xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision b1c3d2beed8ef3699fab106340e33a79052df116)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 #include <linux/stackprotector.h>
26 
27 #include <asm/cmdline.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/cacheinfo.h>
56 #include <asm/memtype.h>
57 #include <asm/microcode.h>
58 #include <asm/microcode_intel.h>
59 #include <asm/intel-family.h>
60 #include <asm/cpu_device_id.h>
61 #include <asm/uv/uv.h>
62 #include <asm/sigframe.h>
63 #include <asm/traps.h>
64 #include <asm/sev.h>
65 
66 #include "cpu.h"
67 
68 u32 elf_hwcap2 __read_mostly;
69 
70 /* all of these masks are initialized in setup_cpu_local_masks() */
71 cpumask_var_t cpu_initialized_mask;
72 cpumask_var_t cpu_callout_mask;
73 cpumask_var_t cpu_callin_mask;
74 
75 /* representing cpus for which sibling maps can be computed */
76 cpumask_var_t cpu_sibling_setup_mask;
77 
78 /* Number of siblings per CPU package */
79 int smp_num_siblings = 1;
80 EXPORT_SYMBOL(smp_num_siblings);
81 
82 /* Last level cache ID of each logical CPU */
83 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
84 
85 u16 get_llc_id(unsigned int cpu)
86 {
87 	return per_cpu(cpu_llc_id, cpu);
88 }
89 EXPORT_SYMBOL_GPL(get_llc_id);
90 
91 /* L2 cache ID of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
93 
94 static struct ppin_info {
95 	int	feature;
96 	int	msr_ppin_ctl;
97 	int	msr_ppin;
98 } ppin_info[] = {
99 	[X86_VENDOR_INTEL] = {
100 		.feature = X86_FEATURE_INTEL_PPIN,
101 		.msr_ppin_ctl = MSR_PPIN_CTL,
102 		.msr_ppin = MSR_PPIN
103 	},
104 	[X86_VENDOR_AMD] = {
105 		.feature = X86_FEATURE_AMD_PPIN,
106 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
107 		.msr_ppin = MSR_AMD_PPIN
108 	},
109 };
110 
111 static const struct x86_cpu_id ppin_cpuids[] = {
112 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
113 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
114 
115 	/* Legacy models without CPUID enumeration */
116 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
117 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
119 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
124 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
125 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
126 
127 	{}
128 };
129 
130 static void ppin_init(struct cpuinfo_x86 *c)
131 {
132 	const struct x86_cpu_id *id;
133 	unsigned long long val;
134 	struct ppin_info *info;
135 
136 	id = x86_match_cpu(ppin_cpuids);
137 	if (!id)
138 		return;
139 
140 	/*
141 	 * Testing the presence of the MSR is not enough. Need to check
142 	 * that the PPIN_CTL allows reading of the PPIN.
143 	 */
144 	info = (struct ppin_info *)id->driver_data;
145 
146 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
147 		goto clear_ppin;
148 
149 	if ((val & 3UL) == 1UL) {
150 		/* PPIN locked in disabled mode */
151 		goto clear_ppin;
152 	}
153 
154 	/* If PPIN is disabled, try to enable */
155 	if (!(val & 2UL)) {
156 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
157 		rdmsrl_safe(info->msr_ppin_ctl, &val);
158 	}
159 
160 	/* Is the enable bit set? */
161 	if (val & 2UL) {
162 		c->ppin = __rdmsr(info->msr_ppin);
163 		set_cpu_cap(c, info->feature);
164 		return;
165 	}
166 
167 clear_ppin:
168 	clear_cpu_cap(c, info->feature);
169 }
170 
171 /* correctly size the local cpu masks */
172 void __init setup_cpu_local_masks(void)
173 {
174 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
175 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
176 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
177 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
178 }
179 
180 static void default_init(struct cpuinfo_x86 *c)
181 {
182 #ifdef CONFIG_X86_64
183 	cpu_detect_cache_sizes(c);
184 #else
185 	/* Not much we can do here... */
186 	/* Check if at least it has cpuid */
187 	if (c->cpuid_level == -1) {
188 		/* No cpuid. It must be an ancient CPU */
189 		if (c->x86 == 4)
190 			strcpy(c->x86_model_id, "486");
191 		else if (c->x86 == 3)
192 			strcpy(c->x86_model_id, "386");
193 	}
194 #endif
195 }
196 
197 static const struct cpu_dev default_cpu = {
198 	.c_init		= default_init,
199 	.c_vendor	= "Unknown",
200 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
201 };
202 
203 static const struct cpu_dev *this_cpu = &default_cpu;
204 
205 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
206 #ifdef CONFIG_X86_64
207 	/*
208 	 * We need valid kernel segments for data and code in long mode too
209 	 * IRET will check the segment types  kkeil 2000/10/28
210 	 * Also sysret mandates a special GDT layout
211 	 *
212 	 * TLS descriptors are currently at a different place compared to i386.
213 	 * Hopefully nobody expects them at a fixed place (Wine?)
214 	 */
215 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
216 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
217 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
218 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
219 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
220 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
221 #else
222 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
223 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
224 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
225 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
226 	/*
227 	 * Segments used for calling PnP BIOS have byte granularity.
228 	 * They code segments and data segments have fixed 64k limits,
229 	 * the transfer segment sizes are set at run time.
230 	 */
231 	/* 32-bit code */
232 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
233 	/* 16-bit code */
234 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
235 	/* 16-bit data */
236 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
237 	/* 16-bit data */
238 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
239 	/* 16-bit data */
240 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
241 	/*
242 	 * The APM segments have byte granularity and their bases
243 	 * are set at run time.  All have 64k limits.
244 	 */
245 	/* 32-bit code */
246 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
247 	/* 16-bit code */
248 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
249 	/* data */
250 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
251 
252 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
254 #endif
255 } };
256 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
257 
258 #ifdef CONFIG_X86_64
259 static int __init x86_nopcid_setup(char *s)
260 {
261 	/* nopcid doesn't accept parameters */
262 	if (s)
263 		return -EINVAL;
264 
265 	/* do not emit a message if the feature is not present */
266 	if (!boot_cpu_has(X86_FEATURE_PCID))
267 		return 0;
268 
269 	setup_clear_cpu_cap(X86_FEATURE_PCID);
270 	pr_info("nopcid: PCID feature disabled\n");
271 	return 0;
272 }
273 early_param("nopcid", x86_nopcid_setup);
274 #endif
275 
276 static int __init x86_noinvpcid_setup(char *s)
277 {
278 	/* noinvpcid doesn't accept parameters */
279 	if (s)
280 		return -EINVAL;
281 
282 	/* do not emit a message if the feature is not present */
283 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
284 		return 0;
285 
286 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
287 	pr_info("noinvpcid: INVPCID feature disabled\n");
288 	return 0;
289 }
290 early_param("noinvpcid", x86_noinvpcid_setup);
291 
292 #ifdef CONFIG_X86_32
293 static int cachesize_override = -1;
294 static int disable_x86_serial_nr = 1;
295 
296 static int __init cachesize_setup(char *str)
297 {
298 	get_option(&str, &cachesize_override);
299 	return 1;
300 }
301 __setup("cachesize=", cachesize_setup);
302 
303 /* Standard macro to see if a specific flag is changeable */
304 static inline int flag_is_changeable_p(u32 flag)
305 {
306 	u32 f1, f2;
307 
308 	/*
309 	 * Cyrix and IDT cpus allow disabling of CPUID
310 	 * so the code below may return different results
311 	 * when it is executed before and after enabling
312 	 * the CPUID. Add "volatile" to not allow gcc to
313 	 * optimize the subsequent calls to this function.
314 	 */
315 	asm volatile ("pushfl		\n\t"
316 		      "pushfl		\n\t"
317 		      "popl %0		\n\t"
318 		      "movl %0, %1	\n\t"
319 		      "xorl %2, %0	\n\t"
320 		      "pushl %0		\n\t"
321 		      "popfl		\n\t"
322 		      "pushfl		\n\t"
323 		      "popl %0		\n\t"
324 		      "popfl		\n\t"
325 
326 		      : "=&r" (f1), "=&r" (f2)
327 		      : "ir" (flag));
328 
329 	return ((f1^f2) & flag) != 0;
330 }
331 
332 /* Probe for the CPUID instruction */
333 int have_cpuid_p(void)
334 {
335 	return flag_is_changeable_p(X86_EFLAGS_ID);
336 }
337 
338 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339 {
340 	unsigned long lo, hi;
341 
342 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
343 		return;
344 
345 	/* Disable processor serial number: */
346 
347 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
348 	lo |= 0x200000;
349 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
350 
351 	pr_notice("CPU serial number disabled.\n");
352 	clear_cpu_cap(c, X86_FEATURE_PN);
353 
354 	/* Disabling the serial number may affect the cpuid level */
355 	c->cpuid_level = cpuid_eax(0);
356 }
357 
358 static int __init x86_serial_nr_setup(char *s)
359 {
360 	disable_x86_serial_nr = 0;
361 	return 1;
362 }
363 __setup("serialnumber", x86_serial_nr_setup);
364 #else
365 static inline int flag_is_changeable_p(u32 flag)
366 {
367 	return 1;
368 }
369 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
370 {
371 }
372 #endif
373 
374 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
375 {
376 	if (cpu_has(c, X86_FEATURE_SMEP))
377 		cr4_set_bits(X86_CR4_SMEP);
378 }
379 
380 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
381 {
382 	unsigned long eflags = native_save_fl();
383 
384 	/* This should have been cleared long ago */
385 	BUG_ON(eflags & X86_EFLAGS_AC);
386 
387 	if (cpu_has(c, X86_FEATURE_SMAP))
388 		cr4_set_bits(X86_CR4_SMAP);
389 }
390 
391 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
392 {
393 	/* Check the boot processor, plus build option for UMIP. */
394 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
395 		goto out;
396 
397 	/* Check the current processor's cpuid bits. */
398 	if (!cpu_has(c, X86_FEATURE_UMIP))
399 		goto out;
400 
401 	cr4_set_bits(X86_CR4_UMIP);
402 
403 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
404 
405 	return;
406 
407 out:
408 	/*
409 	 * Make sure UMIP is disabled in case it was enabled in a
410 	 * previous boot (e.g., via kexec).
411 	 */
412 	cr4_clear_bits(X86_CR4_UMIP);
413 }
414 
415 /* These bits should not change their value after CPU init is finished. */
416 static const unsigned long cr4_pinned_mask =
417 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
418 	X86_CR4_FSGSBASE | X86_CR4_CET;
419 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
420 static unsigned long cr4_pinned_bits __ro_after_init;
421 
422 void native_write_cr0(unsigned long val)
423 {
424 	unsigned long bits_missing = 0;
425 
426 set_register:
427 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
428 
429 	if (static_branch_likely(&cr_pinning)) {
430 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
431 			bits_missing = X86_CR0_WP;
432 			val |= bits_missing;
433 			goto set_register;
434 		}
435 		/* Warn after we've set the missing bits. */
436 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
437 	}
438 }
439 EXPORT_SYMBOL(native_write_cr0);
440 
441 void __no_profile native_write_cr4(unsigned long val)
442 {
443 	unsigned long bits_changed = 0;
444 
445 set_register:
446 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
447 
448 	if (static_branch_likely(&cr_pinning)) {
449 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
450 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
451 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
452 			goto set_register;
453 		}
454 		/* Warn after we've corrected the changed bits. */
455 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
456 			  bits_changed);
457 	}
458 }
459 #if IS_MODULE(CONFIG_LKDTM)
460 EXPORT_SYMBOL_GPL(native_write_cr4);
461 #endif
462 
463 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
464 {
465 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
466 
467 	lockdep_assert_irqs_disabled();
468 
469 	newval = (cr4 & ~clear) | set;
470 	if (newval != cr4) {
471 		this_cpu_write(cpu_tlbstate.cr4, newval);
472 		__write_cr4(newval);
473 	}
474 }
475 EXPORT_SYMBOL(cr4_update_irqsoff);
476 
477 /* Read the CR4 shadow. */
478 unsigned long cr4_read_shadow(void)
479 {
480 	return this_cpu_read(cpu_tlbstate.cr4);
481 }
482 EXPORT_SYMBOL_GPL(cr4_read_shadow);
483 
484 void cr4_init(void)
485 {
486 	unsigned long cr4 = __read_cr4();
487 
488 	if (boot_cpu_has(X86_FEATURE_PCID))
489 		cr4 |= X86_CR4_PCIDE;
490 	if (static_branch_likely(&cr_pinning))
491 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
492 
493 	__write_cr4(cr4);
494 
495 	/* Initialize cr4 shadow for this CPU. */
496 	this_cpu_write(cpu_tlbstate.cr4, cr4);
497 }
498 
499 /*
500  * Once CPU feature detection is finished (and boot params have been
501  * parsed), record any of the sensitive CR bits that are set, and
502  * enable CR pinning.
503  */
504 static void __init setup_cr_pinning(void)
505 {
506 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
507 	static_key_enable(&cr_pinning.key);
508 }
509 
510 static __init int x86_nofsgsbase_setup(char *arg)
511 {
512 	/* Require an exact match without trailing characters. */
513 	if (strlen(arg))
514 		return 0;
515 
516 	/* Do not emit a message if the feature is not present. */
517 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
518 		return 1;
519 
520 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
521 	pr_info("FSGSBASE disabled via kernel command line\n");
522 	return 1;
523 }
524 __setup("nofsgsbase", x86_nofsgsbase_setup);
525 
526 /*
527  * Protection Keys are not available in 32-bit mode.
528  */
529 static bool pku_disabled;
530 
531 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
532 {
533 	if (c == &boot_cpu_data) {
534 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
535 			return;
536 		/*
537 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
538 		 * bit to be set.  Enforce it.
539 		 */
540 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
541 
542 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
543 		return;
544 	}
545 
546 	cr4_set_bits(X86_CR4_PKE);
547 	/* Load the default PKRU value */
548 	pkru_write_default();
549 }
550 
551 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
552 static __init int setup_disable_pku(char *arg)
553 {
554 	/*
555 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
556 	 * runtime checks are against OSPKE so clearing the
557 	 * bit does nothing.
558 	 *
559 	 * This way, we will see "pku" in cpuinfo, but not
560 	 * "ospke", which is exactly what we want.  It shows
561 	 * that the CPU has PKU, but the OS has not enabled it.
562 	 * This happens to be exactly how a system would look
563 	 * if we disabled the config option.
564 	 */
565 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
566 	pku_disabled = true;
567 	return 1;
568 }
569 __setup("nopku", setup_disable_pku);
570 #endif /* CONFIG_X86_64 */
571 
572 #ifdef CONFIG_X86_KERNEL_IBT
573 
574 __noendbr u64 ibt_save(void)
575 {
576 	u64 msr = 0;
577 
578 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 		rdmsrl(MSR_IA32_S_CET, msr);
580 		wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
581 	}
582 
583 	return msr;
584 }
585 
586 __noendbr void ibt_restore(u64 save)
587 {
588 	u64 msr;
589 
590 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
591 		rdmsrl(MSR_IA32_S_CET, msr);
592 		msr &= ~CET_ENDBR_EN;
593 		msr |= (save & CET_ENDBR_EN);
594 		wrmsrl(MSR_IA32_S_CET, msr);
595 	}
596 }
597 
598 #endif
599 
600 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
601 {
602 	u64 msr = CET_ENDBR_EN;
603 
604 	if (!HAS_KERNEL_IBT ||
605 	    !cpu_feature_enabled(X86_FEATURE_IBT))
606 		return;
607 
608 	wrmsrl(MSR_IA32_S_CET, msr);
609 	cr4_set_bits(X86_CR4_CET);
610 
611 	if (!ibt_selftest()) {
612 		pr_err("IBT selftest: Failed!\n");
613 		wrmsrl(MSR_IA32_S_CET, 0);
614 		setup_clear_cpu_cap(X86_FEATURE_IBT);
615 		return;
616 	}
617 }
618 
619 __noendbr void cet_disable(void)
620 {
621 	if (cpu_feature_enabled(X86_FEATURE_IBT))
622 		wrmsrl(MSR_IA32_S_CET, 0);
623 }
624 
625 /*
626  * Some CPU features depend on higher CPUID levels, which may not always
627  * be available due to CPUID level capping or broken virtualization
628  * software.  Add those features to this table to auto-disable them.
629  */
630 struct cpuid_dependent_feature {
631 	u32 feature;
632 	u32 level;
633 };
634 
635 static const struct cpuid_dependent_feature
636 cpuid_dependent_features[] = {
637 	{ X86_FEATURE_MWAIT,		0x00000005 },
638 	{ X86_FEATURE_DCA,		0x00000009 },
639 	{ X86_FEATURE_XSAVE,		0x0000000d },
640 	{ 0, 0 }
641 };
642 
643 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
644 {
645 	const struct cpuid_dependent_feature *df;
646 
647 	for (df = cpuid_dependent_features; df->feature; df++) {
648 
649 		if (!cpu_has(c, df->feature))
650 			continue;
651 		/*
652 		 * Note: cpuid_level is set to -1 if unavailable, but
653 		 * extended_extended_level is set to 0 if unavailable
654 		 * and the legitimate extended levels are all negative
655 		 * when signed; hence the weird messing around with
656 		 * signs here...
657 		 */
658 		if (!((s32)df->level < 0 ?
659 		     (u32)df->level > (u32)c->extended_cpuid_level :
660 		     (s32)df->level > (s32)c->cpuid_level))
661 			continue;
662 
663 		clear_cpu_cap(c, df->feature);
664 		if (!warn)
665 			continue;
666 
667 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
668 			x86_cap_flag(df->feature), df->level);
669 	}
670 }
671 
672 /*
673  * Naming convention should be: <Name> [(<Codename>)]
674  * This table only is used unless init_<vendor>() below doesn't set it;
675  * in particular, if CPUID levels 0x80000002..4 are supported, this
676  * isn't used
677  */
678 
679 /* Look up CPU names by table lookup. */
680 static const char *table_lookup_model(struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_X86_32
683 	const struct legacy_cpu_model_info *info;
684 
685 	if (c->x86_model >= 16)
686 		return NULL;	/* Range check */
687 
688 	if (!this_cpu)
689 		return NULL;
690 
691 	info = this_cpu->legacy_models;
692 
693 	while (info->family) {
694 		if (info->family == c->x86)
695 			return info->model_names[c->x86_model];
696 		info++;
697 	}
698 #endif
699 	return NULL;		/* Not found */
700 }
701 
702 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
703 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
704 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705 
706 #ifdef CONFIG_X86_32
707 /* The 32-bit entry code needs to find cpu_entry_area. */
708 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
709 #endif
710 
711 /* Load the original GDT from the per-cpu structure */
712 void load_direct_gdt(int cpu)
713 {
714 	struct desc_ptr gdt_descr;
715 
716 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
717 	gdt_descr.size = GDT_SIZE - 1;
718 	load_gdt(&gdt_descr);
719 }
720 EXPORT_SYMBOL_GPL(load_direct_gdt);
721 
722 /* Load a fixmap remapping of the per-cpu GDT */
723 void load_fixmap_gdt(int cpu)
724 {
725 	struct desc_ptr gdt_descr;
726 
727 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
728 	gdt_descr.size = GDT_SIZE - 1;
729 	load_gdt(&gdt_descr);
730 }
731 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
732 
733 /**
734  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
735  * @cpu:	The CPU number for which this is invoked
736  *
737  * Invoked during early boot to switch from early GDT and early per CPU to
738  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
739  * switch is implicit by loading the direct GDT. On 64bit this requires
740  * to update GSBASE.
741  */
742 void __init switch_gdt_and_percpu_base(int cpu)
743 {
744 	load_direct_gdt(cpu);
745 
746 #ifdef CONFIG_X86_64
747 	/*
748 	 * No need to load %gs. It is already correct.
749 	 *
750 	 * Writing %gs on 64bit would zero GSBASE which would make any per
751 	 * CPU operation up to the point of the wrmsrl() fault.
752 	 *
753 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
754 	 * early mapping is still valid. That means the GSBASE update will
755 	 * lose any prior per CPU data which was not copied over in
756 	 * setup_per_cpu_areas().
757 	 *
758 	 * This works even with stackprotector enabled because the
759 	 * per CPU stack canary is 0 in both per CPU areas.
760 	 */
761 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
762 #else
763 	/*
764 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
765 	 * it is required to load FS again so that the 'hidden' part is
766 	 * updated from the new GDT. Up to this point the early per CPU
767 	 * translation is active. Any content of the early per CPU data
768 	 * which was not copied over in setup_per_cpu_areas() is lost.
769 	 */
770 	loadsegment(fs, __KERNEL_PERCPU);
771 #endif
772 }
773 
774 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
775 
776 static void get_model_name(struct cpuinfo_x86 *c)
777 {
778 	unsigned int *v;
779 	char *p, *q, *s;
780 
781 	if (c->extended_cpuid_level < 0x80000004)
782 		return;
783 
784 	v = (unsigned int *)c->x86_model_id;
785 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
786 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
787 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
788 	c->x86_model_id[48] = 0;
789 
790 	/* Trim whitespace */
791 	p = q = s = &c->x86_model_id[0];
792 
793 	while (*p == ' ')
794 		p++;
795 
796 	while (*p) {
797 		/* Note the last non-whitespace index */
798 		if (!isspace(*p))
799 			s = q;
800 
801 		*q++ = *p++;
802 	}
803 
804 	*(s + 1) = '\0';
805 }
806 
807 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
808 {
809 	unsigned int eax, ebx, ecx, edx;
810 
811 	c->x86_max_cores = 1;
812 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
813 		return;
814 
815 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
816 	if (eax & 0x1f)
817 		c->x86_max_cores = (eax >> 26) + 1;
818 }
819 
820 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
821 {
822 	unsigned int n, dummy, ebx, ecx, edx, l2size;
823 
824 	n = c->extended_cpuid_level;
825 
826 	if (n >= 0x80000005) {
827 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
828 		c->x86_cache_size = (ecx>>24) + (edx>>24);
829 #ifdef CONFIG_X86_64
830 		/* On K8 L1 TLB is inclusive, so don't count it */
831 		c->x86_tlbsize = 0;
832 #endif
833 	}
834 
835 	if (n < 0x80000006)	/* Some chips just has a large L1. */
836 		return;
837 
838 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
839 	l2size = ecx >> 16;
840 
841 #ifdef CONFIG_X86_64
842 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
843 #else
844 	/* do processor-specific cache resizing */
845 	if (this_cpu->legacy_cache_size)
846 		l2size = this_cpu->legacy_cache_size(c, l2size);
847 
848 	/* Allow user to override all this if necessary. */
849 	if (cachesize_override != -1)
850 		l2size = cachesize_override;
851 
852 	if (l2size == 0)
853 		return;		/* Again, no L2 cache is possible */
854 #endif
855 
856 	c->x86_cache_size = l2size;
857 }
858 
859 u16 __read_mostly tlb_lli_4k[NR_INFO];
860 u16 __read_mostly tlb_lli_2m[NR_INFO];
861 u16 __read_mostly tlb_lli_4m[NR_INFO];
862 u16 __read_mostly tlb_lld_4k[NR_INFO];
863 u16 __read_mostly tlb_lld_2m[NR_INFO];
864 u16 __read_mostly tlb_lld_4m[NR_INFO];
865 u16 __read_mostly tlb_lld_1g[NR_INFO];
866 
867 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
868 {
869 	if (this_cpu->c_detect_tlb)
870 		this_cpu->c_detect_tlb(c);
871 
872 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
873 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
874 		tlb_lli_4m[ENTRIES]);
875 
876 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
877 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
878 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
879 }
880 
881 int detect_ht_early(struct cpuinfo_x86 *c)
882 {
883 #ifdef CONFIG_SMP
884 	u32 eax, ebx, ecx, edx;
885 
886 	if (!cpu_has(c, X86_FEATURE_HT))
887 		return -1;
888 
889 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
890 		return -1;
891 
892 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
893 		return -1;
894 
895 	cpuid(1, &eax, &ebx, &ecx, &edx);
896 
897 	smp_num_siblings = (ebx & 0xff0000) >> 16;
898 	if (smp_num_siblings == 1)
899 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
900 #endif
901 	return 0;
902 }
903 
904 void detect_ht(struct cpuinfo_x86 *c)
905 {
906 #ifdef CONFIG_SMP
907 	int index_msb, core_bits;
908 
909 	if (detect_ht_early(c) < 0)
910 		return;
911 
912 	index_msb = get_count_order(smp_num_siblings);
913 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
914 
915 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
916 
917 	index_msb = get_count_order(smp_num_siblings);
918 
919 	core_bits = get_count_order(c->x86_max_cores);
920 
921 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
922 				       ((1 << core_bits) - 1);
923 #endif
924 }
925 
926 static void get_cpu_vendor(struct cpuinfo_x86 *c)
927 {
928 	char *v = c->x86_vendor_id;
929 	int i;
930 
931 	for (i = 0; i < X86_VENDOR_NUM; i++) {
932 		if (!cpu_devs[i])
933 			break;
934 
935 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
936 		    (cpu_devs[i]->c_ident[1] &&
937 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
938 
939 			this_cpu = cpu_devs[i];
940 			c->x86_vendor = this_cpu->c_x86_vendor;
941 			return;
942 		}
943 	}
944 
945 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
946 		    "CPU: Your system may be unstable.\n", v);
947 
948 	c->x86_vendor = X86_VENDOR_UNKNOWN;
949 	this_cpu = &default_cpu;
950 }
951 
952 void cpu_detect(struct cpuinfo_x86 *c)
953 {
954 	/* Get vendor name */
955 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
956 	      (unsigned int *)&c->x86_vendor_id[0],
957 	      (unsigned int *)&c->x86_vendor_id[8],
958 	      (unsigned int *)&c->x86_vendor_id[4]);
959 
960 	c->x86 = 4;
961 	/* Intel-defined flags: level 0x00000001 */
962 	if (c->cpuid_level >= 0x00000001) {
963 		u32 junk, tfms, cap0, misc;
964 
965 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
966 		c->x86		= x86_family(tfms);
967 		c->x86_model	= x86_model(tfms);
968 		c->x86_stepping	= x86_stepping(tfms);
969 
970 		if (cap0 & (1<<19)) {
971 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
972 			c->x86_cache_alignment = c->x86_clflush_size;
973 		}
974 	}
975 }
976 
977 static void apply_forced_caps(struct cpuinfo_x86 *c)
978 {
979 	int i;
980 
981 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
982 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
983 		c->x86_capability[i] |= cpu_caps_set[i];
984 	}
985 }
986 
987 static void init_speculation_control(struct cpuinfo_x86 *c)
988 {
989 	/*
990 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
991 	 * and they also have a different bit for STIBP support. Also,
992 	 * a hypervisor might have set the individual AMD bits even on
993 	 * Intel CPUs, for finer-grained selection of what's available.
994 	 */
995 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
996 		set_cpu_cap(c, X86_FEATURE_IBRS);
997 		set_cpu_cap(c, X86_FEATURE_IBPB);
998 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
999 	}
1000 
1001 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1002 		set_cpu_cap(c, X86_FEATURE_STIBP);
1003 
1004 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1005 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
1006 		set_cpu_cap(c, X86_FEATURE_SSBD);
1007 
1008 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1009 		set_cpu_cap(c, X86_FEATURE_IBRS);
1010 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1011 	}
1012 
1013 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1014 		set_cpu_cap(c, X86_FEATURE_IBPB);
1015 
1016 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1017 		set_cpu_cap(c, X86_FEATURE_STIBP);
1018 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1019 	}
1020 
1021 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1022 		set_cpu_cap(c, X86_FEATURE_SSBD);
1023 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1025 	}
1026 }
1027 
1028 void get_cpu_cap(struct cpuinfo_x86 *c)
1029 {
1030 	u32 eax, ebx, ecx, edx;
1031 
1032 	/* Intel-defined flags: level 0x00000001 */
1033 	if (c->cpuid_level >= 0x00000001) {
1034 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1035 
1036 		c->x86_capability[CPUID_1_ECX] = ecx;
1037 		c->x86_capability[CPUID_1_EDX] = edx;
1038 	}
1039 
1040 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1041 	if (c->cpuid_level >= 0x00000006)
1042 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1043 
1044 	/* Additional Intel-defined flags: level 0x00000007 */
1045 	if (c->cpuid_level >= 0x00000007) {
1046 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1047 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1048 		c->x86_capability[CPUID_7_ECX] = ecx;
1049 		c->x86_capability[CPUID_7_EDX] = edx;
1050 
1051 		/* Check valid sub-leaf index before accessing it */
1052 		if (eax >= 1) {
1053 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1054 			c->x86_capability[CPUID_7_1_EAX] = eax;
1055 		}
1056 	}
1057 
1058 	/* Extended state features: level 0x0000000d */
1059 	if (c->cpuid_level >= 0x0000000d) {
1060 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1061 
1062 		c->x86_capability[CPUID_D_1_EAX] = eax;
1063 	}
1064 
1065 	/* AMD-defined flags: level 0x80000001 */
1066 	eax = cpuid_eax(0x80000000);
1067 	c->extended_cpuid_level = eax;
1068 
1069 	if ((eax & 0xffff0000) == 0x80000000) {
1070 		if (eax >= 0x80000001) {
1071 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1072 
1073 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1074 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1075 		}
1076 	}
1077 
1078 	if (c->extended_cpuid_level >= 0x80000007) {
1079 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1080 
1081 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1082 		c->x86_power = edx;
1083 	}
1084 
1085 	if (c->extended_cpuid_level >= 0x80000008) {
1086 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1087 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1088 	}
1089 
1090 	if (c->extended_cpuid_level >= 0x8000000a)
1091 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1092 
1093 	if (c->extended_cpuid_level >= 0x8000001f)
1094 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1095 
1096 	init_scattered_cpuid_features(c);
1097 	init_speculation_control(c);
1098 
1099 	/*
1100 	 * Clear/Set all flags overridden by options, after probe.
1101 	 * This needs to happen each time we re-probe, which may happen
1102 	 * several times during CPU initialization.
1103 	 */
1104 	apply_forced_caps(c);
1105 }
1106 
1107 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1108 {
1109 	u32 eax, ebx, ecx, edx;
1110 
1111 	if (c->extended_cpuid_level >= 0x80000008) {
1112 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1113 
1114 		c->x86_virt_bits = (eax >> 8) & 0xff;
1115 		c->x86_phys_bits = eax & 0xff;
1116 	}
1117 #ifdef CONFIG_X86_32
1118 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1119 		c->x86_phys_bits = 36;
1120 #endif
1121 	c->x86_cache_bits = c->x86_phys_bits;
1122 }
1123 
1124 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1125 {
1126 #ifdef CONFIG_X86_32
1127 	int i;
1128 
1129 	/*
1130 	 * First of all, decide if this is a 486 or higher
1131 	 * It's a 486 if we can modify the AC flag
1132 	 */
1133 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1134 		c->x86 = 4;
1135 	else
1136 		c->x86 = 3;
1137 
1138 	for (i = 0; i < X86_VENDOR_NUM; i++)
1139 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1140 			c->x86_vendor_id[0] = 0;
1141 			cpu_devs[i]->c_identify(c);
1142 			if (c->x86_vendor_id[0]) {
1143 				get_cpu_vendor(c);
1144 				break;
1145 			}
1146 		}
1147 #endif
1148 }
1149 
1150 #define NO_SPECULATION		BIT(0)
1151 #define NO_MELTDOWN		BIT(1)
1152 #define NO_SSB			BIT(2)
1153 #define NO_L1TF			BIT(3)
1154 #define NO_MDS			BIT(4)
1155 #define MSBDS_ONLY		BIT(5)
1156 #define NO_SWAPGS		BIT(6)
1157 #define NO_ITLB_MULTIHIT	BIT(7)
1158 #define NO_SPECTRE_V2		BIT(8)
1159 #define NO_MMIO			BIT(9)
1160 #define NO_EIBRS_PBRSB		BIT(10)
1161 
1162 #define VULNWL(vendor, family, model, whitelist)	\
1163 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1164 
1165 #define VULNWL_INTEL(model, whitelist)		\
1166 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1167 
1168 #define VULNWL_AMD(family, whitelist)		\
1169 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1170 
1171 #define VULNWL_HYGON(family, whitelist)		\
1172 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1173 
1174 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1175 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1176 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1177 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1178 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1179 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1180 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1181 
1182 	/* Intel Family 6 */
1183 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1184 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1185 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1186 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1187 
1188 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1189 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1190 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1191 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1192 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1193 
1194 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 
1201 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1202 
1203 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205 
1206 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1207 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1208 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1209 
1210 	/*
1211 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1212 	 * being documented as such in the APM).  But according to AMD, %gs is
1213 	 * updated non-speculatively, and the issuing of %gs-relative memory
1214 	 * operands will be blocked until the %gs update completes, which is
1215 	 * good enough for our purposes.
1216 	 */
1217 
1218 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1219 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1220 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1221 
1222 	/* AMD Family 0xf - 0x12 */
1223 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1224 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1225 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1226 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1227 
1228 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1229 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 
1232 	/* Zhaoxin Family 7 */
1233 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1234 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1235 	{}
1236 };
1237 
1238 #define VULNBL(vendor, family, model, blacklist)	\
1239 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1240 
1241 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1242 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1243 					    INTEL_FAM6_##model, steppings, \
1244 					    X86_FEATURE_ANY, issues)
1245 
1246 #define VULNBL_AMD(family, blacklist)		\
1247 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1248 
1249 #define VULNBL_HYGON(family, blacklist)		\
1250 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1251 
1252 #define SRBDS		BIT(0)
1253 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1254 #define MMIO		BIT(1)
1255 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1256 #define MMIO_SBDS	BIT(2)
1257 /* CPU is affected by RETbleed, speculating where you would not expect it */
1258 #define RETBLEED	BIT(3)
1259 
1260 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1261 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1262 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1263 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1264 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1265 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1266 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1267 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1268 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1269 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1270 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1271 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED),
1272 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1273 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1274 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1275 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1276 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1277 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO),
1278 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO),
1279 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1280 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1281 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1282 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1283 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED),
1284 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1285 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1286 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1287 
1288 	VULNBL_AMD(0x15, RETBLEED),
1289 	VULNBL_AMD(0x16, RETBLEED),
1290 	VULNBL_AMD(0x17, RETBLEED),
1291 	VULNBL_HYGON(0x18, RETBLEED),
1292 	{}
1293 };
1294 
1295 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1296 {
1297 	const struct x86_cpu_id *m = x86_match_cpu(table);
1298 
1299 	return m && !!(m->driver_data & which);
1300 }
1301 
1302 u64 x86_read_arch_cap_msr(void)
1303 {
1304 	u64 ia32_cap = 0;
1305 
1306 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1307 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1308 
1309 	return ia32_cap;
1310 }
1311 
1312 static bool arch_cap_mmio_immune(u64 ia32_cap)
1313 {
1314 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1315 		ia32_cap & ARCH_CAP_PSDP_NO &&
1316 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1317 }
1318 
1319 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1320 {
1321 	u64 ia32_cap = x86_read_arch_cap_msr();
1322 
1323 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1324 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1325 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1326 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1327 
1328 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1329 		return;
1330 
1331 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1332 
1333 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1334 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1335 
1336 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1337 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1338 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1339 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1340 
1341 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1342 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1343 
1344 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1345 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1346 		setup_force_cpu_bug(X86_BUG_MDS);
1347 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1348 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1349 	}
1350 
1351 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1352 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1353 
1354 	/*
1355 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1356 	 *	- TSX is supported or
1357 	 *	- TSX_CTRL is present
1358 	 *
1359 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1360 	 * the kernel boot e.g. kexec.
1361 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1362 	 * update is not present or running as guest that don't get TSX_CTRL.
1363 	 */
1364 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1365 	    (cpu_has(c, X86_FEATURE_RTM) ||
1366 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1367 		setup_force_cpu_bug(X86_BUG_TAA);
1368 
1369 	/*
1370 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1371 	 * in the vulnerability blacklist.
1372 	 *
1373 	 * Some of the implications and mitigation of Shared Buffers Data
1374 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1375 	 * SRBDS.
1376 	 */
1377 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1378 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1379 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1380 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1381 
1382 	/*
1383 	 * Processor MMIO Stale Data bug enumeration
1384 	 *
1385 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1386 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1387 	 * not want the guest to enumerate the bug.
1388 	 *
1389 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1390 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1391 	 */
1392 	if (!arch_cap_mmio_immune(ia32_cap)) {
1393 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1394 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1395 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1396 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1397 	}
1398 
1399 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1400 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1401 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1402 	}
1403 
1404 	if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1405 	    !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1406 	    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1407 		setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1408 
1409 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1410 		return;
1411 
1412 	/* Rogue Data Cache Load? No! */
1413 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1414 		return;
1415 
1416 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1417 
1418 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1419 		return;
1420 
1421 	setup_force_cpu_bug(X86_BUG_L1TF);
1422 }
1423 
1424 /*
1425  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1426  * unfortunately, that's not true in practice because of early VIA
1427  * chips and (more importantly) broken virtualizers that are not easy
1428  * to detect. In the latter case it doesn't even *fail* reliably, so
1429  * probing for it doesn't even work. Disable it completely on 32-bit
1430  * unless we can find a reliable way to detect all the broken cases.
1431  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1432  */
1433 static void detect_nopl(void)
1434 {
1435 #ifdef CONFIG_X86_32
1436 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1437 #else
1438 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1439 #endif
1440 }
1441 
1442 /*
1443  * We parse cpu parameters early because fpu__init_system() is executed
1444  * before parse_early_param().
1445  */
1446 static void __init cpu_parse_early_param(void)
1447 {
1448 	char arg[128];
1449 	char *argptr = arg, *opt;
1450 	int arglen, taint = 0;
1451 
1452 #ifdef CONFIG_X86_32
1453 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1454 #ifdef CONFIG_MATH_EMULATION
1455 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1456 #else
1457 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1458 #endif
1459 
1460 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1461 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1462 #endif
1463 
1464 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1465 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1466 
1467 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1468 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1469 
1470 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1471 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1472 
1473 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1474 	if (arglen <= 0)
1475 		return;
1476 
1477 	pr_info("Clearing CPUID bits:");
1478 
1479 	while (argptr) {
1480 		bool found __maybe_unused = false;
1481 		unsigned int bit;
1482 
1483 		opt = strsep(&argptr, ",");
1484 
1485 		/*
1486 		 * Handle naked numbers first for feature flags which don't
1487 		 * have names.
1488 		 */
1489 		if (!kstrtouint(opt, 10, &bit)) {
1490 			if (bit < NCAPINTS * 32) {
1491 
1492 #ifdef CONFIG_X86_FEATURE_NAMES
1493 				/* empty-string, i.e., ""-defined feature flags */
1494 				if (!x86_cap_flags[bit])
1495 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1496 				else
1497 #endif
1498 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1499 
1500 				setup_clear_cpu_cap(bit);
1501 				taint++;
1502 			}
1503 			/*
1504 			 * The assumption is that there are no feature names with only
1505 			 * numbers in the name thus go to the next argument.
1506 			 */
1507 			continue;
1508 		}
1509 
1510 #ifdef CONFIG_X86_FEATURE_NAMES
1511 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1512 			if (!x86_cap_flag(bit))
1513 				continue;
1514 
1515 			if (strcmp(x86_cap_flag(bit), opt))
1516 				continue;
1517 
1518 			pr_cont(" %s", opt);
1519 			setup_clear_cpu_cap(bit);
1520 			taint++;
1521 			found = true;
1522 			break;
1523 		}
1524 
1525 		if (!found)
1526 			pr_cont(" (unknown: %s)", opt);
1527 #endif
1528 	}
1529 	pr_cont("\n");
1530 
1531 	if (taint)
1532 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1533 }
1534 
1535 /*
1536  * Do minimum CPU detection early.
1537  * Fields really needed: vendor, cpuid_level, family, model, mask,
1538  * cache alignment.
1539  * The others are not touched to avoid unwanted side effects.
1540  *
1541  * WARNING: this function is only called on the boot CPU.  Don't add code
1542  * here that is supposed to run on all CPUs.
1543  */
1544 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1545 {
1546 #ifdef CONFIG_X86_64
1547 	c->x86_clflush_size = 64;
1548 	c->x86_phys_bits = 36;
1549 	c->x86_virt_bits = 48;
1550 #else
1551 	c->x86_clflush_size = 32;
1552 	c->x86_phys_bits = 32;
1553 	c->x86_virt_bits = 32;
1554 #endif
1555 	c->x86_cache_alignment = c->x86_clflush_size;
1556 
1557 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1558 	c->extended_cpuid_level = 0;
1559 
1560 	if (!have_cpuid_p())
1561 		identify_cpu_without_cpuid(c);
1562 
1563 	/* cyrix could have cpuid enabled via c_identify()*/
1564 	if (have_cpuid_p()) {
1565 		cpu_detect(c);
1566 		get_cpu_vendor(c);
1567 		get_cpu_cap(c);
1568 		get_cpu_address_sizes(c);
1569 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1570 		cpu_parse_early_param();
1571 
1572 		if (this_cpu->c_early_init)
1573 			this_cpu->c_early_init(c);
1574 
1575 		c->cpu_index = 0;
1576 		filter_cpuid_features(c, false);
1577 
1578 		if (this_cpu->c_bsp_init)
1579 			this_cpu->c_bsp_init(c);
1580 	} else {
1581 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1582 	}
1583 
1584 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1585 
1586 	cpu_set_bug_bits(c);
1587 
1588 	sld_setup(c);
1589 
1590 	fpu__init_system(c);
1591 
1592 	init_sigframe_size();
1593 
1594 #ifdef CONFIG_X86_32
1595 	/*
1596 	 * Regardless of whether PCID is enumerated, the SDM says
1597 	 * that it can't be enabled in 32-bit mode.
1598 	 */
1599 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1600 #endif
1601 
1602 	/*
1603 	 * Later in the boot process pgtable_l5_enabled() relies on
1604 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1605 	 * enabled by this point we need to clear the feature bit to avoid
1606 	 * false-positives at the later stage.
1607 	 *
1608 	 * pgtable_l5_enabled() can be false here for several reasons:
1609 	 *  - 5-level paging is disabled compile-time;
1610 	 *  - it's 32-bit kernel;
1611 	 *  - machine doesn't support 5-level paging;
1612 	 *  - user specified 'no5lvl' in kernel command line.
1613 	 */
1614 	if (!pgtable_l5_enabled())
1615 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1616 
1617 	detect_nopl();
1618 }
1619 
1620 void __init early_cpu_init(void)
1621 {
1622 	const struct cpu_dev *const *cdev;
1623 	int count = 0;
1624 
1625 #ifdef CONFIG_PROCESSOR_SELECT
1626 	pr_info("KERNEL supported cpus:\n");
1627 #endif
1628 
1629 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1630 		const struct cpu_dev *cpudev = *cdev;
1631 
1632 		if (count >= X86_VENDOR_NUM)
1633 			break;
1634 		cpu_devs[count] = cpudev;
1635 		count++;
1636 
1637 #ifdef CONFIG_PROCESSOR_SELECT
1638 		{
1639 			unsigned int j;
1640 
1641 			for (j = 0; j < 2; j++) {
1642 				if (!cpudev->c_ident[j])
1643 					continue;
1644 				pr_info("  %s %s\n", cpudev->c_vendor,
1645 					cpudev->c_ident[j]);
1646 			}
1647 		}
1648 #endif
1649 	}
1650 	early_identify_cpu(&boot_cpu_data);
1651 }
1652 
1653 static bool detect_null_seg_behavior(void)
1654 {
1655 	/*
1656 	 * Empirically, writing zero to a segment selector on AMD does
1657 	 * not clear the base, whereas writing zero to a segment
1658 	 * selector on Intel does clear the base.  Intel's behavior
1659 	 * allows slightly faster context switches in the common case
1660 	 * where GS is unused by the prev and next threads.
1661 	 *
1662 	 * Since neither vendor documents this anywhere that I can see,
1663 	 * detect it directly instead of hard-coding the choice by
1664 	 * vendor.
1665 	 *
1666 	 * I've designated AMD's behavior as the "bug" because it's
1667 	 * counterintuitive and less friendly.
1668 	 */
1669 
1670 	unsigned long old_base, tmp;
1671 	rdmsrl(MSR_FS_BASE, old_base);
1672 	wrmsrl(MSR_FS_BASE, 1);
1673 	loadsegment(fs, 0);
1674 	rdmsrl(MSR_FS_BASE, tmp);
1675 	wrmsrl(MSR_FS_BASE, old_base);
1676 	return tmp == 0;
1677 }
1678 
1679 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1680 {
1681 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1682 	if (!IS_ENABLED(CONFIG_X86_64))
1683 		return;
1684 
1685 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1686 	if (c->extended_cpuid_level >= 0x80000021 &&
1687 	    cpuid_eax(0x80000021) & BIT(6))
1688 		return;
1689 
1690 	/*
1691 	 * CPUID bit above wasn't set. If this kernel is still running
1692 	 * as a HV guest, then the HV has decided not to advertize
1693 	 * that CPUID bit for whatever reason.	For example, one
1694 	 * member of the migration pool might be vulnerable.  Which
1695 	 * means, the bug is present: set the BUG flag and return.
1696 	 */
1697 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1698 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1699 		return;
1700 	}
1701 
1702 	/*
1703 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1704 	 * 0x18 is the respective family for Hygon.
1705 	 */
1706 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1707 	    detect_null_seg_behavior())
1708 		return;
1709 
1710 	/* All the remaining ones are affected */
1711 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1712 }
1713 
1714 static void generic_identify(struct cpuinfo_x86 *c)
1715 {
1716 	c->extended_cpuid_level = 0;
1717 
1718 	if (!have_cpuid_p())
1719 		identify_cpu_without_cpuid(c);
1720 
1721 	/* cyrix could have cpuid enabled via c_identify()*/
1722 	if (!have_cpuid_p())
1723 		return;
1724 
1725 	cpu_detect(c);
1726 
1727 	get_cpu_vendor(c);
1728 
1729 	get_cpu_cap(c);
1730 
1731 	get_cpu_address_sizes(c);
1732 
1733 	if (c->cpuid_level >= 0x00000001) {
1734 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1735 #ifdef CONFIG_X86_32
1736 # ifdef CONFIG_SMP
1737 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1738 # else
1739 		c->apicid = c->initial_apicid;
1740 # endif
1741 #endif
1742 		c->phys_proc_id = c->initial_apicid;
1743 	}
1744 
1745 	get_model_name(c); /* Default name */
1746 
1747 	/*
1748 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1749 	 * systems that run Linux at CPL > 0 may or may not have the
1750 	 * issue, but, even if they have the issue, there's absolutely
1751 	 * nothing we can do about it because we can't use the real IRET
1752 	 * instruction.
1753 	 *
1754 	 * NB: For the time being, only 32-bit kernels support
1755 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1756 	 * whether to apply espfix using paravirt hooks.  If any
1757 	 * non-paravirt system ever shows up that does *not* have the
1758 	 * ESPFIX issue, we can change this.
1759 	 */
1760 #ifdef CONFIG_X86_32
1761 	set_cpu_bug(c, X86_BUG_ESPFIX);
1762 #endif
1763 }
1764 
1765 /*
1766  * Validate that ACPI/mptables have the same information about the
1767  * effective APIC id and update the package map.
1768  */
1769 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1770 {
1771 #ifdef CONFIG_SMP
1772 	unsigned int apicid, cpu = smp_processor_id();
1773 
1774 	apicid = apic->cpu_present_to_apicid(cpu);
1775 
1776 	if (apicid != c->apicid) {
1777 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1778 		       cpu, apicid, c->initial_apicid);
1779 	}
1780 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1781 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1782 #else
1783 	c->logical_proc_id = 0;
1784 #endif
1785 }
1786 
1787 /*
1788  * This does the hard work of actually picking apart the CPU stuff...
1789  */
1790 static void identify_cpu(struct cpuinfo_x86 *c)
1791 {
1792 	int i;
1793 
1794 	c->loops_per_jiffy = loops_per_jiffy;
1795 	c->x86_cache_size = 0;
1796 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1797 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1798 	c->x86_vendor_id[0] = '\0'; /* Unset */
1799 	c->x86_model_id[0] = '\0';  /* Unset */
1800 	c->x86_max_cores = 1;
1801 	c->x86_coreid_bits = 0;
1802 	c->cu_id = 0xff;
1803 #ifdef CONFIG_X86_64
1804 	c->x86_clflush_size = 64;
1805 	c->x86_phys_bits = 36;
1806 	c->x86_virt_bits = 48;
1807 #else
1808 	c->cpuid_level = -1;	/* CPUID not detected */
1809 	c->x86_clflush_size = 32;
1810 	c->x86_phys_bits = 32;
1811 	c->x86_virt_bits = 32;
1812 #endif
1813 	c->x86_cache_alignment = c->x86_clflush_size;
1814 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1815 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1816 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1817 #endif
1818 
1819 	generic_identify(c);
1820 
1821 	if (this_cpu->c_identify)
1822 		this_cpu->c_identify(c);
1823 
1824 	/* Clear/Set all flags overridden by options, after probe */
1825 	apply_forced_caps(c);
1826 
1827 #ifdef CONFIG_X86_64
1828 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1829 #endif
1830 
1831 	/*
1832 	 * Vendor-specific initialization.  In this section we
1833 	 * canonicalize the feature flags, meaning if there are
1834 	 * features a certain CPU supports which CPUID doesn't
1835 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1836 	 * we handle them here.
1837 	 *
1838 	 * At the end of this section, c->x86_capability better
1839 	 * indicate the features this CPU genuinely supports!
1840 	 */
1841 	if (this_cpu->c_init)
1842 		this_cpu->c_init(c);
1843 
1844 	/* Disable the PN if appropriate */
1845 	squash_the_stupid_serial_number(c);
1846 
1847 	/* Set up SMEP/SMAP/UMIP */
1848 	setup_smep(c);
1849 	setup_smap(c);
1850 	setup_umip(c);
1851 
1852 	/* Enable FSGSBASE instructions if available. */
1853 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1854 		cr4_set_bits(X86_CR4_FSGSBASE);
1855 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1856 	}
1857 
1858 	/*
1859 	 * The vendor-specific functions might have changed features.
1860 	 * Now we do "generic changes."
1861 	 */
1862 
1863 	/* Filter out anything that depends on CPUID levels we don't have */
1864 	filter_cpuid_features(c, true);
1865 
1866 	/* If the model name is still unset, do table lookup. */
1867 	if (!c->x86_model_id[0]) {
1868 		const char *p;
1869 		p = table_lookup_model(c);
1870 		if (p)
1871 			strcpy(c->x86_model_id, p);
1872 		else
1873 			/* Last resort... */
1874 			sprintf(c->x86_model_id, "%02x/%02x",
1875 				c->x86, c->x86_model);
1876 	}
1877 
1878 #ifdef CONFIG_X86_64
1879 	detect_ht(c);
1880 #endif
1881 
1882 	x86_init_rdrand(c);
1883 	setup_pku(c);
1884 	setup_cet(c);
1885 
1886 	/*
1887 	 * Clear/Set all flags overridden by options, need do it
1888 	 * before following smp all cpus cap AND.
1889 	 */
1890 	apply_forced_caps(c);
1891 
1892 	/*
1893 	 * On SMP, boot_cpu_data holds the common feature set between
1894 	 * all CPUs; so make sure that we indicate which features are
1895 	 * common between the CPUs.  The first time this routine gets
1896 	 * executed, c == &boot_cpu_data.
1897 	 */
1898 	if (c != &boot_cpu_data) {
1899 		/* AND the already accumulated flags with these */
1900 		for (i = 0; i < NCAPINTS; i++)
1901 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1902 
1903 		/* OR, i.e. replicate the bug flags */
1904 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1905 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1906 	}
1907 
1908 	ppin_init(c);
1909 
1910 	/* Init Machine Check Exception if available. */
1911 	mcheck_cpu_init(c);
1912 
1913 	select_idle_routine(c);
1914 
1915 #ifdef CONFIG_NUMA
1916 	numa_add_cpu(smp_processor_id());
1917 #endif
1918 }
1919 
1920 /*
1921  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1922  * on 32-bit kernels:
1923  */
1924 #ifdef CONFIG_X86_32
1925 void enable_sep_cpu(void)
1926 {
1927 	struct tss_struct *tss;
1928 	int cpu;
1929 
1930 	if (!boot_cpu_has(X86_FEATURE_SEP))
1931 		return;
1932 
1933 	cpu = get_cpu();
1934 	tss = &per_cpu(cpu_tss_rw, cpu);
1935 
1936 	/*
1937 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1938 	 * see the big comment in struct x86_hw_tss's definition.
1939 	 */
1940 
1941 	tss->x86_tss.ss1 = __KERNEL_CS;
1942 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1943 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1944 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1945 
1946 	put_cpu();
1947 }
1948 #endif
1949 
1950 void __init identify_boot_cpu(void)
1951 {
1952 	identify_cpu(&boot_cpu_data);
1953 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1954 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1955 #ifdef CONFIG_X86_32
1956 	sysenter_setup();
1957 	enable_sep_cpu();
1958 #endif
1959 	cpu_detect_tlb(&boot_cpu_data);
1960 	setup_cr_pinning();
1961 
1962 	tsx_init();
1963 }
1964 
1965 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1966 {
1967 	BUG_ON(c == &boot_cpu_data);
1968 	identify_cpu(c);
1969 #ifdef CONFIG_X86_32
1970 	enable_sep_cpu();
1971 #endif
1972 	validate_apic_and_package_id(c);
1973 	x86_spec_ctrl_setup_ap();
1974 	update_srbds_msr();
1975 
1976 	tsx_ap_init();
1977 }
1978 
1979 void print_cpu_info(struct cpuinfo_x86 *c)
1980 {
1981 	const char *vendor = NULL;
1982 
1983 	if (c->x86_vendor < X86_VENDOR_NUM) {
1984 		vendor = this_cpu->c_vendor;
1985 	} else {
1986 		if (c->cpuid_level >= 0)
1987 			vendor = c->x86_vendor_id;
1988 	}
1989 
1990 	if (vendor && !strstr(c->x86_model_id, vendor))
1991 		pr_cont("%s ", vendor);
1992 
1993 	if (c->x86_model_id[0])
1994 		pr_cont("%s", c->x86_model_id);
1995 	else
1996 		pr_cont("%d86", c->x86);
1997 
1998 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1999 
2000 	if (c->x86_stepping || c->cpuid_level >= 0)
2001 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2002 	else
2003 		pr_cont(")\n");
2004 }
2005 
2006 /*
2007  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2008  * function prevents it from becoming an environment variable for init.
2009  */
2010 static __init int setup_clearcpuid(char *arg)
2011 {
2012 	return 1;
2013 }
2014 __setup("clearcpuid=", setup_clearcpuid);
2015 
2016 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2017 	.current_task	= &init_task,
2018 	.preempt_count	= INIT_PREEMPT_COUNT,
2019 	.top_of_stack	= TOP_OF_INIT_STACK,
2020 };
2021 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2022 
2023 #ifdef CONFIG_X86_64
2024 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2025 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2026 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2027 
2028 static void wrmsrl_cstar(unsigned long val)
2029 {
2030 	/*
2031 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2032 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2033 	 * guest. Avoid the pointless write on all Intel CPUs.
2034 	 */
2035 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2036 		wrmsrl(MSR_CSTAR, val);
2037 }
2038 
2039 /* May not be marked __init: used by software suspend */
2040 void syscall_init(void)
2041 {
2042 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2043 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2044 
2045 #ifdef CONFIG_IA32_EMULATION
2046 	wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2047 	/*
2048 	 * This only works on Intel CPUs.
2049 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2050 	 * This does not cause SYSENTER to jump to the wrong location, because
2051 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2052 	 */
2053 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2054 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2055 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2056 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2057 #else
2058 	wrmsrl_cstar((unsigned long)ignore_sysret);
2059 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2060 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2061 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2062 #endif
2063 
2064 	/*
2065 	 * Flags to clear on syscall; clear as much as possible
2066 	 * to minimize user space-kernel interference.
2067 	 */
2068 	wrmsrl(MSR_SYSCALL_MASK,
2069 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2070 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2071 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2072 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2073 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2074 }
2075 
2076 #else	/* CONFIG_X86_64 */
2077 
2078 #ifdef CONFIG_STACKPROTECTOR
2079 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2080 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2081 #endif
2082 
2083 #endif	/* CONFIG_X86_64 */
2084 
2085 /*
2086  * Clear all 6 debug registers:
2087  */
2088 static void clear_all_debug_regs(void)
2089 {
2090 	int i;
2091 
2092 	for (i = 0; i < 8; i++) {
2093 		/* Ignore db4, db5 */
2094 		if ((i == 4) || (i == 5))
2095 			continue;
2096 
2097 		set_debugreg(0, i);
2098 	}
2099 }
2100 
2101 #ifdef CONFIG_KGDB
2102 /*
2103  * Restore debug regs if using kgdbwait and you have a kernel debugger
2104  * connection established.
2105  */
2106 static void dbg_restore_debug_regs(void)
2107 {
2108 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2109 		arch_kgdb_ops.correct_hw_break();
2110 }
2111 #else /* ! CONFIG_KGDB */
2112 #define dbg_restore_debug_regs()
2113 #endif /* ! CONFIG_KGDB */
2114 
2115 static void wait_for_master_cpu(int cpu)
2116 {
2117 #ifdef CONFIG_SMP
2118 	/*
2119 	 * wait for ACK from master CPU before continuing
2120 	 * with AP initialization
2121 	 */
2122 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2123 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2124 		cpu_relax();
2125 #endif
2126 }
2127 
2128 #ifdef CONFIG_X86_64
2129 static inline void setup_getcpu(int cpu)
2130 {
2131 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2132 	struct desc_struct d = { };
2133 
2134 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2135 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2136 
2137 	/* Store CPU and node number in limit. */
2138 	d.limit0 = cpudata;
2139 	d.limit1 = cpudata >> 16;
2140 
2141 	d.type = 5;		/* RO data, expand down, accessed */
2142 	d.dpl = 3;		/* Visible to user code */
2143 	d.s = 1;		/* Not a system segment */
2144 	d.p = 1;		/* Present */
2145 	d.d = 1;		/* 32-bit */
2146 
2147 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2148 }
2149 
2150 static inline void ucode_cpu_init(int cpu)
2151 {
2152 	if (cpu)
2153 		load_ucode_ap();
2154 }
2155 
2156 static inline void tss_setup_ist(struct tss_struct *tss)
2157 {
2158 	/* Set up the per-CPU TSS IST stacks */
2159 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2160 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2161 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2162 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2163 	/* Only mapped when SEV-ES is active */
2164 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2165 }
2166 
2167 #else /* CONFIG_X86_64 */
2168 
2169 static inline void setup_getcpu(int cpu) { }
2170 
2171 static inline void ucode_cpu_init(int cpu)
2172 {
2173 	show_ucode_info_early();
2174 }
2175 
2176 static inline void tss_setup_ist(struct tss_struct *tss) { }
2177 
2178 #endif /* !CONFIG_X86_64 */
2179 
2180 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2181 {
2182 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2183 
2184 #ifdef CONFIG_X86_IOPL_IOPERM
2185 	tss->io_bitmap.prev_max = 0;
2186 	tss->io_bitmap.prev_sequence = 0;
2187 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2188 	/*
2189 	 * Invalidate the extra array entry past the end of the all
2190 	 * permission bitmap as required by the hardware.
2191 	 */
2192 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2193 #endif
2194 }
2195 
2196 /*
2197  * Setup everything needed to handle exceptions from the IDT, including the IST
2198  * exceptions which use paranoid_entry().
2199  */
2200 void cpu_init_exception_handling(void)
2201 {
2202 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2203 	int cpu = raw_smp_processor_id();
2204 
2205 	/* paranoid_entry() gets the CPU number from the GDT */
2206 	setup_getcpu(cpu);
2207 
2208 	/* IST vectors need TSS to be set up. */
2209 	tss_setup_ist(tss);
2210 	tss_setup_io_bitmap(tss);
2211 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2212 
2213 	load_TR_desc();
2214 
2215 	/* GHCB needs to be setup to handle #VC. */
2216 	setup_ghcb();
2217 
2218 	/* Finally load the IDT */
2219 	load_current_idt();
2220 }
2221 
2222 /*
2223  * cpu_init() initializes state that is per-CPU. Some data is already
2224  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2225  * reload it nevertheless, this function acts as a 'CPU state barrier',
2226  * nothing should get across.
2227  */
2228 void cpu_init(void)
2229 {
2230 	struct task_struct *cur = current;
2231 	int cpu = raw_smp_processor_id();
2232 
2233 	wait_for_master_cpu(cpu);
2234 
2235 	ucode_cpu_init(cpu);
2236 
2237 #ifdef CONFIG_NUMA
2238 	if (this_cpu_read(numa_node) == 0 &&
2239 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2240 		set_numa_node(early_cpu_to_node(cpu));
2241 #endif
2242 	pr_debug("Initializing CPU#%d\n", cpu);
2243 
2244 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2245 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2246 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2247 
2248 	if (IS_ENABLED(CONFIG_X86_64)) {
2249 		loadsegment(fs, 0);
2250 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2251 		syscall_init();
2252 
2253 		wrmsrl(MSR_FS_BASE, 0);
2254 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2255 		barrier();
2256 
2257 		x2apic_setup();
2258 	}
2259 
2260 	mmgrab(&init_mm);
2261 	cur->active_mm = &init_mm;
2262 	BUG_ON(cur->mm);
2263 	initialize_tlbstate_and_flush();
2264 	enter_lazy_tlb(&init_mm, cur);
2265 
2266 	/*
2267 	 * sp0 points to the entry trampoline stack regardless of what task
2268 	 * is running.
2269 	 */
2270 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2271 
2272 	load_mm_ldt(&init_mm);
2273 
2274 	clear_all_debug_regs();
2275 	dbg_restore_debug_regs();
2276 
2277 	doublefault_init_cpu_tss();
2278 
2279 	fpu__init_cpu();
2280 
2281 	if (is_uv_system())
2282 		uv_cpu_init();
2283 
2284 	load_fixmap_gdt(cpu);
2285 }
2286 
2287 #ifdef CONFIG_SMP
2288 void cpu_init_secondary(void)
2289 {
2290 	/*
2291 	 * Relies on the BP having set-up the IDT tables, which are loaded
2292 	 * on this CPU in cpu_init_exception_handling().
2293 	 */
2294 	cpu_init_exception_handling();
2295 	cpu_init();
2296 }
2297 #endif
2298 
2299 #ifdef CONFIG_MICROCODE_LATE_LOADING
2300 /*
2301  * The microcode loader calls this upon late microcode load to recheck features,
2302  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2303  * hotplug lock.
2304  */
2305 void microcode_check(void)
2306 {
2307 	struct cpuinfo_x86 info;
2308 
2309 	perf_check_microcode();
2310 
2311 	/* Reload CPUID max function as it might've changed. */
2312 	info.cpuid_level = cpuid_eax(0);
2313 
2314 	/*
2315 	 * Copy all capability leafs to pick up the synthetic ones so that
2316 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2317 	 * get overwritten in get_cpu_cap().
2318 	 */
2319 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2320 
2321 	get_cpu_cap(&info);
2322 
2323 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2324 		return;
2325 
2326 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2327 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2328 }
2329 #endif
2330 
2331 /*
2332  * Invoked from core CPU hotplug code after hotplug operations
2333  */
2334 void arch_smt_update(void)
2335 {
2336 	/* Handle the speculative execution misfeatures */
2337 	cpu_bugs_smt_update();
2338 	/* Check whether IPI broadcasting can be enabled */
2339 	apic_smt_update();
2340 }
2341