: */
278 
279 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280 	lo |= 0x200000;
281 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282 
283 	pr_notice("CPU serial number disabled.\n");
284 	clear_cpu_cap(c, X86_FEATURE_PN);
285 
286 	/* Disabling the serial number may affect the cpuid level */
287 	c->cpuid_level = cpuid_eax(0);
288 }
289 
290 static int __init x86_serial_nr_setup(char *s)
291 {
292 	disable_x86_serial_nr = 0;
293 	return 1;
294 }
295 __setup("serialnumber", x86_serial_nr_setup);
296 #else
297 static inline int flag_is_changeable_p(u32 flag)
298 {
299 	return 1;
300 }
301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302 {
303 }
304 #endif
305 
306 static __init int setup_disable_smep(char *arg)
307 {
308 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
309 	/* Check for things that depend on SMEP being enabled: */
310 	check_mpx_erratum(&boot_cpu_data);
311 	return 1;
312 }
313 __setup("nosmep", setup_disable_smep);
314 
315 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
316 {
317 	if (cpu_has(c, X86_FEATURE_SMEP))
318 		cr4_set_bits(X86_CR4_SMEP);
319 }
320 
321 static __init int setup_disable_smap(char *arg)
322 {
323 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
324 	return 1;
325 }
326 __setup("nosmap", setup_disable_smap);
327 
328 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329 {
330 	unsigned long eflags = native_save_fl();
331 
332 	/* This should have been cleared long ago */
333 	BUG_ON(eflags & X86_EFLAGS_AC);
334 
335 	if (cpu_has(c, X86_FEATURE_SMAP)) {
336 #ifdef CONFIG_X86_SMAP
337 		cr4_set_bits(X86_CR4_SMAP);
338 #else
339 		cr4_clear_bits(X86_CR4_SMAP);
340 #endif
341 	}
342 }
343 
344 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345 {
346 	/* Check the boot processor, plus build option for UMIP. */
347 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348 		goto out;
349 
350 	/* Check the current processor's cpuid bits. */
351 	if (!cpu_has(c, X86_FEATURE_UMIP))
352 		goto out;
353 
354 	cr4_set_bits(X86_CR4_UMIP);
355 
356 	pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
357 
358 	return;
359 
360 out:
361 	/*
362 	 * Make sure UMIP is disabled in case it was enabled in a
363 	 * previous boot (e.g., via kexec).
364 	 */
365 	cr4_clear_bits(X86_CR4_UMIP);
366 }
367 
368 /*
369  * Protection Keys are not available in 32-bit mode.
370  */
371 static bool pku_disabled;
372 
373 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374 {
375 	/* check the boot processor, plus compile options for PKU: */
376 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
377 		return;
378 	/* checks the actual processor's cpuid bits: */
379 	if (!cpu_has(c, X86_FEATURE_PKU))
380 		return;
381 	if (pku_disabled)
382 		return;
383 
384 	cr4_set_bits(X86_CR4_PKE);
385 	/*
386 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
387 	 * cpuid bit to be set.  We need to ensure that we
388 	 * update that bit in this CPU's "cpu_info".
389 	 */
390 	get_cpu_cap(c);
391 }
392 
393 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
394 static __init int setup_disable_pku(char *arg)
395 {
396 	/*
397 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
398 	 * runtime checks are against OSPKE so clearing the
399 	 * bit does nothing.
400 	 *
401 	 * This way, we will see "pku" in cpuinfo, but not
402 	 * "ospke", which is exactly what we want.  It shows
403 	 * that the CPU has PKU, but the OS has not enabled it.
404 	 * This happens to be exactly how a system would look
405 	 * if we disabled the config option.
406 	 */
407 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
408 	pku_disabled = true;
409 	return 1;
410 }
411 __setup("nopku", setup_disable_pku);
412 #endif /* CONFIG_X86_64 */
413 
414 /*
415  * Some CPU features depend on higher CPUID levels, which may not always
416  * be available due to CPUID level capping or broken virtualization
417  * software.  Add those features to this table to auto-disable them.
418  */
419 struct cpuid_dependent_feature {
420 	u32 feature;
421 	u32 level;
422 };
423 
424 static const struct cpuid_dependent_feature
425 cpuid_dependent_features[] = {
426 	{ X86_FEATURE_MWAIT,		0x00000005 },
427 	{ X86_FEATURE_DCA,		0x00000009 },
428 	{ X86_FEATURE_XSAVE,		0x0000000d },
429 	{ 0, 0 }
430 };
431 
432 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
433 {
434 	const struct cpuid_dependent_feature *df;
435 
436 	for (df = cpuid_dependent_features; df->feature; df++) {
437 
438 		if (!cpu_has(c, df->feature))
439 			continue;
440 		/*
441 		 * Note: cpuid_level is set to -1 if unavailable, but
442 		 * extended_extended_level is set to 0 if unavailable
443 		 * and the legitimate extended levels are all negative
444 		 * when signed; hence the weird messing around with
445 		 * signs here...
446 		 */
447 		if (!((s32)df->level < 0 ?
448 		     (u32)df->level > (u32)c->extended_cpuid_level :
449 		     (s32)df->level > (s32)c->cpuid_level))
450 			continue;
451 
452 		clear_cpu_cap(c, df->feature);
453 		if (!warn)
454 			continue;
455 
456 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
457 			x86_cap_flag(df->feature), df->level);
458 	}
459 }
460 
461 /*
462  * Naming convention should be: <Name> [(<Codename>)]
463  * This table only is used unless init_<vendor>() below doesn't set it;
464  * in particular, if CPUID levels 0x80000002..4 are supported, this
465  * isn't used
466  */
467 
468 /* Look up CPU names by table lookup. */
469 static const char *table_lookup_model(struct cpuinfo_x86 *c)
470 {
471 #ifdef CONFIG_X86_32
472 	const struct legacy_cpu_model_info *info;
473 
474 	if (c->x86_model >= 16)
475 		return NULL;	/* Range check */
476 
477 	if (!this_cpu)
478 		return NULL;
479 
480 	info = this_cpu->legacy_models;
481 
482 	while (info->family) {
483 		if (info->family == c->x86)
484 			return info->model_names[c->x86_model];
485 		info++;
486 	}
487 #endif
488 	return NULL;		/* Not found */
489 }
490 
491 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
492 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
493 
494 void load_percpu_segment(int cpu)
495 {
496 #ifdef CONFIG_X86_32
497 	loadsegment(fs, __KERNEL_PERCPU);
498 #else
499 	__loadsegment_simple(gs, 0);
500 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
501 #endif
502 	load_stack_canary_segment();
503 }
504 
505 #ifdef CONFIG_X86_32
506 /* The 32-bit entry code needs to find cpu_entry_area. */
507 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
508 #endif
509 
510 #ifdef CONFIG_X86_64
511 /*
512  * Special IST stacks which the CPU switches to when it calls
513  * an IST-marked descriptor entry. Up to 7 stacks (hardware
514  * limit), all of them are 4K, except the debug stack which
515  * is 8K.
516  */
517 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
518 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
519 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
520 };
521 #endif
522 
523 /* Load the original GDT from the per-cpu structure */
524 void load_direct_gdt(int cpu)
525 {
526 	struct desc_ptr gdt_descr;
527 
528 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
529 	gdt_descr.size = GDT_SIZE - 1;
530 	load_gdt(&gdt_descr);
531 }
532 EXPORT_SYMBOL_GPL(load_direct_gdt);
533 
534 /* Load a fixmap remapping of the per-cpu GDT */
535 void load_fixmap_gdt(int cpu)
536 {
537 	struct desc_ptr gdt_descr;
538 
539 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
540 	gdt_descr.size = GDT_SIZE - 1;
541 	load_gdt(&gdt_descr);
542 }
543 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
544 
545 /*
546  * Current gdt points %fs at the "master" per-cpu area: after this,
547  * it's on the real one.
548  */
549 void switch_to_new_gdt(int cpu)
550 {
551 	/* Load the original GDT */
552 	load_direct_gdt(cpu);
553 	/* Reload the per-cpu base */
554 	load_percpu_segment(cpu);
555 }
556 
557 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
558 
559 static void get_model_name(struct cpuinfo_x86 *c)
560 {
561 	unsigned int *v;
562 	char *p, *q, *s;
563 
564 	if (c->extended_cpuid_level < 0x80000004)
565 		return;
566 
567 	v = (unsigned int *)c->x86_model_id;
568 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
569 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
570 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
571 	c->x86_model_id[48] = 0;
572 
573 	/* Trim whitespace */
574 	p = q = s = &c->x86_model_id[0];
575 
576 	while (*p == ' ')
577 		p++;
578 
579 	while (*p) {
580 		/* Note the last non-whitespace index */
581 		if (!isspace(*p))
582 			s = q;
583 
584 		*q++ = *p++;
585 	}
586 
587 	*(s + 1) = '\0';
588 }
589 
590 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
591 {
592 	unsigned int eax, ebx, ecx, edx;
593 
594 	c->x86_max_cores = 1;
595 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
596 		return;
597 
598 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
599 	if (eax & 0x1f)
600 		c->x86_max_cores = (eax >> 26) + 1;
601 }
602 
603 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
604 {
605 	unsigned int n, dummy, ebx, ecx, edx, l2size;
606 
607 	n = c->extended_cpuid_level;
608 
609 	if (n >= 0x80000005) {
610 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
611 		c->x86_cache_size = (ecx>>24) + (edx>>24);
612 #ifdef CONFIG_X86_64
613 		/* On K8 L1 TLB is inclusive, so don't count it */
614 		c->x86_tlbsize = 0;
615 #endif
616 	}
617 
618 	if (n < 0x80000006)	/* Some chips just has a large L1. */
619 		return;
620 
621 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
622 	l2size = ecx >> 16;
623 
624 #ifdef CONFIG_X86_64
625 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
626 #else
627 	/* do processor-specific cache resizing */
628 	if (this_cpu->legacy_cache_size)
629 		l2size = this_cpu->legacy_cache_size(c, l2size);
630 
631 	/* Allow user to override all this if necessary. */
632 	if (cachesize_override != -1)
633 		l2size = cachesize_override;
634 
635 	if (l2size == 0)
636 		return;		/* Again, no L2 cache is possible */
637 #endif
638 
639 	c->x86_cache_size = l2size;
640 }
641 
642 u16 __read_mostly tlb_lli_4k[NR_INFO];
643 u16 __read_mostly tlb_lli_2m[NR_INFO];
644 u16 __read_mostly tlb_lli_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_4k[NR_INFO];
646 u16 __read_mostly tlb_lld_2m[NR_INFO];
647 u16 __read_mostly tlb_lld_4m[NR_INFO];
648 u16 __read_mostly tlb_lld_1g[NR_INFO];
649 
650 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
651 {
652 	if (this_cpu->c_detect_tlb)
653 		this_cpu->c_detect_tlb(c);
654 
655 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
656 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
657 		tlb_lli_4m[ENTRIES]);
658 
659 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
660 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
661 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
662 }
663 
664 void detect_ht(struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_SMP
667 	u32 eax, ebx, ecx, edx;
668 	int index_msb, core_bits;
669 	static bool printed;
670 
671 	if (!cpu_has(c, X86_FEATURE_HT))
672 		return;
673 
674 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
675 		goto out;
676 
677 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
678 		return;
679 
680 	cpuid(1, &eax, &ebx, &ecx, &edx);
681 
682 	smp_num_siblings = (ebx & 0xff0000) >> 16;
683 
684 	if (smp_num_siblings == 1) {
685 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
686 		goto out;
687 	}
688 
689 	if (smp_num_siblings <= 1)
690 		goto out;
691 
692 	index_msb = get_count_order(smp_num_siblings);
693 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
694 
695 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
696 
697 	index_msb = get_count_order(smp_num_siblings);
698 
699 	core_bits = get_count_order(c->x86_max_cores);
700 
701 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
702 				       ((1 << core_bits) - 1);
703 
704 out:
705 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
706 		pr_info("CPU: Physical Processor ID: %d\n",
707 			c->phys_proc_id);
708 		pr_info("CPU: Processor Core ID: %d\n",
709 			c->cpu_core_id);
710 		printed = 1;
711 	}
712 #endif
713 }
714 
715 static void get_cpu_vendor(struct cpuinfo_x86 *c)
716 {
717 	char *v = c->x86_vendor_id;
718 	int i;
719 
720 	for (i = 0; i < X86_VENDOR_NUM; i++) {
721 		if (!cpu_devs[i])
722 			break;
723 
724 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
725 		    (cpu_devs[i]->c_ident[1] &&
726 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
727 
728 			this_cpu = cpu_devs[i];
729 			c->x86_vendor = this_cpu->c_x86_vendor;
730 			return;
731 		}
732 	}
733 
734 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
735 		    "CPU: Your system may be unstable.\n", v);
736 
737 	c->x86_vendor = X86_VENDOR_UNKNOWN;
738 	this_cpu = &default_cpu;
739 }
740 
741 void cpu_detect(struct cpuinfo_x86 *c)
742 {
743 	/* Get vendor name */
744 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
745 	      (unsigned int *)&c->x86_vendor_id[0],
746 	      (unsigned int *)&c->x86_vendor_id[8],
747 	      (unsigned int *)&c->x86_vendor_id[4]);
748 
749 	c->x86 = 4;
750 	/* Intel-defined flags: level 0x00000001 */
751 	if (c->cpuid_level >= 0x00000001) {
752 		u32 junk, tfms, cap0, misc;
753 
754 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
755 		c->x86		= x86_family(tfms);
756 		c->x86_model	= x86_model(tfms);
757 		c->x86_stepping	= x86_stepping(tfms);
758 
759 		if (cap0 & (1<<19)) {
760 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
761 			c->x86_cache_alignment = c->x86_clflush_size;
762 		}
763 	}
764 }
765 
766 static void apply_forced_caps(struct cpuinfo_x86 *c)
767 {
768 	int i;
769 
770 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
771 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
772 		c->x86_capability[i] |= cpu_caps_set[i];
773 	}
774 }
775 
776 static void init_speculation_control(struct cpuinfo_x86 *c)
777 {
778 	/*
779 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
780 	 * and they also have a different bit for STIBP support. Also,
781 	 * a hypervisor might have set the individual AMD bits even on
782 	 * Intel CPUs, for finer-grained selection of what's available.
783 	 */
784 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
785 		set_cpu_cap(c, X86_FEATURE_IBRS);
786 		set_cpu_cap(c, X86_FEATURE_IBPB);
787 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
788 	}
789 
790 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
791 		set_cpu_cap(c, X86_FEATURE_STIBP);
792 
793 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
794 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
795 		set_cpu_cap(c, X86_FEATURE_SSBD);
796 
797 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
798 		set_cpu_cap(c, X86_FEATURE_IBRS);
799 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
800 	}
801 
802 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
803 		set_cpu_cap(c, X86_FEATURE_IBPB);
804 
805 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
806 		set_cpu_cap(c, X86_FEATURE_STIBP);
807 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
808 	}
809 
810 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
811 		set_cpu_cap(c, X86_FEATURE_SSBD);
812 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
813 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
814 	}
815 }
816 
817 void get_cpu_cap(struct cpuinfo_x86 *c)
818 {
819 	u32 eax, ebx, ecx, edx;
820 
821 	/* Intel-defined flags: level 0x00000001 */
822 	if (c->cpuid_level >= 0x00000001) {
823 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
824 
825 		c->x86_capability[CPUID_1_ECX] = ecx;
826 		c->x86_capability[CPUID_1_EDX] = edx;
827 	}
828 
829 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
830 	if (c->cpuid_level >= 0x00000006)
831 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
832 
833 	/* Additional Intel-defined flags: level 0x00000007 */
834 	if (c->cpuid_level >= 0x00000007) {
835 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
836 		c->x86_capability[CPUID_7_0_EBX] = ebx;
837 		c->x86_capability[CPUID_7_ECX] = ecx;
838 		c->x86_capability[CPUID_7_EDX] = edx;
839 	}
840 
841 	/* Extended state features: level 0x0000000d */
842 	if (c->cpuid_level >= 0x0000000d) {
843 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
844 
845 		c->x86_capability[CPUID_D_1_EAX] = eax;
846 	}
847 
848 	/* Additional Intel-defined flags: level 0x0000000F */
849 	if (c->cpuid_level >= 0x0000000F) {
850 
851 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
852 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
853 		c->x86_capability[CPUID_F_0_EDX] = edx;
854 
855 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
856 			/* will be overridden if occupancy monitoring exists */
857 			c->x86_cache_max_rmid = ebx;
858 
859 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
860 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
861 			c->x86_capability[CPUID_F_1_EDX] = edx;
862 
863 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
864 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
865 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
866 				c->x86_cache_max_rmid = ecx;
867 				c->x86_cache_occ_scale = ebx;
868 			}
869 		} else {
870 			c->x86_cache_max_rmid = -1;
871 			c->x86_cache_occ_scale = -1;
872 		}
873 	}
874 
875 	/* AMD-defined flags: level 0x80000001 */
876 	eax = cpuid_eax(0x80000000);
877 	c->extended_cpuid_level = eax;
878 
879 	if ((eax & 0xffff0000) == 0x80000000) {
880 		if (eax >= 0x80000001) {
881 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
882 
883 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
884 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
885 		}
886 	}
887 
888 	if (c->extended_cpuid_level >= 0x80000007) {
889 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
890 
891 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
892 		c->x86_power = edx;
893 	}
894 
895 	if (c->extended_cpuid_level >= 0x80000008) {
896 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
897 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
898 	}
899 
900 	if (c->extended_cpuid_level >= 0x8000000a)
901 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
902 
903 	init_scattered_cpuid_features(c);
904 	init_speculation_control(c);
905 
906 	/*
907 	 * Clear/Set all flags overridden by options, after probe.
908 	 * This needs to happen each time we re-probe, which may happen
909 	 * several times during CPU initialization.
910 	 */
911 	apply_forced_caps(c);
912 }
913 
914 static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
915 {
916 	u32 eax, ebx, ecx, edx;
917 
918 	if (c->extended_cpuid_level >= 0x80000008) {
919 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
920 
921 		c->x86_virt_bits = (eax >> 8) & 0xff;
922 		c->x86_phys_bits = eax & 0xff;
923 	}
924 #ifdef CONFIG_X86_32
925 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
926 		c->x86_phys_bits = 36;
927 #endif
928 }
929 
930 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
931 {
932 #ifdef CONFIG_X86_32
933 	int i;
934 
935 	/*
936 	 * First of all, decide if this is a 486 or higher
937 	 * It's a 486 if we can modify the AC flag
938 	 */
939 	if (flag_is_changeable_p(X86_EFLAGS_AC))
940 		c->x86 = 4;
941 	else
942 		c->x86 = 3;
943 
944 	for (i = 0; i < X86_VENDOR_NUM; i++)
945 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
946 			c->x86_vendor_id[0] = 0;
947 			cpu_devs[i]->c_identify(c);
948 			if (c->x86_vendor_id[0]) {
949 				get_cpu_vendor(c);
950 				break;
951 			}
952 		}
953 #endif
954 }
955 
956 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
957 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CEDARVIEW,	X86_FEATURE_ANY },
958 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CLOVERVIEW,	X86_FEATURE_ANY },
959 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_LINCROFT,	X86_FEATURE_ANY },
960 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PENWELL,	X86_FEATURE_ANY },
961 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PINEVIEW,	X86_FEATURE_ANY },
962 	{ X86_VENDOR_CENTAUR,	5 },
963 	{ X86_VENDOR_INTEL,	5 },
964 	{ X86_VENDOR_NSC,	5 },
965 	{ X86_VENDOR_ANY,	4 },
966 	{}
967 };
968 
969 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
970 	{ X86_VENDOR_AMD },
971 	{}
972 };
973 
974 /* Only list CPUs which speculate but are non susceptible to SSB */
975 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
976 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT1	},
977 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_AIRMONT		},
978 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT2	},
979 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_MERRIFIELD	},
980 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_CORE_YONAH		},
981 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNL		},
982 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNM		},
983 	{ X86_VENDOR_AMD,	0x12,					},
984 	{ X86_VENDOR_AMD,	0x11,					},
985 	{ X86_VENDOR_AMD,	0x10,					},
986 	{ X86_VENDOR_AMD,	0xf,					},
987 	{}
988 };
989 
990 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
991 {
992 	u64 ia32_cap = 0;
993 
994 	if (x86_match_cpu(cpu_no_speculation))
995 		return;
996 
997 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
998 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
999 
1000 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1001 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1002 
1003 	if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
1004 	   !(ia32_cap & ARCH_CAP_SSB_NO) &&
1005 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1006 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1007 
1008 	if (x86_match_cpu(cpu_no_meltdown))
1009 		return;
1010 
1011 	/* Rogue Data Cache Load? No! */
1012 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1013 		return;
1014 
1015 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1016 }
1017 
1018 /*
1019  * Do minimum CPU detection early.
1020  * Fields really needed: vendor, cpuid_level, family, model, mask,
1021  * cache alignment.
1022  * The others are not touched to avoid unwanted side effects.
1023  *
1024  * WARNING: this function is only called on the boot CPU.  Don't add code
1025  * here that is supposed to run on all CPUs.
1026  */
1027 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1028 {
1029 #ifdef CONFIG_X86_64
1030 	c->x86_clflush_size = 64;
1031 	c->x86_phys_bits = 36;
1032 	c->x86_virt_bits = 48;
1033 #else
1034 	c->x86_clflush_size = 32;
1035 	c->x86_phys_bits = 32;
1036 	c->x86_virt_bits = 32;
1037 #endif
1038 	c->x86_cache_alignment = c->x86_clflush_size;
1039 
1040 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1041 	c->extended_cpuid_level = 0;
1042 
1043 	/* cyrix could have cpuid enabled via c_identify()*/
1044 	if (have_cpuid_p()) {
1045 		cpu_detect(c);
1046 		get_cpu_vendor(c);
1047 		get_cpu_cap(c);
1048 		get_cpu_address_sizes(c);
1049 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1050 
1051 		if (this_cpu->c_early_init)
1052 			this_cpu->c_early_init(c);
1053 
1054 		c->cpu_index = 0;
1055 		filter_cpuid_features(c, false);
1056 
1057 		if (this_cpu->c_bsp_init)
1058 			this_cpu->c_bsp_init(c);
1059 	} else {
1060 		identify_cpu_without_cpuid(c);
1061 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1062 	}
1063 
1064 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1065 
1066 	cpu_set_bug_bits(c);
1067 
1068 	fpu__init_system(c);
1069 
1070 #ifdef CONFIG_X86_32
1071 	/*
1072 	 * Regardless of whether PCID is enumerated, the SDM says
1073 	 * that it can't be enabled in 32-bit mode.
1074 	 */
1075 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1076 #endif
1077 
1078 	/*
1079 	 * Later in the boot process pgtable_l5_enabled() relies on
1080 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1081 	 * enabled by this point we need to clear the feature bit to avoid
1082 	 * false-positives at the later stage.
1083 	 *
1084 	 * pgtable_l5_enabled() can be false here for several reasons:
1085 	 *  - 5-level paging is disabled compile-time;
1086 	 *  - it's 32-bit kernel;
1087 	 *  - machine doesn't support 5-level paging;
1088 	 *  - user specified 'no5lvl' in kernel command line.
1089 	 */
1090 	if (!pgtable_l5_enabled())
1091 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1092 }
1093 
1094 void __init early_cpu_init(void)
1095 {
1096 	const struct cpu_dev *const *cdev;
1097 	int count = 0;
1098 
1099 #ifdef CONFIG_PROCESSOR_SELECT
1100 	pr_info("KERNEL supported cpus:\n");
1101 #endif
1102 
1103 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1104 		const struct cpu_dev *cpudev = *cdev;
1105 
1106 		if (count >= X86_VENDOR_NUM)
1107 			break;
1108 		cpu_devs[count] = cpudev;
1109 		count++;
1110 
1111 #ifdef CONFIG_PROCESSOR_SELECT
1112 		{
1113 			unsigned int j;
1114 
1115 			for (j = 0; j < 2; j++) {
1116 				if (!cpudev->c_ident[j])
1117 					continue;
1118 				pr_info("  %s %s\n", cpudev->c_vendor,
1119 					cpudev->c_ident[j]);
1120 			}
1121 		}
1122 #endif
1123 	}
1124 	early_identify_cpu(&boot_cpu_data);
1125 }
1126 
1127 /*
1128  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1129  * unfortunately, that's not true in practice because of early VIA
1130  * chips and (more importantly) broken virtualizers that are not easy
1131  * to detect. In the latter case it doesn't even *fail* reliably, so
1132  * probing for it doesn't even work. Disable it completely on 32-bit
1133  * unless we can find a reliable way to detect all the broken cases.
1134  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1135  */
1136 static void detect_nopl(struct cpuinfo_x86 *c)
1137 {
1138 #ifdef CONFIG_X86_32
1139 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1140 #else
1141 	set_cpu_cap(c, X86_FEATURE_NOPL);
1142 #endif
1143 }
1144 
1145 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1146 {
1147 #ifdef CONFIG_X86_64
1148 	/*
1149 	 * Empirically, writing zero to a segment selector on AMD does
1150 	 * not clear the base, whereas writing zero to a segment
1151 	 * selector on Intel does clear the base.  Intel's behavior
1152 	 * allows slightly faster context switches in the common case
1153 	 * where GS is unused by the prev and next threads.
1154 	 *
1155 	 * Since neither vendor documents this anywhere that I can see,
1156 	 * detect it directly instead of hardcoding the choice by
1157 	 * vendor.
1158 	 *
1159 	 * I've designated AMD's behavior as the "bug" because it's
1160 	 * counterintuitive and less friendly.
1161 	 */
1162 
1163 	unsigned long old_base, tmp;
1164 	rdmsrl(MSR_FS_BASE, old_base);
1165 	wrmsrl(MSR_FS_BASE, 1);
1166 	loadsegment(fs, 0);
1167 	rdmsrl(MSR_FS_BASE, tmp);
1168 	if (tmp != 0)
1169 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1170 	wrmsrl(MSR_FS_BASE, old_base);
1171 #endif
1172 }
1173 
1174 static void generic_identify(struct cpuinfo_x86 *c)
1175 {
1176 	c->extended_cpuid_level = 0;
1177 
1178 	if (!have_cpuid_p())
1179 		identify_cpu_without_cpuid(c);
1180 
1181 	/* cyrix could have cpuid enabled via c_identify()*/
1182 	if (!have_cpuid_p())
1183 		return;
1184 
1185 	cpu_detect(c);
1186 
1187 	get_cpu_vendor(c);
1188 
1189 	get_cpu_cap(c);
1190 
1191 	get_cpu_address_sizes(c);
1192 
1193 	if (c->cpuid_level >= 0x00000001) {
1194 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1195 #ifdef CONFIG_X86_32
1196 # ifdef CONFIG_SMP
1197 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1198 # else
1199 		c->apicid = c->initial_apicid;
1200 # endif
1201 #endif
1202 		c->phys_proc_id = c->initial_apicid;
1203 	}
1204 
1205 	get_model_name(c); /* Default name */
1206 
1207 	detect_nopl(c);
1208 
1209 	detect_null_seg_behavior(c);
1210 
1211 	/*
1212 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1213 	 * systems that run Linux at CPL > 0 may or may not have the
1214 	 * issue, but, even if they have the issue, there's absolutely
1215 	 * nothing we can do about it because we can't use the real IRET
1216 	 * instruction.
1217 	 *
1218 	 * NB: For the time being, only 32-bit kernels support
1219 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1220 	 * whether to apply espfix using paravirt hooks.  If any
1221 	 * non-paravirt system ever shows up that does *not* have the
1222 	 * ESPFIX issue, we can change this.
1223 	 */
1224 #ifdef CONFIG_X86_32
1225 # ifdef CONFIG_PARAVIRT
1226 	do {
1227 		extern void native_iret(void);
1228 		if (pv_cpu_ops.iret == native_iret)
1229 			set_cpu_bug(c, X86_BUG_ESPFIX);
1230 	} while (0);
1231 # else
1232 	set_cpu_bug(c, X86_BUG_ESPFIX);
1233 # endif
1234 #endif
1235 }
1236 
1237 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1238 {
1239 	/*
1240 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1241 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1242 	 * in case CQM bits really aren't there in this CPU.
1243 	 */
1244 	if (c != &boot_cpu_data) {
1245 		boot_cpu_data.x86_cache_max_rmid =
1246 			min(boot_cpu_data.x86_cache_max_rmid,
1247 			    c->x86_cache_max_rmid);
1248 	}
1249 }
1250 
1251 /*
1252  * Validate that ACPI/mptables have the same information about the
1253  * effective APIC id and update the package map.
1254  */
1255 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1256 {
1257 #ifdef CONFIG_SMP
1258 	unsigned int apicid, cpu = smp_processor_id();
1259 
1260 	apicid = apic->cpu_present_to_apicid(cpu);
1261 
1262 	if (apicid != c->apicid) {
1263 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1264 		       cpu, apicid, c->initial_apicid);
1265 	}
1266 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1267 #else
1268 	c->logical_proc_id = 0;
1269 #endif
1270 }
1271 
1272 /*
1273  * This does the hard work of actually picking apart the CPU stuff...
1274  */
1275 static void identify_cpu(struct cpuinfo_x86 *c)
1276 {
1277 	int i;
1278 
1279 	c->loops_per_jiffy = loops_per_jiffy;
1280 	c->x86_cache_size = 0;
1281 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1282 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1283 	c->x86_vendor_id[0] = '\0'; /* Unset */
1284 	c->x86_model_id[0] = '\0';  /* Unset */
1285 	c->x86_max_cores = 1;
1286 	c->x86_coreid_bits = 0;
1287 	c->cu_id = 0xff;
1288 #ifdef CONFIG_X86_64
1289 	c->x86_clflush_size = 64;
1290 	c->x86_phys_bits = 36;
1291 	c->x86_virt_bits = 48;
1292 #else
1293 	c->cpuid_level = -1;	/* CPUID not detected */
1294 	c->x86_clflush_size = 32;
1295 	c->x86_phys_bits = 32;
1296 	c->x86_virt_bits = 32;
1297 #endif
1298 	c->x86_cache_alignment = c->x86_clflush_size;
1299 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1300 
1301 	generic_identify(c);
1302 
1303 	if (this_cpu->c_identify)
1304 		this_cpu->c_identify(c);
1305 
1306 	/* Clear/Set all flags overridden by options, after probe */
1307 	apply_forced_caps(c);
1308 
1309 #ifdef CONFIG_X86_64
1310 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1311 #endif
1312 
1313 	/*
1314 	 * Vendor-specific initialization.  In this section we
1315 	 * canonicalize the feature flags, meaning if there are
1316 	 * features a certain CPU supports which CPUID doesn't
1317 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1318 	 * we handle them here.
1319 	 *
1320 	 * At the end of this section, c->x86_capability better
1321 	 * indicate the features this CPU genuinely supports!
1322 	 */
1323 	if (this_cpu->c_init)
1324 		this_cpu->c_init(c);
1325 
1326 	/* Disable the PN if appropriate */
1327 	squash_the_stupid_serial_number(c);
1328 
1329 	/* Set up SMEP/SMAP/UMIP */
1330 	setup_smep(c);
1331 	setup_smap(c);
1332 	setup_umip(c);
1333 
1334 	/*
1335 	 * The vendor-specific functions might have changed features.
1336 	 * Now we do "generic changes."
1337 	 */
1338 
1339 	/* Filter out anything that depends on CPUID levels we don't have */
1340 	filter_cpuid_features(c, true);
1341 
1342 	/* If the model name is still unset, do table lookup. */
1343 	if (!c->x86_model_id[0]) {
1344 		const char *p;
1345 		p = table_lookup_model(c);
1346 		if (p)
1347 			strcpy(c->x86_model_id, p);
1348 		else
1349 			/* Last resort... */
1350 			sprintf(c->x86_model_id, "%02x/%02x",
1351 				c->x86, c->x86_model);
1352 	}
1353 
1354 #ifdef CONFIG_X86_64
1355 	detect_ht(c);
1356 #endif
1357 
1358 	x86_init_rdrand(c);
1359 	x86_init_cache_qos(c);
1360 	setup_pku(c);
1361 
1362 	/*
1363 	 * Clear/Set all flags overridden by options, need do it
1364 	 * before following smp all cpus cap AND.
1365 	 */
1366 	apply_forced_caps(c);
1367 
1368 	/*
1369 	 * On SMP, boot_cpu_data holds the common feature set between
1370 	 * all CPUs; so make sure that we indicate which features are
1371 	 * common between the CPUs.  The first time this routine gets
1372 	 * executed, c == &boot_cpu_data.
1373 	 */
1374 	if (c != &boot_cpu_data) {
1375 		/* AND the already accumulated flags with these */
1376 		for (i = 0; i < NCAPINTS; i++)
1377 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1378 
1379 		/* OR, i.e. replicate the bug flags */
1380 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1381 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1382 	}
1383 
1384 	/* Init Machine Check Exception if available. */
1385 	mcheck_cpu_init(c);
1386 
1387 	select_idle_routine(c);
1388 
1389 #ifdef CONFIG_NUMA
1390 	numa_add_cpu(smp_processor_id());
1391 #endif
1392 }
1393 
1394 /*
1395  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1396  * on 32-bit kernels:
1397  */
1398 #ifdef CONFIG_X86_32
1399 void enable_sep_cpu(void)
1400 {
1401 	struct tss_struct *tss;
1402 	int cpu;
1403 
1404 	if (!boot_cpu_has(X86_FEATURE_SEP))
1405 		return;
1406 
1407 	cpu = get_cpu();
1408 	tss = &per_cpu(cpu_tss_rw, cpu);
1409 
1410 	/*
1411 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1412 	 * see the big comment in struct x86_hw_tss's definition.
1413 	 */
1414 
1415 	tss->x86_tss.ss1 = __KERNEL_CS;
1416 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1417 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1418 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1419 
1420 	put_cpu();
1421 }
1422 #endif
1423 
1424 void __init identify_boot_cpu(void)
1425 {
1426 	identify_cpu(&boot_cpu_data);
1427 #ifdef CONFIG_X86_32
1428 	sysenter_setup();
1429 	enable_sep_cpu();
1430 #endif
1431 	cpu_detect_tlb(&boot_cpu_data);
1432 }
1433 
1434 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1435 {
1436 	BUG_ON(c == &boot_cpu_data);
1437 	identify_cpu(c);
1438 #ifdef CONFIG_X86_32
1439 	enable_sep_cpu();
1440 #endif
1441 	mtrr_ap_init();
1442 	validate_apic_and_package_id(c);
1443 	x86_spec_ctrl_setup_ap();
1444 }
1445 
1446 static __init int setup_noclflush(char *arg)
1447 {
1448 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1449 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1450 	return 1;
1451 }
1452 __setup("noclflush", setup_noclflush);
1453 
1454 void print_cpu_info(struct cpuinfo_x86 *c)
1455 {
1456 	const char *vendor = NULL;
1457 
1458 	if (c->x86_vendor < X86_VENDOR_NUM) {
1459 		vendor = this_cpu->c_vendor;
1460 	} else {
1461 		if (c->cpuid_level >= 0)
1462 			vendor = c->x86_vendor_id;
1463 	}
1464 
1465 	if (vendor && !strstr(c->x86_model_id, vendor))
1466 		pr_cont("%s ", vendor);
1467 
1468 	if (c->x86_model_id[0])
1469 		pr_cont("%s", c->x86_model_id);
1470 	else
1471 		pr_cont("%d86", c->x86);
1472 
1473 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1474 
1475 	if (c->x86_stepping || c->cpuid_level >= 0)
1476 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1477 	else
1478 		pr_cont(")\n");
1479 }
1480 
1481 /*
1482  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1483  * But we need to keep a dummy __setup around otherwise it would
1484  * show up as an environment variable for init.
1485  */
1486 static __init int setup_clearcpuid(char *arg)
1487 {
1488 	return 1;
1489 }
1490 __setup("clearcpuid=", setup_clearcpuid);
1491 
1492 #ifdef CONFIG_X86_64
1493 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1494 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1495 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1496 
1497 /*
1498  * The following percpu variables are hot.  Align current_task to
1499  * cacheline size such that they fall in the same cacheline.
1500  */
1501 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1502 	&init_task;
1503 EXPORT_PER_CPU_SYMBOL(current_task);
1504 
1505 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1506 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1507 
1508 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1509 
1510 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1511 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1512 
1513 /* May not be marked __init: used by software suspend */
1514 void syscall_init(void)
1515 {
1516 	extern char _entry_trampoline[];
1517 	extern char entry_SYSCALL_64_trampoline[];
1518 
1519 	int cpu = smp_processor_id();
1520 	unsigned long SYSCALL64_entry_trampoline =
1521 		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1522 		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1523 
1524 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1525 	if (static_cpu_has(X86_FEATURE_PTI))
1526 		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1527 	else
1528 		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1529 
1530 #ifdef CONFIG_IA32_EMULATION
1531 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1532 	/*
1533 	 * This only works on Intel CPUs.
1534 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1535 	 * This does not cause SYSENTER to jump to the wrong location, because
1536 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1537 	 */
1538 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1539 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1540 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1541 #else
1542 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1543 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1544 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1545 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1546 #endif
1547 
1548 	/* Flags to clear on syscall */
1549 	wrmsrl(MSR_SYSCALL_MASK,
1550 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1551 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1552 }
1553 
1554 /*
1555  * Copies of the original ist values from the tss are only accessed during
1556  * debugging, no special alignment required.
1557  */
1558 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1559 
1560 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1561 DEFINE_PER_CPU(int, debug_stack_usage);
1562 
1563 int is_debug_stack(unsigned long addr)
1564 {
1565 	return __this_cpu_read(debug_stack_usage) ||
1566 		(addr <= __this_cpu_read(debug_stack_addr) &&
1567 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1568 }
1569 NOKPROBE_SYMBOL(is_debug_stack);
1570 
1571 DEFINE_PER_CPU(u32, debug_idt_ctr);
1572 
1573 void debug_stack_set_zero(void)
1574 {
1575 	this_cpu_inc(debug_idt_ctr);
1576 	load_current_idt();
1577 }
1578 NOKPROBE_SYMBOL(debug_stack_set_zero);
1579 
1580 void debug_stack_reset(void)
1581 {
1582 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1583 		return;
1584 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1585 		load_current_idt();
1586 }
1587 NOKPROBE_SYMBOL(debug_stack_reset);
1588 
1589 #else	/* CONFIG_X86_64 */
1590 
1591 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1592 EXPORT_PER_CPU_SYMBOL(current_task);
1593 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1594 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1595 
1596 /*
1597  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1598  * the top of the kernel stack.  Use an extra percpu variable to track the
1599  * top of the kernel stack directly.
1600  */
1601 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1602 	(unsigned long)&init_thread_union + THREAD_SIZE;
1603 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1604 
1605 #ifdef CONFIG_STACKPROTECTOR
1606 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1607 #endif
1608 
1609 #endif	/* CONFIG_X86_64 */
1610 
1611 /*
1612  * Clear all 6 debug registers:
1613  */
1614 static void clear_all_debug_regs(void)
1615 {
1616 	int i;
1617 
1618 	for (i = 0; i < 8; i++) {
1619 		/* Ignore db4, db5 */
1620 		if ((i == 4) || (i == 5))
1621 			continue;
1622 
1623 		set_debugreg(0, i);
1624 	}
1625 }
1626 
1627 #ifdef CONFIG_KGDB
1628 /*
1629  * Restore debug regs if using kgdbwait and you have a kernel debugger
1630  * connection established.
1631  */
1632 static void dbg_restore_debug_regs(void)
1633 {
1634 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1635 		arch_kgdb_ops.correct_hw_break();
1636 }
1637 #else /* ! CONFIG_KGDB */
1638 #define dbg_restore_debug_regs()
1639 #endif /* ! CONFIG_KGDB */
1640 
1641 static void wait_for_master_cpu(int cpu)
1642 {
1643 #ifdef CONFIG_SMP
1644 	/*
1645 	 * wait for ACK from master CPU before continuing
1646 	 * with AP initialization
1647 	 */
1648 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1649 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1650 		cpu_relax();
1651 #endif
1652 }
1653 
1654 /*
1655  * cpu_init() initializes state that is per-CPU. Some data is already
1656  * initialized (naturally) in the bootstrap process, such as the GDT
1657  * and IDT. We reload them nevertheless, this function acts as a
1658  * 'CPU state barrier', nothing should get across.
1659  * A lot of state is already set up in PDA init for 64 bit
1660  */
1661 #ifdef CONFIG_X86_64
1662 
1663 void cpu_init(void)
1664 {
1665 	struct orig_ist *oist;
1666 	struct task_struct *me;
1667 	struct tss_struct *t;
1668 	unsigned long v;
1669 	int cpu = raw_smp_processor_id();
1670 	int i;
1671 
1672 	wait_for_master_cpu(cpu);
1673 
1674 	/*
1675 	 * Initialize the CR4 shadow before doing anything that could
1676 	 * try to read it.
1677 	 */
1678 	cr4_init_shadow();
1679 
1680 	if (cpu)
1681 		load_ucode_ap();
1682 
1683 	t = &per_cpu(cpu_tss_rw, cpu);
1684 	oist = &per_cpu(orig_ist, cpu);
1685 
1686 #ifdef CONFIG_NUMA
1687 	if (this_cpu_read(numa_node) == 0 &&
1688 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1689 		set_numa_node(early_cpu_to_node(cpu));
1690 #endif
1691 
1692 	me = current;
1693 
1694 	pr_debug("Initializing CPU#%d\n", cpu);
1695 
1696 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1697 
1698 	/*
1699 	 * Initialize the per-CPU GDT with the boot GDT,
1700 	 * and set up the GDT descriptor:
1701 	 */
1702 
1703 	switch_to_new_gdt(cpu);
1704 	loadsegment(fs, 0);
1705 
1706 	load_current_idt();
1707 
1708 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1709 	syscall_init();
1710 
1711 	wrmsrl(MSR_FS_BASE, 0);
1712 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1713 	barrier();
1714 
1715 	x86_configure_nx();
1716 	x2apic_setup();
1717 
1718 	/*
1719 	 * set up and load the per-CPU TSS
1720 	 */
1721 	if (!oist->ist[0]) {
1722 		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1723 
1724 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1725 			estacks += exception_stack_sizes[v];
1726 			oist->ist[v] = t->x86_tss.ist[v] =
1727 					(unsigned long)estacks;
1728 			if (v == DEBUG_STACK-1)
1729 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1730 		}
1731 	}
1732 
1733 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1734 
1735 	/*
1736 	 * <= is required because the CPU will access up to
1737 	 * 8 bits beyond the end of the IO permission bitmap.
1738 	 */
1739 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1740 		t->io_bitmap[i] = ~0UL;
1741 
1742 	mmgrab(&init_mm);
1743 	me->active_mm = &init_mm;
1744 	BUG_ON(me->mm);
1745 	initialize_tlbstate_and_flush();
1746 	enter_lazy_tlb(&init_mm, me);
1747 
1748 	/*
1749 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1750 	 * regardless of what task is running.
1751 	 */
1752 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1753 	load_TR_desc();
1754 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1755 
1756 	load_mm_ldt(&init_mm);
1757 
1758 	clear_all_debug_regs();
1759 	dbg_restore_debug_regs();
1760 
1761 	fpu__init_cpu();
1762 
1763 	if (is_uv_system())
1764 		uv_cpu_init();
1765 
1766 	load_fixmap_gdt(cpu);
1767 }
1768 
1769 #else
1770 
1771 void cpu_init(void)
1772 {
1773 	int cpu = smp_processor_id();
1774 	struct task_struct *curr = current;
1775 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1776 
1777 	wait_for_master_cpu(cpu);
1778 
1779 	/*
1780 	 * Initialize the CR4 shadow before doing anything that could
1781 	 * try to read it.
1782 	 */
1783 	cr4_init_shadow();
1784 
1785 	show_ucode_info_early();
1786 
1787 	pr_info("Initializing CPU#%d\n", cpu);
1788 
1789 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1790 	    boot_cpu_has(X86_FEATURE_TSC) ||
1791 	    boot_cpu_has(X86_FEATURE_DE))
1792 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1793 
1794 	load_current_idt();
1795 	switch_to_new_gdt(cpu);
1796 
1797 	/*
1798 	 * Set up and load the per-CPU TSS and LDT
1799 	 */
1800 	mmgrab(&init_mm);
1801 	curr->active_mm = &init_mm;
1802 	BUG_ON(curr->mm);
1803 	initialize_tlbstate_and_flush();
1804 	enter_lazy_tlb(&init_mm, curr);
1805 
1806 	/*
1807 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1808 	 * task never enters user mode.
1809 	 */
1810 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1811 	load_TR_desc();
1812 
1813 	load_mm_ldt(&init_mm);
1814 
1815 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1816 
1817 #ifdef CONFIG_DOUBLEFAULT
1818 	/* Set up doublefault TSS pointer in the GDT */
1819 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1820 #endif
1821 
1822 	clear_all_debug_regs();
1823 	dbg_restore_debug_regs();
1824 
1825 	fpu__init_cpu();
1826 
1827 	load_fixmap_gdt(cpu);
1828 }
1829 #endif
1830 
1831 static void bsp_resume(void)
1832 {
1833 	if (this_cpu->c_bsp_resume)
1834 		this_cpu->c_bsp_resume(&boot_cpu_data);
1835 }
1836 
1837 static struct syscore_ops cpu_syscore_ops = {
1838 	.resume		= bsp_resume,
1839 };
1840 
1841 static int __init init_cpu_syscore(void)
1842 {
1843 	register_syscore_ops(&cpu_syscore_ops);
1844 	return 0;
1845 }
1846 core_initcall(init_cpu_syscore);
1847 
1848 /*
1849  * The microcode loader calls this upon late microcode load to recheck features,
1850  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1851  * hotplug lock.
1852  */
1853 void microcode_check(void)
1854 {
1855 	struct cpuinfo_x86 info;
1856 
1857 	perf_check_microcode();
1858 
1859 	/* Reload CPUID max function as it might've changed. */
1860 	info.cpuid_level = cpuid_eax(0);
1861 
1862 	/*
1863 	 * Copy all capability leafs to pick up the synthetic ones so that
1864 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1865 	 * get overwritten in get_cpu_cap().
1866 	 */
1867 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1868 
1869 	get_cpu_cap(&info);
1870 
1871 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1872 		return;
1873 
1874 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1875 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1876 }
1877