xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 95e9fd10)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/uv/uv.h>
43 #endif
44 
45 #include "cpu.h"
46 
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_initialized_mask;
49 cpumask_var_t cpu_callout_mask;
50 cpumask_var_t cpu_callin_mask;
51 
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask;
54 
55 /* correctly size the local cpu masks */
56 void __init setup_cpu_local_masks(void)
57 {
58 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 }
63 
64 static void __cpuinit default_init(struct cpuinfo_x86 *c)
65 {
66 #ifdef CONFIG_X86_64
67 	cpu_detect_cache_sizes(c);
68 #else
69 	/* Not much we can do here... */
70 	/* Check if at least it has cpuid */
71 	if (c->cpuid_level == -1) {
72 		/* No cpuid. It must be an ancient CPU */
73 		if (c->x86 == 4)
74 			strcpy(c->x86_model_id, "486");
75 		else if (c->x86 == 3)
76 			strcpy(c->x86_model_id, "386");
77 	}
78 #endif
79 }
80 
81 static const struct cpu_dev __cpuinitconst default_cpu = {
82 	.c_init		= default_init,
83 	.c_vendor	= "Unknown",
84 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
85 };
86 
87 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88 
89 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90 #ifdef CONFIG_X86_64
91 	/*
92 	 * We need valid kernel segments for data and code in long mode too
93 	 * IRET will check the segment types  kkeil 2000/10/28
94 	 * Also sysret mandates a special GDT layout
95 	 *
96 	 * TLS descriptors are currently at a different place compared to i386.
97 	 * Hopefully nobody expects them at a fixed place (Wine?)
98 	 */
99 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105 #else
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 	/*
111 	 * Segments used for calling PnP BIOS have byte granularity.
112 	 * They code segments and data segments have fixed 64k limits,
113 	 * the transfer segment sizes are set at run time.
114 	 */
115 	/* 32-bit code */
116 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 	/* 16-bit code */
118 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 	/* 16-bit data */
120 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 	/* 16-bit data */
122 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
125 	/*
126 	 * The APM segments have byte granularity and their bases
127 	 * are set at run time.  All have 64k limits.
128 	 */
129 	/* 32-bit code */
130 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 	/* 16-bit code */
132 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 	/* data */
134 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135 
136 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 	GDT_STACK_CANARY_INIT
139 #endif
140 } };
141 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142 
143 static int __init x86_xsave_setup(char *s)
144 {
145 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 	setup_clear_cpu_cap(X86_FEATURE_AVX);
148 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
149 	return 1;
150 }
151 __setup("noxsave", x86_xsave_setup);
152 
153 static int __init x86_xsaveopt_setup(char *s)
154 {
155 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
156 	return 1;
157 }
158 __setup("noxsaveopt", x86_xsaveopt_setup);
159 
160 #ifdef CONFIG_X86_32
161 static int cachesize_override __cpuinitdata = -1;
162 static int disable_x86_serial_nr __cpuinitdata = 1;
163 
164 static int __init cachesize_setup(char *str)
165 {
166 	get_option(&str, &cachesize_override);
167 	return 1;
168 }
169 __setup("cachesize=", cachesize_setup);
170 
171 static int __init x86_fxsr_setup(char *s)
172 {
173 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
174 	setup_clear_cpu_cap(X86_FEATURE_XMM);
175 	return 1;
176 }
177 __setup("nofxsr", x86_fxsr_setup);
178 
179 static int __init x86_sep_setup(char *s)
180 {
181 	setup_clear_cpu_cap(X86_FEATURE_SEP);
182 	return 1;
183 }
184 __setup("nosep", x86_sep_setup);
185 
186 /* Standard macro to see if a specific flag is changeable */
187 static inline int flag_is_changeable_p(u32 flag)
188 {
189 	u32 f1, f2;
190 
191 	/*
192 	 * Cyrix and IDT cpus allow disabling of CPUID
193 	 * so the code below may return different results
194 	 * when it is executed before and after enabling
195 	 * the CPUID. Add "volatile" to not allow gcc to
196 	 * optimize the subsequent calls to this function.
197 	 */
198 	asm volatile ("pushfl		\n\t"
199 		      "pushfl		\n\t"
200 		      "popl %0		\n\t"
201 		      "movl %0, %1	\n\t"
202 		      "xorl %2, %0	\n\t"
203 		      "pushl %0		\n\t"
204 		      "popfl		\n\t"
205 		      "pushfl		\n\t"
206 		      "popl %0		\n\t"
207 		      "popfl		\n\t"
208 
209 		      : "=&r" (f1), "=&r" (f2)
210 		      : "ir" (flag));
211 
212 	return ((f1^f2) & flag) != 0;
213 }
214 
215 /* Probe for the CPUID instruction */
216 static int __cpuinit have_cpuid_p(void)
217 {
218 	return flag_is_changeable_p(X86_EFLAGS_ID);
219 }
220 
221 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 	unsigned long lo, hi;
224 
225 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
226 		return;
227 
228 	/* Disable processor serial number: */
229 
230 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231 	lo |= 0x200000;
232 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 
234 	printk(KERN_NOTICE "CPU serial number disabled.\n");
235 	clear_cpu_cap(c, X86_FEATURE_PN);
236 
237 	/* Disabling the serial number may affect the cpuid level */
238 	c->cpuid_level = cpuid_eax(0);
239 }
240 
241 static int __init x86_serial_nr_setup(char *s)
242 {
243 	disable_x86_serial_nr = 0;
244 	return 1;
245 }
246 __setup("serialnumber", x86_serial_nr_setup);
247 #else
248 static inline int flag_is_changeable_p(u32 flag)
249 {
250 	return 1;
251 }
252 /* Probe for the CPUID instruction */
253 static inline int have_cpuid_p(void)
254 {
255 	return 1;
256 }
257 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
258 {
259 }
260 #endif
261 
262 static int disable_smep __cpuinitdata;
263 static __init int setup_disable_smep(char *arg)
264 {
265 	disable_smep = 1;
266 	return 1;
267 }
268 __setup("nosmep", setup_disable_smep);
269 
270 static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
271 {
272 	if (cpu_has(c, X86_FEATURE_SMEP)) {
273 		if (unlikely(disable_smep)) {
274 			setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 			clear_in_cr4(X86_CR4_SMEP);
276 		} else
277 			set_in_cr4(X86_CR4_SMEP);
278 	}
279 }
280 
281 /*
282  * Some CPU features depend on higher CPUID levels, which may not always
283  * be available due to CPUID level capping or broken virtualization
284  * software.  Add those features to this table to auto-disable them.
285  */
286 struct cpuid_dependent_feature {
287 	u32 feature;
288 	u32 level;
289 };
290 
291 static const struct cpuid_dependent_feature __cpuinitconst
292 cpuid_dependent_features[] = {
293 	{ X86_FEATURE_MWAIT,		0x00000005 },
294 	{ X86_FEATURE_DCA,		0x00000009 },
295 	{ X86_FEATURE_XSAVE,		0x0000000d },
296 	{ 0, 0 }
297 };
298 
299 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
300 {
301 	const struct cpuid_dependent_feature *df;
302 
303 	for (df = cpuid_dependent_features; df->feature; df++) {
304 
305 		if (!cpu_has(c, df->feature))
306 			continue;
307 		/*
308 		 * Note: cpuid_level is set to -1 if unavailable, but
309 		 * extended_extended_level is set to 0 if unavailable
310 		 * and the legitimate extended levels are all negative
311 		 * when signed; hence the weird messing around with
312 		 * signs here...
313 		 */
314 		if (!((s32)df->level < 0 ?
315 		     (u32)df->level > (u32)c->extended_cpuid_level :
316 		     (s32)df->level > (s32)c->cpuid_level))
317 			continue;
318 
319 		clear_cpu_cap(c, df->feature);
320 		if (!warn)
321 			continue;
322 
323 		printk(KERN_WARNING
324 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
325 				x86_cap_flags[df->feature], df->level);
326 	}
327 }
328 
329 /*
330  * Naming convention should be: <Name> [(<Codename>)]
331  * This table only is used unless init_<vendor>() below doesn't set it;
332  * in particular, if CPUID levels 0x80000002..4 are supported, this
333  * isn't used
334  */
335 
336 /* Look up CPU names by table lookup. */
337 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
338 {
339 	const struct cpu_model_info *info;
340 
341 	if (c->x86_model >= 16)
342 		return NULL;	/* Range check */
343 
344 	if (!this_cpu)
345 		return NULL;
346 
347 	info = this_cpu->c_models;
348 
349 	while (info && info->family) {
350 		if (info->family == c->x86)
351 			return info->model_names[c->x86_model];
352 		info++;
353 	}
354 	return NULL;		/* Not found */
355 }
356 
357 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
358 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
359 
360 void load_percpu_segment(int cpu)
361 {
362 #ifdef CONFIG_X86_32
363 	loadsegment(fs, __KERNEL_PERCPU);
364 #else
365 	loadsegment(gs, 0);
366 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
367 #endif
368 	load_stack_canary_segment();
369 }
370 
371 /*
372  * Current gdt points %fs at the "master" per-cpu area: after this,
373  * it's on the real one.
374  */
375 void switch_to_new_gdt(int cpu)
376 {
377 	struct desc_ptr gdt_descr;
378 
379 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
380 	gdt_descr.size = GDT_SIZE - 1;
381 	load_gdt(&gdt_descr);
382 	/* Reload the per-cpu base */
383 
384 	load_percpu_segment(cpu);
385 }
386 
387 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
388 
389 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
390 {
391 	unsigned int *v;
392 	char *p, *q;
393 
394 	if (c->extended_cpuid_level < 0x80000004)
395 		return;
396 
397 	v = (unsigned int *)c->x86_model_id;
398 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
399 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
400 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
401 	c->x86_model_id[48] = 0;
402 
403 	/*
404 	 * Intel chips right-justify this string for some dumb reason;
405 	 * undo that brain damage:
406 	 */
407 	p = q = &c->x86_model_id[0];
408 	while (*p == ' ')
409 		p++;
410 	if (p != q) {
411 		while (*p)
412 			*q++ = *p++;
413 		while (q <= &c->x86_model_id[48])
414 			*q++ = '\0';	/* Zero-pad the rest */
415 	}
416 }
417 
418 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
419 {
420 	unsigned int n, dummy, ebx, ecx, edx, l2size;
421 
422 	n = c->extended_cpuid_level;
423 
424 	if (n >= 0x80000005) {
425 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
426 		c->x86_cache_size = (ecx>>24) + (edx>>24);
427 #ifdef CONFIG_X86_64
428 		/* On K8 L1 TLB is inclusive, so don't count it */
429 		c->x86_tlbsize = 0;
430 #endif
431 	}
432 
433 	if (n < 0x80000006)	/* Some chips just has a large L1. */
434 		return;
435 
436 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
437 	l2size = ecx >> 16;
438 
439 #ifdef CONFIG_X86_64
440 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
441 #else
442 	/* do processor-specific cache resizing */
443 	if (this_cpu->c_size_cache)
444 		l2size = this_cpu->c_size_cache(c, l2size);
445 
446 	/* Allow user to override all this if necessary. */
447 	if (cachesize_override != -1)
448 		l2size = cachesize_override;
449 
450 	if (l2size == 0)
451 		return;		/* Again, no L2 cache is possible */
452 #endif
453 
454 	c->x86_cache_size = l2size;
455 }
456 
457 u16 __read_mostly tlb_lli_4k[NR_INFO];
458 u16 __read_mostly tlb_lli_2m[NR_INFO];
459 u16 __read_mostly tlb_lli_4m[NR_INFO];
460 u16 __read_mostly tlb_lld_4k[NR_INFO];
461 u16 __read_mostly tlb_lld_2m[NR_INFO];
462 u16 __read_mostly tlb_lld_4m[NR_INFO];
463 
464 /*
465  * tlb_flushall_shift shows the balance point in replacing cr3 write
466  * with multiple 'invlpg'. It will do this replacement when
467  *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
468  * If tlb_flushall_shift is -1, means the replacement will be disabled.
469  */
470 s8  __read_mostly tlb_flushall_shift = -1;
471 
472 void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
473 {
474 	if (this_cpu->c_detect_tlb)
475 		this_cpu->c_detect_tlb(c);
476 
477 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
478 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n"	     \
479 		"tlb_flushall_shift is 0x%x\n",
480 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
481 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
482 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
483 		tlb_flushall_shift);
484 }
485 
486 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
487 {
488 #ifdef CONFIG_X86_HT
489 	u32 eax, ebx, ecx, edx;
490 	int index_msb, core_bits;
491 	static bool printed;
492 
493 	if (!cpu_has(c, X86_FEATURE_HT))
494 		return;
495 
496 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
497 		goto out;
498 
499 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
500 		return;
501 
502 	cpuid(1, &eax, &ebx, &ecx, &edx);
503 
504 	smp_num_siblings = (ebx & 0xff0000) >> 16;
505 
506 	if (smp_num_siblings == 1) {
507 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
508 		goto out;
509 	}
510 
511 	if (smp_num_siblings <= 1)
512 		goto out;
513 
514 	index_msb = get_count_order(smp_num_siblings);
515 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
516 
517 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
518 
519 	index_msb = get_count_order(smp_num_siblings);
520 
521 	core_bits = get_count_order(c->x86_max_cores);
522 
523 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
524 				       ((1 << core_bits) - 1);
525 
526 out:
527 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
528 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
529 		       c->phys_proc_id);
530 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
531 		       c->cpu_core_id);
532 		printed = 1;
533 	}
534 #endif
535 }
536 
537 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
538 {
539 	char *v = c->x86_vendor_id;
540 	int i;
541 
542 	for (i = 0; i < X86_VENDOR_NUM; i++) {
543 		if (!cpu_devs[i])
544 			break;
545 
546 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
547 		    (cpu_devs[i]->c_ident[1] &&
548 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
549 
550 			this_cpu = cpu_devs[i];
551 			c->x86_vendor = this_cpu->c_x86_vendor;
552 			return;
553 		}
554 	}
555 
556 	printk_once(KERN_ERR
557 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
558 			"CPU: Your system may be unstable.\n", v);
559 
560 	c->x86_vendor = X86_VENDOR_UNKNOWN;
561 	this_cpu = &default_cpu;
562 }
563 
564 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
565 {
566 	/* Get vendor name */
567 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
568 	      (unsigned int *)&c->x86_vendor_id[0],
569 	      (unsigned int *)&c->x86_vendor_id[8],
570 	      (unsigned int *)&c->x86_vendor_id[4]);
571 
572 	c->x86 = 4;
573 	/* Intel-defined flags: level 0x00000001 */
574 	if (c->cpuid_level >= 0x00000001) {
575 		u32 junk, tfms, cap0, misc;
576 
577 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
578 		c->x86 = (tfms >> 8) & 0xf;
579 		c->x86_model = (tfms >> 4) & 0xf;
580 		c->x86_mask = tfms & 0xf;
581 
582 		if (c->x86 == 0xf)
583 			c->x86 += (tfms >> 20) & 0xff;
584 		if (c->x86 >= 0x6)
585 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
586 
587 		if (cap0 & (1<<19)) {
588 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
589 			c->x86_cache_alignment = c->x86_clflush_size;
590 		}
591 	}
592 }
593 
594 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
595 {
596 	u32 tfms, xlvl;
597 	u32 ebx;
598 
599 	/* Intel-defined flags: level 0x00000001 */
600 	if (c->cpuid_level >= 0x00000001) {
601 		u32 capability, excap;
602 
603 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
604 		c->x86_capability[0] = capability;
605 		c->x86_capability[4] = excap;
606 	}
607 
608 	/* Additional Intel-defined flags: level 0x00000007 */
609 	if (c->cpuid_level >= 0x00000007) {
610 		u32 eax, ebx, ecx, edx;
611 
612 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
613 
614 		c->x86_capability[9] = ebx;
615 	}
616 
617 	/* AMD-defined flags: level 0x80000001 */
618 	xlvl = cpuid_eax(0x80000000);
619 	c->extended_cpuid_level = xlvl;
620 
621 	if ((xlvl & 0xffff0000) == 0x80000000) {
622 		if (xlvl >= 0x80000001) {
623 			c->x86_capability[1] = cpuid_edx(0x80000001);
624 			c->x86_capability[6] = cpuid_ecx(0x80000001);
625 		}
626 	}
627 
628 	if (c->extended_cpuid_level >= 0x80000008) {
629 		u32 eax = cpuid_eax(0x80000008);
630 
631 		c->x86_virt_bits = (eax >> 8) & 0xff;
632 		c->x86_phys_bits = eax & 0xff;
633 	}
634 #ifdef CONFIG_X86_32
635 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
636 		c->x86_phys_bits = 36;
637 #endif
638 
639 	if (c->extended_cpuid_level >= 0x80000007)
640 		c->x86_power = cpuid_edx(0x80000007);
641 
642 	init_scattered_cpuid_features(c);
643 }
644 
645 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
646 {
647 #ifdef CONFIG_X86_32
648 	int i;
649 
650 	/*
651 	 * First of all, decide if this is a 486 or higher
652 	 * It's a 486 if we can modify the AC flag
653 	 */
654 	if (flag_is_changeable_p(X86_EFLAGS_AC))
655 		c->x86 = 4;
656 	else
657 		c->x86 = 3;
658 
659 	for (i = 0; i < X86_VENDOR_NUM; i++)
660 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
661 			c->x86_vendor_id[0] = 0;
662 			cpu_devs[i]->c_identify(c);
663 			if (c->x86_vendor_id[0]) {
664 				get_cpu_vendor(c);
665 				break;
666 			}
667 		}
668 #endif
669 }
670 
671 /*
672  * Do minimum CPU detection early.
673  * Fields really needed: vendor, cpuid_level, family, model, mask,
674  * cache alignment.
675  * The others are not touched to avoid unwanted side effects.
676  *
677  * WARNING: this function is only called on the BP.  Don't add code here
678  * that is supposed to run on all CPUs.
679  */
680 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_X86_64
683 	c->x86_clflush_size = 64;
684 	c->x86_phys_bits = 36;
685 	c->x86_virt_bits = 48;
686 #else
687 	c->x86_clflush_size = 32;
688 	c->x86_phys_bits = 32;
689 	c->x86_virt_bits = 32;
690 #endif
691 	c->x86_cache_alignment = c->x86_clflush_size;
692 
693 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
694 	c->extended_cpuid_level = 0;
695 
696 	if (!have_cpuid_p())
697 		identify_cpu_without_cpuid(c);
698 
699 	/* cyrix could have cpuid enabled via c_identify()*/
700 	if (!have_cpuid_p())
701 		return;
702 
703 	cpu_detect(c);
704 
705 	get_cpu_vendor(c);
706 
707 	get_cpu_cap(c);
708 
709 	if (this_cpu->c_early_init)
710 		this_cpu->c_early_init(c);
711 
712 	c->cpu_index = 0;
713 	filter_cpuid_features(c, false);
714 
715 	setup_smep(c);
716 
717 	if (this_cpu->c_bsp_init)
718 		this_cpu->c_bsp_init(c);
719 }
720 
721 void __init early_cpu_init(void)
722 {
723 	const struct cpu_dev *const *cdev;
724 	int count = 0;
725 
726 #ifdef CONFIG_PROCESSOR_SELECT
727 	printk(KERN_INFO "KERNEL supported cpus:\n");
728 #endif
729 
730 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
731 		const struct cpu_dev *cpudev = *cdev;
732 
733 		if (count >= X86_VENDOR_NUM)
734 			break;
735 		cpu_devs[count] = cpudev;
736 		count++;
737 
738 #ifdef CONFIG_PROCESSOR_SELECT
739 		{
740 			unsigned int j;
741 
742 			for (j = 0; j < 2; j++) {
743 				if (!cpudev->c_ident[j])
744 					continue;
745 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
746 					cpudev->c_ident[j]);
747 			}
748 		}
749 #endif
750 	}
751 	early_identify_cpu(&boot_cpu_data);
752 }
753 
754 /*
755  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
756  * unfortunately, that's not true in practice because of early VIA
757  * chips and (more importantly) broken virtualizers that are not easy
758  * to detect. In the latter case it doesn't even *fail* reliably, so
759  * probing for it doesn't even work. Disable it completely on 32-bit
760  * unless we can find a reliable way to detect all the broken cases.
761  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
762  */
763 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
764 {
765 #ifdef CONFIG_X86_32
766 	clear_cpu_cap(c, X86_FEATURE_NOPL);
767 #else
768 	set_cpu_cap(c, X86_FEATURE_NOPL);
769 #endif
770 }
771 
772 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
773 {
774 	c->extended_cpuid_level = 0;
775 
776 	if (!have_cpuid_p())
777 		identify_cpu_without_cpuid(c);
778 
779 	/* cyrix could have cpuid enabled via c_identify()*/
780 	if (!have_cpuid_p())
781 		return;
782 
783 	cpu_detect(c);
784 
785 	get_cpu_vendor(c);
786 
787 	get_cpu_cap(c);
788 
789 	if (c->cpuid_level >= 0x00000001) {
790 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
791 #ifdef CONFIG_X86_32
792 # ifdef CONFIG_X86_HT
793 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
794 # else
795 		c->apicid = c->initial_apicid;
796 # endif
797 #endif
798 		c->phys_proc_id = c->initial_apicid;
799 	}
800 
801 	setup_smep(c);
802 
803 	get_model_name(c); /* Default name */
804 
805 	detect_nopl(c);
806 }
807 
808 /*
809  * This does the hard work of actually picking apart the CPU stuff...
810  */
811 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
812 {
813 	int i;
814 
815 	c->loops_per_jiffy = loops_per_jiffy;
816 	c->x86_cache_size = -1;
817 	c->x86_vendor = X86_VENDOR_UNKNOWN;
818 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
819 	c->x86_vendor_id[0] = '\0'; /* Unset */
820 	c->x86_model_id[0] = '\0';  /* Unset */
821 	c->x86_max_cores = 1;
822 	c->x86_coreid_bits = 0;
823 #ifdef CONFIG_X86_64
824 	c->x86_clflush_size = 64;
825 	c->x86_phys_bits = 36;
826 	c->x86_virt_bits = 48;
827 #else
828 	c->cpuid_level = -1;	/* CPUID not detected */
829 	c->x86_clflush_size = 32;
830 	c->x86_phys_bits = 32;
831 	c->x86_virt_bits = 32;
832 #endif
833 	c->x86_cache_alignment = c->x86_clflush_size;
834 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
835 
836 	generic_identify(c);
837 
838 	if (this_cpu->c_identify)
839 		this_cpu->c_identify(c);
840 
841 	/* Clear/Set all flags overriden by options, after probe */
842 	for (i = 0; i < NCAPINTS; i++) {
843 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
844 		c->x86_capability[i] |= cpu_caps_set[i];
845 	}
846 
847 #ifdef CONFIG_X86_64
848 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
849 #endif
850 
851 	/*
852 	 * Vendor-specific initialization.  In this section we
853 	 * canonicalize the feature flags, meaning if there are
854 	 * features a certain CPU supports which CPUID doesn't
855 	 * tell us, CPUID claiming incorrect flags, or other bugs,
856 	 * we handle them here.
857 	 *
858 	 * At the end of this section, c->x86_capability better
859 	 * indicate the features this CPU genuinely supports!
860 	 */
861 	if (this_cpu->c_init)
862 		this_cpu->c_init(c);
863 
864 	/* Disable the PN if appropriate */
865 	squash_the_stupid_serial_number(c);
866 
867 	/*
868 	 * The vendor-specific functions might have changed features.
869 	 * Now we do "generic changes."
870 	 */
871 
872 	/* Filter out anything that depends on CPUID levels we don't have */
873 	filter_cpuid_features(c, true);
874 
875 	/* If the model name is still unset, do table lookup. */
876 	if (!c->x86_model_id[0]) {
877 		const char *p;
878 		p = table_lookup_model(c);
879 		if (p)
880 			strcpy(c->x86_model_id, p);
881 		else
882 			/* Last resort... */
883 			sprintf(c->x86_model_id, "%02x/%02x",
884 				c->x86, c->x86_model);
885 	}
886 
887 #ifdef CONFIG_X86_64
888 	detect_ht(c);
889 #endif
890 
891 	init_hypervisor(c);
892 	x86_init_rdrand(c);
893 
894 	/*
895 	 * Clear/Set all flags overriden by options, need do it
896 	 * before following smp all cpus cap AND.
897 	 */
898 	for (i = 0; i < NCAPINTS; i++) {
899 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
900 		c->x86_capability[i] |= cpu_caps_set[i];
901 	}
902 
903 	/*
904 	 * On SMP, boot_cpu_data holds the common feature set between
905 	 * all CPUs; so make sure that we indicate which features are
906 	 * common between the CPUs.  The first time this routine gets
907 	 * executed, c == &boot_cpu_data.
908 	 */
909 	if (c != &boot_cpu_data) {
910 		/* AND the already accumulated flags with these */
911 		for (i = 0; i < NCAPINTS; i++)
912 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
913 	}
914 
915 	/* Init Machine Check Exception if available. */
916 	mcheck_cpu_init(c);
917 
918 	select_idle_routine(c);
919 
920 #ifdef CONFIG_NUMA
921 	numa_add_cpu(smp_processor_id());
922 #endif
923 }
924 
925 #ifdef CONFIG_X86_64
926 static void vgetcpu_set_mode(void)
927 {
928 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
929 		vgetcpu_mode = VGETCPU_RDTSCP;
930 	else
931 		vgetcpu_mode = VGETCPU_LSL;
932 }
933 #endif
934 
935 void __init identify_boot_cpu(void)
936 {
937 	identify_cpu(&boot_cpu_data);
938 	init_amd_e400_c1e_mask();
939 #ifdef CONFIG_X86_32
940 	sysenter_setup();
941 	enable_sep_cpu();
942 #else
943 	vgetcpu_set_mode();
944 #endif
945 	if (boot_cpu_data.cpuid_level >= 2)
946 		cpu_detect_tlb(&boot_cpu_data);
947 }
948 
949 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
950 {
951 	BUG_ON(c == &boot_cpu_data);
952 	identify_cpu(c);
953 #ifdef CONFIG_X86_32
954 	enable_sep_cpu();
955 #endif
956 	mtrr_ap_init();
957 }
958 
959 struct msr_range {
960 	unsigned	min;
961 	unsigned	max;
962 };
963 
964 static const struct msr_range msr_range_array[] __cpuinitconst = {
965 	{ 0x00000000, 0x00000418},
966 	{ 0xc0000000, 0xc000040b},
967 	{ 0xc0010000, 0xc0010142},
968 	{ 0xc0011000, 0xc001103b},
969 };
970 
971 static void __cpuinit __print_cpu_msr(void)
972 {
973 	unsigned index_min, index_max;
974 	unsigned index;
975 	u64 val;
976 	int i;
977 
978 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
979 		index_min = msr_range_array[i].min;
980 		index_max = msr_range_array[i].max;
981 
982 		for (index = index_min; index < index_max; index++) {
983 			if (rdmsrl_safe(index, &val))
984 				continue;
985 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
986 		}
987 	}
988 }
989 
990 static int show_msr __cpuinitdata;
991 
992 static __init int setup_show_msr(char *arg)
993 {
994 	int num;
995 
996 	get_option(&arg, &num);
997 
998 	if (num > 0)
999 		show_msr = num;
1000 	return 1;
1001 }
1002 __setup("show_msr=", setup_show_msr);
1003 
1004 static __init int setup_noclflush(char *arg)
1005 {
1006 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1007 	return 1;
1008 }
1009 __setup("noclflush", setup_noclflush);
1010 
1011 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1012 {
1013 	const char *vendor = NULL;
1014 
1015 	if (c->x86_vendor < X86_VENDOR_NUM) {
1016 		vendor = this_cpu->c_vendor;
1017 	} else {
1018 		if (c->cpuid_level >= 0)
1019 			vendor = c->x86_vendor_id;
1020 	}
1021 
1022 	if (vendor && !strstr(c->x86_model_id, vendor))
1023 		printk(KERN_CONT "%s ", vendor);
1024 
1025 	if (c->x86_model_id[0])
1026 		printk(KERN_CONT "%s", c->x86_model_id);
1027 	else
1028 		printk(KERN_CONT "%d86", c->x86);
1029 
1030 	if (c->x86_mask || c->cpuid_level >= 0)
1031 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1032 	else
1033 		printk(KERN_CONT "\n");
1034 
1035 	print_cpu_msr(c);
1036 }
1037 
1038 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1039 {
1040 	if (c->cpu_index < show_msr)
1041 		__print_cpu_msr();
1042 }
1043 
1044 static __init int setup_disablecpuid(char *arg)
1045 {
1046 	int bit;
1047 
1048 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1049 		setup_clear_cpu_cap(bit);
1050 	else
1051 		return 0;
1052 
1053 	return 1;
1054 }
1055 __setup("clearcpuid=", setup_disablecpuid);
1056 
1057 #ifdef CONFIG_X86_64
1058 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1059 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1060 				    (unsigned long) nmi_idt_table };
1061 
1062 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1063 		     irq_stack_union) __aligned(PAGE_SIZE);
1064 
1065 /*
1066  * The following four percpu variables are hot.  Align current_task to
1067  * cacheline size such that all four fall in the same cacheline.
1068  */
1069 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1070 	&init_task;
1071 EXPORT_PER_CPU_SYMBOL(current_task);
1072 
1073 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1074 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1075 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1076 
1077 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1078 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1079 
1080 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1081 
1082 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1083 
1084 /*
1085  * Special IST stacks which the CPU switches to when it calls
1086  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1087  * limit), all of them are 4K, except the debug stack which
1088  * is 8K.
1089  */
1090 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1091 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1092 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1093 };
1094 
1095 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1096 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1097 
1098 /* May not be marked __init: used by software suspend */
1099 void syscall_init(void)
1100 {
1101 	/*
1102 	 * LSTAR and STAR live in a bit strange symbiosis.
1103 	 * They both write to the same internal register. STAR allows to
1104 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1105 	 */
1106 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1107 	wrmsrl(MSR_LSTAR, system_call);
1108 	wrmsrl(MSR_CSTAR, ignore_sysret);
1109 
1110 #ifdef CONFIG_IA32_EMULATION
1111 	syscall32_cpu_init();
1112 #endif
1113 
1114 	/* Flags to clear on syscall */
1115 	wrmsrl(MSR_SYSCALL_MASK,
1116 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1117 }
1118 
1119 unsigned long kernel_eflags;
1120 
1121 /*
1122  * Copies of the original ist values from the tss are only accessed during
1123  * debugging, no special alignment required.
1124  */
1125 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1126 
1127 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1128 DEFINE_PER_CPU(int, debug_stack_usage);
1129 
1130 int is_debug_stack(unsigned long addr)
1131 {
1132 	return __get_cpu_var(debug_stack_usage) ||
1133 		(addr <= __get_cpu_var(debug_stack_addr) &&
1134 		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1135 }
1136 
1137 static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1138 
1139 void debug_stack_set_zero(void)
1140 {
1141 	this_cpu_inc(debug_stack_use_ctr);
1142 	load_idt((const struct desc_ptr *)&nmi_idt_descr);
1143 }
1144 
1145 void debug_stack_reset(void)
1146 {
1147 	if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1148 		return;
1149 	if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1150 		load_idt((const struct desc_ptr *)&idt_descr);
1151 }
1152 
1153 #else	/* CONFIG_X86_64 */
1154 
1155 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1156 EXPORT_PER_CPU_SYMBOL(current_task);
1157 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1158 
1159 #ifdef CONFIG_CC_STACKPROTECTOR
1160 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1161 #endif
1162 
1163 /* Make sure %fs and %gs are initialized properly in idle threads */
1164 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1165 {
1166 	memset(regs, 0, sizeof(struct pt_regs));
1167 	regs->fs = __KERNEL_PERCPU;
1168 	regs->gs = __KERNEL_STACK_CANARY;
1169 
1170 	return regs;
1171 }
1172 #endif	/* CONFIG_X86_64 */
1173 
1174 /*
1175  * Clear all 6 debug registers:
1176  */
1177 static void clear_all_debug_regs(void)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < 8; i++) {
1182 		/* Ignore db4, db5 */
1183 		if ((i == 4) || (i == 5))
1184 			continue;
1185 
1186 		set_debugreg(0, i);
1187 	}
1188 }
1189 
1190 #ifdef CONFIG_KGDB
1191 /*
1192  * Restore debug regs if using kgdbwait and you have a kernel debugger
1193  * connection established.
1194  */
1195 static void dbg_restore_debug_regs(void)
1196 {
1197 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1198 		arch_kgdb_ops.correct_hw_break();
1199 }
1200 #else /* ! CONFIG_KGDB */
1201 #define dbg_restore_debug_regs()
1202 #endif /* ! CONFIG_KGDB */
1203 
1204 /*
1205  * cpu_init() initializes state that is per-CPU. Some data is already
1206  * initialized (naturally) in the bootstrap process, such as the GDT
1207  * and IDT. We reload them nevertheless, this function acts as a
1208  * 'CPU state barrier', nothing should get across.
1209  * A lot of state is already set up in PDA init for 64 bit
1210  */
1211 #ifdef CONFIG_X86_64
1212 
1213 void __cpuinit cpu_init(void)
1214 {
1215 	struct orig_ist *oist;
1216 	struct task_struct *me;
1217 	struct tss_struct *t;
1218 	unsigned long v;
1219 	int cpu;
1220 	int i;
1221 
1222 	cpu = stack_smp_processor_id();
1223 	t = &per_cpu(init_tss, cpu);
1224 	oist = &per_cpu(orig_ist, cpu);
1225 
1226 #ifdef CONFIG_NUMA
1227 	if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
1228 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1229 		set_numa_node(early_cpu_to_node(cpu));
1230 #endif
1231 
1232 	me = current;
1233 
1234 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1235 		panic("CPU#%d already initialized!\n", cpu);
1236 
1237 	pr_debug("Initializing CPU#%d\n", cpu);
1238 
1239 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1240 
1241 	/*
1242 	 * Initialize the per-CPU GDT with the boot GDT,
1243 	 * and set up the GDT descriptor:
1244 	 */
1245 
1246 	switch_to_new_gdt(cpu);
1247 	loadsegment(fs, 0);
1248 
1249 	load_idt((const struct desc_ptr *)&idt_descr);
1250 
1251 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1252 	syscall_init();
1253 
1254 	wrmsrl(MSR_FS_BASE, 0);
1255 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1256 	barrier();
1257 
1258 	x86_configure_nx();
1259 	if (cpu != 0)
1260 		enable_x2apic();
1261 
1262 	/*
1263 	 * set up and load the per-CPU TSS
1264 	 */
1265 	if (!oist->ist[0]) {
1266 		char *estacks = per_cpu(exception_stacks, cpu);
1267 
1268 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1269 			estacks += exception_stack_sizes[v];
1270 			oist->ist[v] = t->x86_tss.ist[v] =
1271 					(unsigned long)estacks;
1272 			if (v == DEBUG_STACK-1)
1273 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1274 		}
1275 	}
1276 
1277 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1278 
1279 	/*
1280 	 * <= is required because the CPU will access up to
1281 	 * 8 bits beyond the end of the IO permission bitmap.
1282 	 */
1283 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1284 		t->io_bitmap[i] = ~0UL;
1285 
1286 	atomic_inc(&init_mm.mm_count);
1287 	me->active_mm = &init_mm;
1288 	BUG_ON(me->mm);
1289 	enter_lazy_tlb(&init_mm, me);
1290 
1291 	load_sp0(t, &current->thread);
1292 	set_tss_desc(cpu, t);
1293 	load_TR_desc();
1294 	load_LDT(&init_mm.context);
1295 
1296 	clear_all_debug_regs();
1297 	dbg_restore_debug_regs();
1298 
1299 	fpu_init();
1300 	xsave_init();
1301 
1302 	raw_local_save_flags(kernel_eflags);
1303 
1304 	if (is_uv_system())
1305 		uv_cpu_init();
1306 }
1307 
1308 #else
1309 
1310 void __cpuinit cpu_init(void)
1311 {
1312 	int cpu = smp_processor_id();
1313 	struct task_struct *curr = current;
1314 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1315 	struct thread_struct *thread = &curr->thread;
1316 
1317 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1318 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1319 		for (;;)
1320 			local_irq_enable();
1321 	}
1322 
1323 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1324 
1325 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1326 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1327 
1328 	load_idt(&idt_descr);
1329 	switch_to_new_gdt(cpu);
1330 
1331 	/*
1332 	 * Set up and load the per-CPU TSS and LDT
1333 	 */
1334 	atomic_inc(&init_mm.mm_count);
1335 	curr->active_mm = &init_mm;
1336 	BUG_ON(curr->mm);
1337 	enter_lazy_tlb(&init_mm, curr);
1338 
1339 	load_sp0(t, thread);
1340 	set_tss_desc(cpu, t);
1341 	load_TR_desc();
1342 	load_LDT(&init_mm.context);
1343 
1344 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1345 
1346 #ifdef CONFIG_DOUBLEFAULT
1347 	/* Set up doublefault TSS pointer in the GDT */
1348 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1349 #endif
1350 
1351 	clear_all_debug_regs();
1352 	dbg_restore_debug_regs();
1353 
1354 	fpu_init();
1355 	xsave_init();
1356 }
1357 #endif
1358