xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision afb46f79)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 #include <asm/microcode.h>
41 #include <asm/microcode_intel.h>
42 
43 #ifdef CONFIG_X86_LOCAL_APIC
44 #include <asm/uv/uv.h>
45 #endif
46 
47 #include "cpu.h"
48 
49 /* all of these masks are initialized in setup_cpu_local_masks() */
50 cpumask_var_t cpu_initialized_mask;
51 cpumask_var_t cpu_callout_mask;
52 cpumask_var_t cpu_callin_mask;
53 
54 /* representing cpus for which sibling maps can be computed */
55 cpumask_var_t cpu_sibling_setup_mask;
56 
57 /* correctly size the local cpu masks */
58 void __init setup_cpu_local_masks(void)
59 {
60 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
61 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
62 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
63 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
64 }
65 
66 static void default_init(struct cpuinfo_x86 *c)
67 {
68 #ifdef CONFIG_X86_64
69 	cpu_detect_cache_sizes(c);
70 #else
71 	/* Not much we can do here... */
72 	/* Check if at least it has cpuid */
73 	if (c->cpuid_level == -1) {
74 		/* No cpuid. It must be an ancient CPU */
75 		if (c->x86 == 4)
76 			strcpy(c->x86_model_id, "486");
77 		else if (c->x86 == 3)
78 			strcpy(c->x86_model_id, "386");
79 	}
80 #endif
81 }
82 
83 static const struct cpu_dev default_cpu = {
84 	.c_init		= default_init,
85 	.c_vendor	= "Unknown",
86 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
87 };
88 
89 static const struct cpu_dev *this_cpu = &default_cpu;
90 
91 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
92 #ifdef CONFIG_X86_64
93 	/*
94 	 * We need valid kernel segments for data and code in long mode too
95 	 * IRET will check the segment types  kkeil 2000/10/28
96 	 * Also sysret mandates a special GDT layout
97 	 *
98 	 * TLS descriptors are currently at a different place compared to i386.
99 	 * Hopefully nobody expects them at a fixed place (Wine?)
100 	 */
101 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
107 #else
108 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
112 	/*
113 	 * Segments used for calling PnP BIOS have byte granularity.
114 	 * They code segments and data segments have fixed 64k limits,
115 	 * the transfer segment sizes are set at run time.
116 	 */
117 	/* 32-bit code */
118 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
119 	/* 16-bit code */
120 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
121 	/* 16-bit data */
122 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
127 	/*
128 	 * The APM segments have byte granularity and their bases
129 	 * are set at run time.  All have 64k limits.
130 	 */
131 	/* 32-bit code */
132 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133 	/* 16-bit code */
134 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135 	/* data */
136 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
137 
138 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 	GDT_STACK_CANARY_INIT
141 #endif
142 } };
143 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
144 
145 static int __init x86_xsave_setup(char *s)
146 {
147 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
148 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
149 	setup_clear_cpu_cap(X86_FEATURE_AVX);
150 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
151 	return 1;
152 }
153 __setup("noxsave", x86_xsave_setup);
154 
155 static int __init x86_xsaveopt_setup(char *s)
156 {
157 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
158 	return 1;
159 }
160 __setup("noxsaveopt", x86_xsaveopt_setup);
161 
162 #ifdef CONFIG_X86_32
163 static int cachesize_override = -1;
164 static int disable_x86_serial_nr = 1;
165 
166 static int __init cachesize_setup(char *str)
167 {
168 	get_option(&str, &cachesize_override);
169 	return 1;
170 }
171 __setup("cachesize=", cachesize_setup);
172 
173 static int __init x86_fxsr_setup(char *s)
174 {
175 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
176 	setup_clear_cpu_cap(X86_FEATURE_XMM);
177 	return 1;
178 }
179 __setup("nofxsr", x86_fxsr_setup);
180 
181 static int __init x86_sep_setup(char *s)
182 {
183 	setup_clear_cpu_cap(X86_FEATURE_SEP);
184 	return 1;
185 }
186 __setup("nosep", x86_sep_setup);
187 
188 /* Standard macro to see if a specific flag is changeable */
189 static inline int flag_is_changeable_p(u32 flag)
190 {
191 	u32 f1, f2;
192 
193 	/*
194 	 * Cyrix and IDT cpus allow disabling of CPUID
195 	 * so the code below may return different results
196 	 * when it is executed before and after enabling
197 	 * the CPUID. Add "volatile" to not allow gcc to
198 	 * optimize the subsequent calls to this function.
199 	 */
200 	asm volatile ("pushfl		\n\t"
201 		      "pushfl		\n\t"
202 		      "popl %0		\n\t"
203 		      "movl %0, %1	\n\t"
204 		      "xorl %2, %0	\n\t"
205 		      "pushl %0		\n\t"
206 		      "popfl		\n\t"
207 		      "pushfl		\n\t"
208 		      "popl %0		\n\t"
209 		      "popfl		\n\t"
210 
211 		      : "=&r" (f1), "=&r" (f2)
212 		      : "ir" (flag));
213 
214 	return ((f1^f2) & flag) != 0;
215 }
216 
217 /* Probe for the CPUID instruction */
218 int have_cpuid_p(void)
219 {
220 	return flag_is_changeable_p(X86_EFLAGS_ID);
221 }
222 
223 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
224 {
225 	unsigned long lo, hi;
226 
227 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
228 		return;
229 
230 	/* Disable processor serial number: */
231 
232 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 	lo |= 0x200000;
234 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
235 
236 	printk(KERN_NOTICE "CPU serial number disabled.\n");
237 	clear_cpu_cap(c, X86_FEATURE_PN);
238 
239 	/* Disabling the serial number may affect the cpuid level */
240 	c->cpuid_level = cpuid_eax(0);
241 }
242 
243 static int __init x86_serial_nr_setup(char *s)
244 {
245 	disable_x86_serial_nr = 0;
246 	return 1;
247 }
248 __setup("serialnumber", x86_serial_nr_setup);
249 #else
250 static inline int flag_is_changeable_p(u32 flag)
251 {
252 	return 1;
253 }
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 }
257 #endif
258 
259 static __init int setup_disable_smep(char *arg)
260 {
261 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
262 	return 1;
263 }
264 __setup("nosmep", setup_disable_smep);
265 
266 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
267 {
268 	if (cpu_has(c, X86_FEATURE_SMEP))
269 		set_in_cr4(X86_CR4_SMEP);
270 }
271 
272 static __init int setup_disable_smap(char *arg)
273 {
274 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
275 	return 1;
276 }
277 __setup("nosmap", setup_disable_smap);
278 
279 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
280 {
281 	unsigned long eflags;
282 
283 	/* This should have been cleared long ago */
284 	raw_local_save_flags(eflags);
285 	BUG_ON(eflags & X86_EFLAGS_AC);
286 
287 	if (cpu_has(c, X86_FEATURE_SMAP)) {
288 #ifdef CONFIG_X86_SMAP
289 		set_in_cr4(X86_CR4_SMAP);
290 #else
291 		clear_in_cr4(X86_CR4_SMAP);
292 #endif
293 	}
294 }
295 
296 /*
297  * Some CPU features depend on higher CPUID levels, which may not always
298  * be available due to CPUID level capping or broken virtualization
299  * software.  Add those features to this table to auto-disable them.
300  */
301 struct cpuid_dependent_feature {
302 	u32 feature;
303 	u32 level;
304 };
305 
306 static const struct cpuid_dependent_feature
307 cpuid_dependent_features[] = {
308 	{ X86_FEATURE_MWAIT,		0x00000005 },
309 	{ X86_FEATURE_DCA,		0x00000009 },
310 	{ X86_FEATURE_XSAVE,		0x0000000d },
311 	{ 0, 0 }
312 };
313 
314 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
315 {
316 	const struct cpuid_dependent_feature *df;
317 
318 	for (df = cpuid_dependent_features; df->feature; df++) {
319 
320 		if (!cpu_has(c, df->feature))
321 			continue;
322 		/*
323 		 * Note: cpuid_level is set to -1 if unavailable, but
324 		 * extended_extended_level is set to 0 if unavailable
325 		 * and the legitimate extended levels are all negative
326 		 * when signed; hence the weird messing around with
327 		 * signs here...
328 		 */
329 		if (!((s32)df->level < 0 ?
330 		     (u32)df->level > (u32)c->extended_cpuid_level :
331 		     (s32)df->level > (s32)c->cpuid_level))
332 			continue;
333 
334 		clear_cpu_cap(c, df->feature);
335 		if (!warn)
336 			continue;
337 
338 		printk(KERN_WARNING
339 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
340 				x86_cap_flags[df->feature], df->level);
341 	}
342 }
343 
344 /*
345  * Naming convention should be: <Name> [(<Codename>)]
346  * This table only is used unless init_<vendor>() below doesn't set it;
347  * in particular, if CPUID levels 0x80000002..4 are supported, this
348  * isn't used
349  */
350 
351 /* Look up CPU names by table lookup. */
352 static const char *table_lookup_model(struct cpuinfo_x86 *c)
353 {
354 #ifdef CONFIG_X86_32
355 	const struct legacy_cpu_model_info *info;
356 
357 	if (c->x86_model >= 16)
358 		return NULL;	/* Range check */
359 
360 	if (!this_cpu)
361 		return NULL;
362 
363 	info = this_cpu->legacy_models;
364 
365 	while (info->family) {
366 		if (info->family == c->x86)
367 			return info->model_names[c->x86_model];
368 		info++;
369 	}
370 #endif
371 	return NULL;		/* Not found */
372 }
373 
374 __u32 cpu_caps_cleared[NCAPINTS];
375 __u32 cpu_caps_set[NCAPINTS];
376 
377 void load_percpu_segment(int cpu)
378 {
379 #ifdef CONFIG_X86_32
380 	loadsegment(fs, __KERNEL_PERCPU);
381 #else
382 	loadsegment(gs, 0);
383 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
384 #endif
385 	load_stack_canary_segment();
386 }
387 
388 /*
389  * Current gdt points %fs at the "master" per-cpu area: after this,
390  * it's on the real one.
391  */
392 void switch_to_new_gdt(int cpu)
393 {
394 	struct desc_ptr gdt_descr;
395 
396 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
397 	gdt_descr.size = GDT_SIZE - 1;
398 	load_gdt(&gdt_descr);
399 	/* Reload the per-cpu base */
400 
401 	load_percpu_segment(cpu);
402 }
403 
404 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
405 
406 static void get_model_name(struct cpuinfo_x86 *c)
407 {
408 	unsigned int *v;
409 	char *p, *q;
410 
411 	if (c->extended_cpuid_level < 0x80000004)
412 		return;
413 
414 	v = (unsigned int *)c->x86_model_id;
415 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
416 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
417 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
418 	c->x86_model_id[48] = 0;
419 
420 	/*
421 	 * Intel chips right-justify this string for some dumb reason;
422 	 * undo that brain damage:
423 	 */
424 	p = q = &c->x86_model_id[0];
425 	while (*p == ' ')
426 		p++;
427 	if (p != q) {
428 		while (*p)
429 			*q++ = *p++;
430 		while (q <= &c->x86_model_id[48])
431 			*q++ = '\0';	/* Zero-pad the rest */
432 	}
433 }
434 
435 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
436 {
437 	unsigned int n, dummy, ebx, ecx, edx, l2size;
438 
439 	n = c->extended_cpuid_level;
440 
441 	if (n >= 0x80000005) {
442 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
443 		c->x86_cache_size = (ecx>>24) + (edx>>24);
444 #ifdef CONFIG_X86_64
445 		/* On K8 L1 TLB is inclusive, so don't count it */
446 		c->x86_tlbsize = 0;
447 #endif
448 	}
449 
450 	if (n < 0x80000006)	/* Some chips just has a large L1. */
451 		return;
452 
453 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
454 	l2size = ecx >> 16;
455 
456 #ifdef CONFIG_X86_64
457 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
458 #else
459 	/* do processor-specific cache resizing */
460 	if (this_cpu->legacy_cache_size)
461 		l2size = this_cpu->legacy_cache_size(c, l2size);
462 
463 	/* Allow user to override all this if necessary. */
464 	if (cachesize_override != -1)
465 		l2size = cachesize_override;
466 
467 	if (l2size == 0)
468 		return;		/* Again, no L2 cache is possible */
469 #endif
470 
471 	c->x86_cache_size = l2size;
472 }
473 
474 u16 __read_mostly tlb_lli_4k[NR_INFO];
475 u16 __read_mostly tlb_lli_2m[NR_INFO];
476 u16 __read_mostly tlb_lli_4m[NR_INFO];
477 u16 __read_mostly tlb_lld_4k[NR_INFO];
478 u16 __read_mostly tlb_lld_2m[NR_INFO];
479 u16 __read_mostly tlb_lld_4m[NR_INFO];
480 u16 __read_mostly tlb_lld_1g[NR_INFO];
481 
482 /*
483  * tlb_flushall_shift shows the balance point in replacing cr3 write
484  * with multiple 'invlpg'. It will do this replacement when
485  *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
486  * If tlb_flushall_shift is -1, means the replacement will be disabled.
487  */
488 s8  __read_mostly tlb_flushall_shift = -1;
489 
490 void cpu_detect_tlb(struct cpuinfo_x86 *c)
491 {
492 	if (this_cpu->c_detect_tlb)
493 		this_cpu->c_detect_tlb(c);
494 
495 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
496 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
497 		"tlb_flushall_shift: %d\n",
498 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
499 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
500 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
501 		tlb_lld_1g[ENTRIES], tlb_flushall_shift);
502 }
503 
504 void detect_ht(struct cpuinfo_x86 *c)
505 {
506 #ifdef CONFIG_X86_HT
507 	u32 eax, ebx, ecx, edx;
508 	int index_msb, core_bits;
509 	static bool printed;
510 
511 	if (!cpu_has(c, X86_FEATURE_HT))
512 		return;
513 
514 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
515 		goto out;
516 
517 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
518 		return;
519 
520 	cpuid(1, &eax, &ebx, &ecx, &edx);
521 
522 	smp_num_siblings = (ebx & 0xff0000) >> 16;
523 
524 	if (smp_num_siblings == 1) {
525 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
526 		goto out;
527 	}
528 
529 	if (smp_num_siblings <= 1)
530 		goto out;
531 
532 	index_msb = get_count_order(smp_num_siblings);
533 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
534 
535 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
536 
537 	index_msb = get_count_order(smp_num_siblings);
538 
539 	core_bits = get_count_order(c->x86_max_cores);
540 
541 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
542 				       ((1 << core_bits) - 1);
543 
544 out:
545 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
546 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
547 		       c->phys_proc_id);
548 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
549 		       c->cpu_core_id);
550 		printed = 1;
551 	}
552 #endif
553 }
554 
555 static void get_cpu_vendor(struct cpuinfo_x86 *c)
556 {
557 	char *v = c->x86_vendor_id;
558 	int i;
559 
560 	for (i = 0; i < X86_VENDOR_NUM; i++) {
561 		if (!cpu_devs[i])
562 			break;
563 
564 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
565 		    (cpu_devs[i]->c_ident[1] &&
566 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
567 
568 			this_cpu = cpu_devs[i];
569 			c->x86_vendor = this_cpu->c_x86_vendor;
570 			return;
571 		}
572 	}
573 
574 	printk_once(KERN_ERR
575 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
576 			"CPU: Your system may be unstable.\n", v);
577 
578 	c->x86_vendor = X86_VENDOR_UNKNOWN;
579 	this_cpu = &default_cpu;
580 }
581 
582 void cpu_detect(struct cpuinfo_x86 *c)
583 {
584 	/* Get vendor name */
585 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
586 	      (unsigned int *)&c->x86_vendor_id[0],
587 	      (unsigned int *)&c->x86_vendor_id[8],
588 	      (unsigned int *)&c->x86_vendor_id[4]);
589 
590 	c->x86 = 4;
591 	/* Intel-defined flags: level 0x00000001 */
592 	if (c->cpuid_level >= 0x00000001) {
593 		u32 junk, tfms, cap0, misc;
594 
595 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
596 		c->x86 = (tfms >> 8) & 0xf;
597 		c->x86_model = (tfms >> 4) & 0xf;
598 		c->x86_mask = tfms & 0xf;
599 
600 		if (c->x86 == 0xf)
601 			c->x86 += (tfms >> 20) & 0xff;
602 		if (c->x86 >= 0x6)
603 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
604 
605 		if (cap0 & (1<<19)) {
606 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
607 			c->x86_cache_alignment = c->x86_clflush_size;
608 		}
609 	}
610 }
611 
612 void get_cpu_cap(struct cpuinfo_x86 *c)
613 {
614 	u32 tfms, xlvl;
615 	u32 ebx;
616 
617 	/* Intel-defined flags: level 0x00000001 */
618 	if (c->cpuid_level >= 0x00000001) {
619 		u32 capability, excap;
620 
621 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
622 		c->x86_capability[0] = capability;
623 		c->x86_capability[4] = excap;
624 	}
625 
626 	/* Additional Intel-defined flags: level 0x00000007 */
627 	if (c->cpuid_level >= 0x00000007) {
628 		u32 eax, ebx, ecx, edx;
629 
630 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
631 
632 		c->x86_capability[9] = ebx;
633 	}
634 
635 	/* AMD-defined flags: level 0x80000001 */
636 	xlvl = cpuid_eax(0x80000000);
637 	c->extended_cpuid_level = xlvl;
638 
639 	if ((xlvl & 0xffff0000) == 0x80000000) {
640 		if (xlvl >= 0x80000001) {
641 			c->x86_capability[1] = cpuid_edx(0x80000001);
642 			c->x86_capability[6] = cpuid_ecx(0x80000001);
643 		}
644 	}
645 
646 	if (c->extended_cpuid_level >= 0x80000008) {
647 		u32 eax = cpuid_eax(0x80000008);
648 
649 		c->x86_virt_bits = (eax >> 8) & 0xff;
650 		c->x86_phys_bits = eax & 0xff;
651 	}
652 #ifdef CONFIG_X86_32
653 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
654 		c->x86_phys_bits = 36;
655 #endif
656 
657 	if (c->extended_cpuid_level >= 0x80000007)
658 		c->x86_power = cpuid_edx(0x80000007);
659 
660 	init_scattered_cpuid_features(c);
661 }
662 
663 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
664 {
665 #ifdef CONFIG_X86_32
666 	int i;
667 
668 	/*
669 	 * First of all, decide if this is a 486 or higher
670 	 * It's a 486 if we can modify the AC flag
671 	 */
672 	if (flag_is_changeable_p(X86_EFLAGS_AC))
673 		c->x86 = 4;
674 	else
675 		c->x86 = 3;
676 
677 	for (i = 0; i < X86_VENDOR_NUM; i++)
678 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
679 			c->x86_vendor_id[0] = 0;
680 			cpu_devs[i]->c_identify(c);
681 			if (c->x86_vendor_id[0]) {
682 				get_cpu_vendor(c);
683 				break;
684 			}
685 		}
686 #endif
687 }
688 
689 /*
690  * Do minimum CPU detection early.
691  * Fields really needed: vendor, cpuid_level, family, model, mask,
692  * cache alignment.
693  * The others are not touched to avoid unwanted side effects.
694  *
695  * WARNING: this function is only called on the BP.  Don't add code here
696  * that is supposed to run on all CPUs.
697  */
698 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
699 {
700 #ifdef CONFIG_X86_64
701 	c->x86_clflush_size = 64;
702 	c->x86_phys_bits = 36;
703 	c->x86_virt_bits = 48;
704 #else
705 	c->x86_clflush_size = 32;
706 	c->x86_phys_bits = 32;
707 	c->x86_virt_bits = 32;
708 #endif
709 	c->x86_cache_alignment = c->x86_clflush_size;
710 
711 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
712 	c->extended_cpuid_level = 0;
713 
714 	if (!have_cpuid_p())
715 		identify_cpu_without_cpuid(c);
716 
717 	/* cyrix could have cpuid enabled via c_identify()*/
718 	if (!have_cpuid_p())
719 		return;
720 
721 	cpu_detect(c);
722 	get_cpu_vendor(c);
723 	get_cpu_cap(c);
724 	fpu_detect(c);
725 
726 	if (this_cpu->c_early_init)
727 		this_cpu->c_early_init(c);
728 
729 	c->cpu_index = 0;
730 	filter_cpuid_features(c, false);
731 
732 	if (this_cpu->c_bsp_init)
733 		this_cpu->c_bsp_init(c);
734 
735 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
736 }
737 
738 void __init early_cpu_init(void)
739 {
740 	const struct cpu_dev *const *cdev;
741 	int count = 0;
742 
743 #ifdef CONFIG_PROCESSOR_SELECT
744 	printk(KERN_INFO "KERNEL supported cpus:\n");
745 #endif
746 
747 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
748 		const struct cpu_dev *cpudev = *cdev;
749 
750 		if (count >= X86_VENDOR_NUM)
751 			break;
752 		cpu_devs[count] = cpudev;
753 		count++;
754 
755 #ifdef CONFIG_PROCESSOR_SELECT
756 		{
757 			unsigned int j;
758 
759 			for (j = 0; j < 2; j++) {
760 				if (!cpudev->c_ident[j])
761 					continue;
762 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
763 					cpudev->c_ident[j]);
764 			}
765 		}
766 #endif
767 	}
768 	early_identify_cpu(&boot_cpu_data);
769 }
770 
771 /*
772  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
773  * unfortunately, that's not true in practice because of early VIA
774  * chips and (more importantly) broken virtualizers that are not easy
775  * to detect. In the latter case it doesn't even *fail* reliably, so
776  * probing for it doesn't even work. Disable it completely on 32-bit
777  * unless we can find a reliable way to detect all the broken cases.
778  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
779  */
780 static void detect_nopl(struct cpuinfo_x86 *c)
781 {
782 #ifdef CONFIG_X86_32
783 	clear_cpu_cap(c, X86_FEATURE_NOPL);
784 #else
785 	set_cpu_cap(c, X86_FEATURE_NOPL);
786 #endif
787 }
788 
789 static void generic_identify(struct cpuinfo_x86 *c)
790 {
791 	c->extended_cpuid_level = 0;
792 
793 	if (!have_cpuid_p())
794 		identify_cpu_without_cpuid(c);
795 
796 	/* cyrix could have cpuid enabled via c_identify()*/
797 	if (!have_cpuid_p())
798 		return;
799 
800 	cpu_detect(c);
801 
802 	get_cpu_vendor(c);
803 
804 	get_cpu_cap(c);
805 
806 	if (c->cpuid_level >= 0x00000001) {
807 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
808 #ifdef CONFIG_X86_32
809 # ifdef CONFIG_X86_HT
810 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
811 # else
812 		c->apicid = c->initial_apicid;
813 # endif
814 #endif
815 		c->phys_proc_id = c->initial_apicid;
816 	}
817 
818 	get_model_name(c); /* Default name */
819 
820 	detect_nopl(c);
821 }
822 
823 /*
824  * This does the hard work of actually picking apart the CPU stuff...
825  */
826 static void identify_cpu(struct cpuinfo_x86 *c)
827 {
828 	int i;
829 
830 	c->loops_per_jiffy = loops_per_jiffy;
831 	c->x86_cache_size = -1;
832 	c->x86_vendor = X86_VENDOR_UNKNOWN;
833 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
834 	c->x86_vendor_id[0] = '\0'; /* Unset */
835 	c->x86_model_id[0] = '\0';  /* Unset */
836 	c->x86_max_cores = 1;
837 	c->x86_coreid_bits = 0;
838 #ifdef CONFIG_X86_64
839 	c->x86_clflush_size = 64;
840 	c->x86_phys_bits = 36;
841 	c->x86_virt_bits = 48;
842 #else
843 	c->cpuid_level = -1;	/* CPUID not detected */
844 	c->x86_clflush_size = 32;
845 	c->x86_phys_bits = 32;
846 	c->x86_virt_bits = 32;
847 #endif
848 	c->x86_cache_alignment = c->x86_clflush_size;
849 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
850 
851 	generic_identify(c);
852 
853 	if (this_cpu->c_identify)
854 		this_cpu->c_identify(c);
855 
856 	/* Clear/Set all flags overriden by options, after probe */
857 	for (i = 0; i < NCAPINTS; i++) {
858 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
859 		c->x86_capability[i] |= cpu_caps_set[i];
860 	}
861 
862 #ifdef CONFIG_X86_64
863 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
864 #endif
865 
866 	/*
867 	 * Vendor-specific initialization.  In this section we
868 	 * canonicalize the feature flags, meaning if there are
869 	 * features a certain CPU supports which CPUID doesn't
870 	 * tell us, CPUID claiming incorrect flags, or other bugs,
871 	 * we handle them here.
872 	 *
873 	 * At the end of this section, c->x86_capability better
874 	 * indicate the features this CPU genuinely supports!
875 	 */
876 	if (this_cpu->c_init)
877 		this_cpu->c_init(c);
878 
879 	/* Disable the PN if appropriate */
880 	squash_the_stupid_serial_number(c);
881 
882 	/* Set up SMEP/SMAP */
883 	setup_smep(c);
884 	setup_smap(c);
885 
886 	/*
887 	 * The vendor-specific functions might have changed features.
888 	 * Now we do "generic changes."
889 	 */
890 
891 	/* Filter out anything that depends on CPUID levels we don't have */
892 	filter_cpuid_features(c, true);
893 
894 	/* If the model name is still unset, do table lookup. */
895 	if (!c->x86_model_id[0]) {
896 		const char *p;
897 		p = table_lookup_model(c);
898 		if (p)
899 			strcpy(c->x86_model_id, p);
900 		else
901 			/* Last resort... */
902 			sprintf(c->x86_model_id, "%02x/%02x",
903 				c->x86, c->x86_model);
904 	}
905 
906 #ifdef CONFIG_X86_64
907 	detect_ht(c);
908 #endif
909 
910 	init_hypervisor(c);
911 	x86_init_rdrand(c);
912 
913 	/*
914 	 * Clear/Set all flags overriden by options, need do it
915 	 * before following smp all cpus cap AND.
916 	 */
917 	for (i = 0; i < NCAPINTS; i++) {
918 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
919 		c->x86_capability[i] |= cpu_caps_set[i];
920 	}
921 
922 	/*
923 	 * On SMP, boot_cpu_data holds the common feature set between
924 	 * all CPUs; so make sure that we indicate which features are
925 	 * common between the CPUs.  The first time this routine gets
926 	 * executed, c == &boot_cpu_data.
927 	 */
928 	if (c != &boot_cpu_data) {
929 		/* AND the already accumulated flags with these */
930 		for (i = 0; i < NCAPINTS; i++)
931 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
932 
933 		/* OR, i.e. replicate the bug flags */
934 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
935 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
936 	}
937 
938 	/* Init Machine Check Exception if available. */
939 	mcheck_cpu_init(c);
940 
941 	select_idle_routine(c);
942 
943 #ifdef CONFIG_NUMA
944 	numa_add_cpu(smp_processor_id());
945 #endif
946 }
947 
948 #ifdef CONFIG_X86_64
949 static void vgetcpu_set_mode(void)
950 {
951 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
952 		vgetcpu_mode = VGETCPU_RDTSCP;
953 	else
954 		vgetcpu_mode = VGETCPU_LSL;
955 }
956 #endif
957 
958 void __init identify_boot_cpu(void)
959 {
960 	identify_cpu(&boot_cpu_data);
961 	init_amd_e400_c1e_mask();
962 #ifdef CONFIG_X86_32
963 	sysenter_setup();
964 	enable_sep_cpu();
965 #else
966 	vgetcpu_set_mode();
967 #endif
968 	cpu_detect_tlb(&boot_cpu_data);
969 }
970 
971 void identify_secondary_cpu(struct cpuinfo_x86 *c)
972 {
973 	BUG_ON(c == &boot_cpu_data);
974 	identify_cpu(c);
975 #ifdef CONFIG_X86_32
976 	enable_sep_cpu();
977 #endif
978 	mtrr_ap_init();
979 }
980 
981 struct msr_range {
982 	unsigned	min;
983 	unsigned	max;
984 };
985 
986 static const struct msr_range msr_range_array[] = {
987 	{ 0x00000000, 0x00000418},
988 	{ 0xc0000000, 0xc000040b},
989 	{ 0xc0010000, 0xc0010142},
990 	{ 0xc0011000, 0xc001103b},
991 };
992 
993 static void __print_cpu_msr(void)
994 {
995 	unsigned index_min, index_max;
996 	unsigned index;
997 	u64 val;
998 	int i;
999 
1000 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1001 		index_min = msr_range_array[i].min;
1002 		index_max = msr_range_array[i].max;
1003 
1004 		for (index = index_min; index < index_max; index++) {
1005 			if (rdmsrl_safe(index, &val))
1006 				continue;
1007 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1008 		}
1009 	}
1010 }
1011 
1012 static int show_msr;
1013 
1014 static __init int setup_show_msr(char *arg)
1015 {
1016 	int num;
1017 
1018 	get_option(&arg, &num);
1019 
1020 	if (num > 0)
1021 		show_msr = num;
1022 	return 1;
1023 }
1024 __setup("show_msr=", setup_show_msr);
1025 
1026 static __init int setup_noclflush(char *arg)
1027 {
1028 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1029 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1030 	return 1;
1031 }
1032 __setup("noclflush", setup_noclflush);
1033 
1034 void print_cpu_info(struct cpuinfo_x86 *c)
1035 {
1036 	const char *vendor = NULL;
1037 
1038 	if (c->x86_vendor < X86_VENDOR_NUM) {
1039 		vendor = this_cpu->c_vendor;
1040 	} else {
1041 		if (c->cpuid_level >= 0)
1042 			vendor = c->x86_vendor_id;
1043 	}
1044 
1045 	if (vendor && !strstr(c->x86_model_id, vendor))
1046 		printk(KERN_CONT "%s ", vendor);
1047 
1048 	if (c->x86_model_id[0])
1049 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1050 	else
1051 		printk(KERN_CONT "%d86", c->x86);
1052 
1053 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1054 
1055 	if (c->x86_mask || c->cpuid_level >= 0)
1056 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1057 	else
1058 		printk(KERN_CONT ")\n");
1059 
1060 	print_cpu_msr(c);
1061 }
1062 
1063 void print_cpu_msr(struct cpuinfo_x86 *c)
1064 {
1065 	if (c->cpu_index < show_msr)
1066 		__print_cpu_msr();
1067 }
1068 
1069 static __init int setup_disablecpuid(char *arg)
1070 {
1071 	int bit;
1072 
1073 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1074 		setup_clear_cpu_cap(bit);
1075 	else
1076 		return 0;
1077 
1078 	return 1;
1079 }
1080 __setup("clearcpuid=", setup_disablecpuid);
1081 
1082 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1083 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1084 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1085 
1086 #ifdef CONFIG_X86_64
1087 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1088 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1089 				    (unsigned long) debug_idt_table };
1090 
1091 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1092 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1093 
1094 /*
1095  * The following four percpu variables are hot.  Align current_task to
1096  * cacheline size such that all four fall in the same cacheline.
1097  */
1098 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1099 	&init_task;
1100 EXPORT_PER_CPU_SYMBOL(current_task);
1101 
1102 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1103 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1104 
1105 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1106 
1107 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1108 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1109 
1110 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1111 
1112 /*
1113  * Special IST stacks which the CPU switches to when it calls
1114  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115  * limit), all of them are 4K, except the debug stack which
1116  * is 8K.
1117  */
1118 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1119 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1120 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1121 };
1122 
1123 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1125 
1126 /* May not be marked __init: used by software suspend */
1127 void syscall_init(void)
1128 {
1129 	/*
1130 	 * LSTAR and STAR live in a bit strange symbiosis.
1131 	 * They both write to the same internal register. STAR allows to
1132 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1133 	 */
1134 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1135 	wrmsrl(MSR_LSTAR, system_call);
1136 	wrmsrl(MSR_CSTAR, ignore_sysret);
1137 
1138 #ifdef CONFIG_IA32_EMULATION
1139 	syscall32_cpu_init();
1140 #endif
1141 
1142 	/* Flags to clear on syscall */
1143 	wrmsrl(MSR_SYSCALL_MASK,
1144 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1145 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1146 }
1147 
1148 /*
1149  * Copies of the original ist values from the tss are only accessed during
1150  * debugging, no special alignment required.
1151  */
1152 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1153 
1154 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1155 DEFINE_PER_CPU(int, debug_stack_usage);
1156 
1157 int is_debug_stack(unsigned long addr)
1158 {
1159 	return __get_cpu_var(debug_stack_usage) ||
1160 		(addr <= __get_cpu_var(debug_stack_addr) &&
1161 		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1162 }
1163 
1164 DEFINE_PER_CPU(u32, debug_idt_ctr);
1165 
1166 void debug_stack_set_zero(void)
1167 {
1168 	this_cpu_inc(debug_idt_ctr);
1169 	load_current_idt();
1170 }
1171 
1172 void debug_stack_reset(void)
1173 {
1174 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1175 		return;
1176 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1177 		load_current_idt();
1178 }
1179 
1180 #else	/* CONFIG_X86_64 */
1181 
1182 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1183 EXPORT_PER_CPU_SYMBOL(current_task);
1184 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1185 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1186 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187 
1188 #ifdef CONFIG_CC_STACKPROTECTOR
1189 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1190 #endif
1191 
1192 #endif	/* CONFIG_X86_64 */
1193 
1194 /*
1195  * Clear all 6 debug registers:
1196  */
1197 static void clear_all_debug_regs(void)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < 8; i++) {
1202 		/* Ignore db4, db5 */
1203 		if ((i == 4) || (i == 5))
1204 			continue;
1205 
1206 		set_debugreg(0, i);
1207 	}
1208 }
1209 
1210 #ifdef CONFIG_KGDB
1211 /*
1212  * Restore debug regs if using kgdbwait and you have a kernel debugger
1213  * connection established.
1214  */
1215 static void dbg_restore_debug_regs(void)
1216 {
1217 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1218 		arch_kgdb_ops.correct_hw_break();
1219 }
1220 #else /* ! CONFIG_KGDB */
1221 #define dbg_restore_debug_regs()
1222 #endif /* ! CONFIG_KGDB */
1223 
1224 /*
1225  * cpu_init() initializes state that is per-CPU. Some data is already
1226  * initialized (naturally) in the bootstrap process, such as the GDT
1227  * and IDT. We reload them nevertheless, this function acts as a
1228  * 'CPU state barrier', nothing should get across.
1229  * A lot of state is already set up in PDA init for 64 bit
1230  */
1231 #ifdef CONFIG_X86_64
1232 
1233 void cpu_init(void)
1234 {
1235 	struct orig_ist *oist;
1236 	struct task_struct *me;
1237 	struct tss_struct *t;
1238 	unsigned long v;
1239 	int cpu;
1240 	int i;
1241 
1242 	/*
1243 	 * Load microcode on this cpu if a valid microcode is available.
1244 	 * This is early microcode loading procedure.
1245 	 */
1246 	load_ucode_ap();
1247 
1248 	cpu = stack_smp_processor_id();
1249 	t = &per_cpu(init_tss, cpu);
1250 	oist = &per_cpu(orig_ist, cpu);
1251 
1252 #ifdef CONFIG_NUMA
1253 	if (this_cpu_read(numa_node) == 0 &&
1254 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1255 		set_numa_node(early_cpu_to_node(cpu));
1256 #endif
1257 
1258 	me = current;
1259 
1260 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1261 		panic("CPU#%d already initialized!\n", cpu);
1262 
1263 	pr_debug("Initializing CPU#%d\n", cpu);
1264 
1265 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1266 
1267 	/*
1268 	 * Initialize the per-CPU GDT with the boot GDT,
1269 	 * and set up the GDT descriptor:
1270 	 */
1271 
1272 	switch_to_new_gdt(cpu);
1273 	loadsegment(fs, 0);
1274 
1275 	load_current_idt();
1276 
1277 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1278 	syscall_init();
1279 
1280 	wrmsrl(MSR_FS_BASE, 0);
1281 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1282 	barrier();
1283 
1284 	x86_configure_nx();
1285 	enable_x2apic();
1286 
1287 	/*
1288 	 * set up and load the per-CPU TSS
1289 	 */
1290 	if (!oist->ist[0]) {
1291 		char *estacks = per_cpu(exception_stacks, cpu);
1292 
1293 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1294 			estacks += exception_stack_sizes[v];
1295 			oist->ist[v] = t->x86_tss.ist[v] =
1296 					(unsigned long)estacks;
1297 			if (v == DEBUG_STACK-1)
1298 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1299 		}
1300 	}
1301 
1302 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1303 
1304 	/*
1305 	 * <= is required because the CPU will access up to
1306 	 * 8 bits beyond the end of the IO permission bitmap.
1307 	 */
1308 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1309 		t->io_bitmap[i] = ~0UL;
1310 
1311 	atomic_inc(&init_mm.mm_count);
1312 	me->active_mm = &init_mm;
1313 	BUG_ON(me->mm);
1314 	enter_lazy_tlb(&init_mm, me);
1315 
1316 	load_sp0(t, &current->thread);
1317 	set_tss_desc(cpu, t);
1318 	load_TR_desc();
1319 	load_LDT(&init_mm.context);
1320 
1321 	clear_all_debug_regs();
1322 	dbg_restore_debug_regs();
1323 
1324 	fpu_init();
1325 
1326 	if (is_uv_system())
1327 		uv_cpu_init();
1328 }
1329 
1330 #else
1331 
1332 void cpu_init(void)
1333 {
1334 	int cpu = smp_processor_id();
1335 	struct task_struct *curr = current;
1336 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1337 	struct thread_struct *thread = &curr->thread;
1338 
1339 	show_ucode_info_early();
1340 
1341 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1342 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1343 		for (;;)
1344 			local_irq_enable();
1345 	}
1346 
1347 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1348 
1349 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1350 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1351 
1352 	load_current_idt();
1353 	switch_to_new_gdt(cpu);
1354 
1355 	/*
1356 	 * Set up and load the per-CPU TSS and LDT
1357 	 */
1358 	atomic_inc(&init_mm.mm_count);
1359 	curr->active_mm = &init_mm;
1360 	BUG_ON(curr->mm);
1361 	enter_lazy_tlb(&init_mm, curr);
1362 
1363 	load_sp0(t, thread);
1364 	set_tss_desc(cpu, t);
1365 	load_TR_desc();
1366 	load_LDT(&init_mm.context);
1367 
1368 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1369 
1370 #ifdef CONFIG_DOUBLEFAULT
1371 	/* Set up doublefault TSS pointer in the GDT */
1372 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1373 #endif
1374 
1375 	clear_all_debug_regs();
1376 	dbg_restore_debug_regs();
1377 
1378 	fpu_init();
1379 }
1380 #endif
1381 
1382 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383 void warn_pre_alternatives(void)
1384 {
1385 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1386 }
1387 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1388 #endif
1389 
1390 inline bool __static_cpu_has_safe(u16 bit)
1391 {
1392 	return boot_cpu_has(bit);
1393 }
1394 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1395