xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 82ced6fd)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/mmu_context.h>
17 #include <asm/hypervisor.h>
18 #include <asm/processor.h>
19 #include <asm/sections.h>
20 #include <asm/topology.h>
21 #include <asm/cpumask.h>
22 #include <asm/pgtable.h>
23 #include <asm/atomic.h>
24 #include <asm/proto.h>
25 #include <asm/setup.h>
26 #include <asm/apic.h>
27 #include <asm/desc.h>
28 #include <asm/i387.h>
29 #include <asm/mtrr.h>
30 #include <asm/numa.h>
31 #include <asm/asm.h>
32 #include <asm/cpu.h>
33 #include <asm/mce.h>
34 #include <asm/msr.h>
35 #include <asm/pat.h>
36 #include <asm/smp.h>
37 
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41 
42 #include "cpu.h"
43 
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48 
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51 
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60 
61 static const struct cpu_dev *this_cpu __cpuinitdata;
62 
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
64 #ifdef CONFIG_X86_64
65 	/*
66 	 * We need valid kernel segments for data and code in long mode too
67 	 * IRET will check the segment types  kkeil 2000/10/28
68 	 * Also sysret mandates a special GDT layout
69 	 *
70 	 * TLS descriptors are currently at a different place compared to i386.
71 	 * Hopefully nobody expects them at a fixed place (Wine?)
72 	 */
73 	[GDT_ENTRY_KERNEL32_CS]		= { { { 0x0000ffff, 0x00cf9b00 } } },
74 	[GDT_ENTRY_KERNEL_CS]		= { { { 0x0000ffff, 0x00af9b00 } } },
75 	[GDT_ENTRY_KERNEL_DS]		= { { { 0x0000ffff, 0x00cf9300 } } },
76 	[GDT_ENTRY_DEFAULT_USER32_CS]	= { { { 0x0000ffff, 0x00cffb00 } } },
77 	[GDT_ENTRY_DEFAULT_USER_DS]	= { { { 0x0000ffff, 0x00cff300 } } },
78 	[GDT_ENTRY_DEFAULT_USER_CS]	= { { { 0x0000ffff, 0x00affb00 } } },
79 #else
80 	[GDT_ENTRY_KERNEL_CS]		= { { { 0x0000ffff, 0x00cf9a00 } } },
81 	[GDT_ENTRY_KERNEL_DS]		= { { { 0x0000ffff, 0x00cf9200 } } },
82 	[GDT_ENTRY_DEFAULT_USER_CS]	= { { { 0x0000ffff, 0x00cffa00 } } },
83 	[GDT_ENTRY_DEFAULT_USER_DS]	= { { { 0x0000ffff, 0x00cff200 } } },
84 	/*
85 	 * Segments used for calling PnP BIOS have byte granularity.
86 	 * They code segments and data segments have fixed 64k limits,
87 	 * the transfer segment sizes are set at run time.
88 	 */
89 	/* 32-bit code */
90 	[GDT_ENTRY_PNPBIOS_CS32]	= { { { 0x0000ffff, 0x00409a00 } } },
91 	/* 16-bit code */
92 	[GDT_ENTRY_PNPBIOS_CS16]	= { { { 0x0000ffff, 0x00009a00 } } },
93 	/* 16-bit data */
94 	[GDT_ENTRY_PNPBIOS_DS]		= { { { 0x0000ffff, 0x00009200 } } },
95 	/* 16-bit data */
96 	[GDT_ENTRY_PNPBIOS_TS1]		= { { { 0x00000000, 0x00009200 } } },
97 	/* 16-bit data */
98 	[GDT_ENTRY_PNPBIOS_TS2]		= { { { 0x00000000, 0x00009200 } } },
99 	/*
100 	 * The APM segments have byte granularity and their bases
101 	 * are set at run time.  All have 64k limits.
102 	 */
103 	/* 32-bit code */
104 	[GDT_ENTRY_APMBIOS_BASE]	= { { { 0x0000ffff, 0x00409a00 } } },
105 	/* 16-bit code */
106 	[GDT_ENTRY_APMBIOS_BASE+1]	= { { { 0x0000ffff, 0x00009a00 } } },
107 	/* data */
108 	[GDT_ENTRY_APMBIOS_BASE+2]	= { { { 0x0000ffff, 0x00409200 } } },
109 
110 	[GDT_ENTRY_ESPFIX_SS]		= { { { 0x00000000, 0x00c09200 } } },
111 	[GDT_ENTRY_PERCPU]		= { { { 0x0000ffff, 0x00cf9200 } } },
112 	GDT_STACK_CANARY_INIT
113 #endif
114 } };
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
116 
117 static int __init x86_xsave_setup(char *s)
118 {
119 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
120 	return 1;
121 }
122 __setup("noxsave", x86_xsave_setup);
123 
124 #ifdef CONFIG_X86_32
125 static int cachesize_override __cpuinitdata = -1;
126 static int disable_x86_serial_nr __cpuinitdata = 1;
127 
128 static int __init cachesize_setup(char *str)
129 {
130 	get_option(&str, &cachesize_override);
131 	return 1;
132 }
133 __setup("cachesize=", cachesize_setup);
134 
135 static int __init x86_fxsr_setup(char *s)
136 {
137 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
138 	setup_clear_cpu_cap(X86_FEATURE_XMM);
139 	return 1;
140 }
141 __setup("nofxsr", x86_fxsr_setup);
142 
143 static int __init x86_sep_setup(char *s)
144 {
145 	setup_clear_cpu_cap(X86_FEATURE_SEP);
146 	return 1;
147 }
148 __setup("nosep", x86_sep_setup);
149 
150 /* Standard macro to see if a specific flag is changeable */
151 static inline int flag_is_changeable_p(u32 flag)
152 {
153 	u32 f1, f2;
154 
155 	/*
156 	 * Cyrix and IDT cpus allow disabling of CPUID
157 	 * so the code below may return different results
158 	 * when it is executed before and after enabling
159 	 * the CPUID. Add "volatile" to not allow gcc to
160 	 * optimize the subsequent calls to this function.
161 	 */
162 	asm volatile ("pushfl		\n\t"
163 		      "pushfl		\n\t"
164 		      "popl %0		\n\t"
165 		      "movl %0, %1	\n\t"
166 		      "xorl %2, %0	\n\t"
167 		      "pushl %0		\n\t"
168 		      "popfl		\n\t"
169 		      "pushfl		\n\t"
170 		      "popl %0		\n\t"
171 		      "popfl		\n\t"
172 
173 		      : "=&r" (f1), "=&r" (f2)
174 		      : "ir" (flag));
175 
176 	return ((f1^f2) & flag) != 0;
177 }
178 
179 /* Probe for the CPUID instruction */
180 static int __cpuinit have_cpuid_p(void)
181 {
182 	return flag_is_changeable_p(X86_EFLAGS_ID);
183 }
184 
185 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
186 {
187 	unsigned long lo, hi;
188 
189 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
190 		return;
191 
192 	/* Disable processor serial number: */
193 
194 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
195 	lo |= 0x200000;
196 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197 
198 	printk(KERN_NOTICE "CPU serial number disabled.\n");
199 	clear_cpu_cap(c, X86_FEATURE_PN);
200 
201 	/* Disabling the serial number may affect the cpuid level */
202 	c->cpuid_level = cpuid_eax(0);
203 }
204 
205 static int __init x86_serial_nr_setup(char *s)
206 {
207 	disable_x86_serial_nr = 0;
208 	return 1;
209 }
210 __setup("serialnumber", x86_serial_nr_setup);
211 #else
212 static inline int flag_is_changeable_p(u32 flag)
213 {
214 	return 1;
215 }
216 /* Probe for the CPUID instruction */
217 static inline int have_cpuid_p(void)
218 {
219 	return 1;
220 }
221 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 }
224 #endif
225 
226 /*
227  * Some CPU features depend on higher CPUID levels, which may not always
228  * be available due to CPUID level capping or broken virtualization
229  * software.  Add those features to this table to auto-disable them.
230  */
231 struct cpuid_dependent_feature {
232 	u32 feature;
233 	u32 level;
234 };
235 
236 static const struct cpuid_dependent_feature __cpuinitconst
237 cpuid_dependent_features[] = {
238 	{ X86_FEATURE_MWAIT,		0x00000005 },
239 	{ X86_FEATURE_DCA,		0x00000009 },
240 	{ X86_FEATURE_XSAVE,		0x0000000d },
241 	{ 0, 0 }
242 };
243 
244 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
245 {
246 	const struct cpuid_dependent_feature *df;
247 
248 	for (df = cpuid_dependent_features; df->feature; df++) {
249 
250 		if (!cpu_has(c, df->feature))
251 			continue;
252 		/*
253 		 * Note: cpuid_level is set to -1 if unavailable, but
254 		 * extended_extended_level is set to 0 if unavailable
255 		 * and the legitimate extended levels are all negative
256 		 * when signed; hence the weird messing around with
257 		 * signs here...
258 		 */
259 		if (!((s32)df->level < 0 ?
260 		     (u32)df->level > (u32)c->extended_cpuid_level :
261 		     (s32)df->level > (s32)c->cpuid_level))
262 			continue;
263 
264 		clear_cpu_cap(c, df->feature);
265 		if (!warn)
266 			continue;
267 
268 		printk(KERN_WARNING
269 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
270 				x86_cap_flags[df->feature], df->level);
271 	}
272 }
273 
274 /*
275  * Naming convention should be: <Name> [(<Codename>)]
276  * This table only is used unless init_<vendor>() below doesn't set it;
277  * in particular, if CPUID levels 0x80000002..4 are supported, this
278  * isn't used
279  */
280 
281 /* Look up CPU names by table lookup. */
282 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
283 {
284 	const struct cpu_model_info *info;
285 
286 	if (c->x86_model >= 16)
287 		return NULL;	/* Range check */
288 
289 	if (!this_cpu)
290 		return NULL;
291 
292 	info = this_cpu->c_models;
293 
294 	while (info && info->family) {
295 		if (info->family == c->x86)
296 			return info->model_names[c->x86_model];
297 		info++;
298 	}
299 	return NULL;		/* Not found */
300 }
301 
302 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
303 
304 void load_percpu_segment(int cpu)
305 {
306 #ifdef CONFIG_X86_32
307 	loadsegment(fs, __KERNEL_PERCPU);
308 #else
309 	loadsegment(gs, 0);
310 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
311 #endif
312 	load_stack_canary_segment();
313 }
314 
315 /*
316  * Current gdt points %fs at the "master" per-cpu area: after this,
317  * it's on the real one.
318  */
319 void switch_to_new_gdt(int cpu)
320 {
321 	struct desc_ptr gdt_descr;
322 
323 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
324 	gdt_descr.size = GDT_SIZE - 1;
325 	load_gdt(&gdt_descr);
326 	/* Reload the per-cpu base */
327 
328 	load_percpu_segment(cpu);
329 }
330 
331 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
332 
333 static void __cpuinit default_init(struct cpuinfo_x86 *c)
334 {
335 #ifdef CONFIG_X86_64
336 	display_cacheinfo(c);
337 #else
338 	/* Not much we can do here... */
339 	/* Check if at least it has cpuid */
340 	if (c->cpuid_level == -1) {
341 		/* No cpuid. It must be an ancient CPU */
342 		if (c->x86 == 4)
343 			strcpy(c->x86_model_id, "486");
344 		else if (c->x86 == 3)
345 			strcpy(c->x86_model_id, "386");
346 	}
347 #endif
348 }
349 
350 static const struct cpu_dev __cpuinitconst default_cpu = {
351 	.c_init	= default_init,
352 	.c_vendor = "Unknown",
353 	.c_x86_vendor = X86_VENDOR_UNKNOWN,
354 };
355 
356 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
357 {
358 	unsigned int *v;
359 	char *p, *q;
360 
361 	if (c->extended_cpuid_level < 0x80000004)
362 		return;
363 
364 	v = (unsigned int *)c->x86_model_id;
365 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
366 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
367 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
368 	c->x86_model_id[48] = 0;
369 
370 	/*
371 	 * Intel chips right-justify this string for some dumb reason;
372 	 * undo that brain damage:
373 	 */
374 	p = q = &c->x86_model_id[0];
375 	while (*p == ' ')
376 		p++;
377 	if (p != q) {
378 		while (*p)
379 			*q++ = *p++;
380 		while (q <= &c->x86_model_id[48])
381 			*q++ = '\0';	/* Zero-pad the rest */
382 	}
383 }
384 
385 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
386 {
387 	unsigned int n, dummy, ebx, ecx, edx, l2size;
388 
389 	n = c->extended_cpuid_level;
390 
391 	if (n >= 0x80000005) {
392 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
393 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
394 				edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
395 		c->x86_cache_size = (ecx>>24) + (edx>>24);
396 #ifdef CONFIG_X86_64
397 		/* On K8 L1 TLB is inclusive, so don't count it */
398 		c->x86_tlbsize = 0;
399 #endif
400 	}
401 
402 	if (n < 0x80000006)	/* Some chips just has a large L1. */
403 		return;
404 
405 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
406 	l2size = ecx >> 16;
407 
408 #ifdef CONFIG_X86_64
409 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
410 #else
411 	/* do processor-specific cache resizing */
412 	if (this_cpu->c_size_cache)
413 		l2size = this_cpu->c_size_cache(c, l2size);
414 
415 	/* Allow user to override all this if necessary. */
416 	if (cachesize_override != -1)
417 		l2size = cachesize_override;
418 
419 	if (l2size == 0)
420 		return;		/* Again, no L2 cache is possible */
421 #endif
422 
423 	c->x86_cache_size = l2size;
424 
425 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
426 			l2size, ecx & 0xFF);
427 }
428 
429 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
430 {
431 #ifdef CONFIG_X86_HT
432 	u32 eax, ebx, ecx, edx;
433 	int index_msb, core_bits;
434 
435 	if (!cpu_has(c, X86_FEATURE_HT))
436 		return;
437 
438 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
439 		goto out;
440 
441 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
442 		return;
443 
444 	cpuid(1, &eax, &ebx, &ecx, &edx);
445 
446 	smp_num_siblings = (ebx & 0xff0000) >> 16;
447 
448 	if (smp_num_siblings == 1) {
449 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
450 		goto out;
451 	}
452 
453 	if (smp_num_siblings <= 1)
454 		goto out;
455 
456 	if (smp_num_siblings > nr_cpu_ids) {
457 		pr_warning("CPU: Unsupported number of siblings %d",
458 			   smp_num_siblings);
459 		smp_num_siblings = 1;
460 		return;
461 	}
462 
463 	index_msb = get_count_order(smp_num_siblings);
464 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
465 
466 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
467 
468 	index_msb = get_count_order(smp_num_siblings);
469 
470 	core_bits = get_count_order(c->x86_max_cores);
471 
472 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
473 				       ((1 << core_bits) - 1);
474 
475 out:
476 	if ((c->x86_max_cores * smp_num_siblings) > 1) {
477 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
478 		       c->phys_proc_id);
479 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
480 		       c->cpu_core_id);
481 	}
482 #endif
483 }
484 
485 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
486 {
487 	char *v = c->x86_vendor_id;
488 	static int printed;
489 	int i;
490 
491 	for (i = 0; i < X86_VENDOR_NUM; i++) {
492 		if (!cpu_devs[i])
493 			break;
494 
495 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
496 		    (cpu_devs[i]->c_ident[1] &&
497 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
498 
499 			this_cpu = cpu_devs[i];
500 			c->x86_vendor = this_cpu->c_x86_vendor;
501 			return;
502 		}
503 	}
504 
505 	if (!printed) {
506 		printed++;
507 		printk(KERN_ERR
508 		    "CPU: vendor_id '%s' unknown, using generic init.\n", v);
509 
510 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
511 	}
512 
513 	c->x86_vendor = X86_VENDOR_UNKNOWN;
514 	this_cpu = &default_cpu;
515 }
516 
517 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
518 {
519 	/* Get vendor name */
520 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
521 	      (unsigned int *)&c->x86_vendor_id[0],
522 	      (unsigned int *)&c->x86_vendor_id[8],
523 	      (unsigned int *)&c->x86_vendor_id[4]);
524 
525 	c->x86 = 4;
526 	/* Intel-defined flags: level 0x00000001 */
527 	if (c->cpuid_level >= 0x00000001) {
528 		u32 junk, tfms, cap0, misc;
529 
530 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
531 		c->x86 = (tfms >> 8) & 0xf;
532 		c->x86_model = (tfms >> 4) & 0xf;
533 		c->x86_mask = tfms & 0xf;
534 
535 		if (c->x86 == 0xf)
536 			c->x86 += (tfms >> 20) & 0xff;
537 		if (c->x86 >= 0x6)
538 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
539 
540 		if (cap0 & (1<<19)) {
541 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
542 			c->x86_cache_alignment = c->x86_clflush_size;
543 		}
544 	}
545 }
546 
547 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
548 {
549 	u32 tfms, xlvl;
550 	u32 ebx;
551 
552 	/* Intel-defined flags: level 0x00000001 */
553 	if (c->cpuid_level >= 0x00000001) {
554 		u32 capability, excap;
555 
556 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
557 		c->x86_capability[0] = capability;
558 		c->x86_capability[4] = excap;
559 	}
560 
561 	/* AMD-defined flags: level 0x80000001 */
562 	xlvl = cpuid_eax(0x80000000);
563 	c->extended_cpuid_level = xlvl;
564 
565 	if ((xlvl & 0xffff0000) == 0x80000000) {
566 		if (xlvl >= 0x80000001) {
567 			c->x86_capability[1] = cpuid_edx(0x80000001);
568 			c->x86_capability[6] = cpuid_ecx(0x80000001);
569 		}
570 	}
571 
572 	if (c->extended_cpuid_level >= 0x80000008) {
573 		u32 eax = cpuid_eax(0x80000008);
574 
575 		c->x86_virt_bits = (eax >> 8) & 0xff;
576 		c->x86_phys_bits = eax & 0xff;
577 	}
578 #ifdef CONFIG_X86_32
579 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
580 		c->x86_phys_bits = 36;
581 #endif
582 
583 	if (c->extended_cpuid_level >= 0x80000007)
584 		c->x86_power = cpuid_edx(0x80000007);
585 
586 }
587 
588 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
589 {
590 #ifdef CONFIG_X86_32
591 	int i;
592 
593 	/*
594 	 * First of all, decide if this is a 486 or higher
595 	 * It's a 486 if we can modify the AC flag
596 	 */
597 	if (flag_is_changeable_p(X86_EFLAGS_AC))
598 		c->x86 = 4;
599 	else
600 		c->x86 = 3;
601 
602 	for (i = 0; i < X86_VENDOR_NUM; i++)
603 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
604 			c->x86_vendor_id[0] = 0;
605 			cpu_devs[i]->c_identify(c);
606 			if (c->x86_vendor_id[0]) {
607 				get_cpu_vendor(c);
608 				break;
609 			}
610 		}
611 #endif
612 }
613 
614 /*
615  * Do minimum CPU detection early.
616  * Fields really needed: vendor, cpuid_level, family, model, mask,
617  * cache alignment.
618  * The others are not touched to avoid unwanted side effects.
619  *
620  * WARNING: this function is only called on the BP.  Don't add code here
621  * that is supposed to run on all CPUs.
622  */
623 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
624 {
625 #ifdef CONFIG_X86_64
626 	c->x86_clflush_size = 64;
627 	c->x86_phys_bits = 36;
628 	c->x86_virt_bits = 48;
629 #else
630 	c->x86_clflush_size = 32;
631 	c->x86_phys_bits = 32;
632 	c->x86_virt_bits = 32;
633 #endif
634 	c->x86_cache_alignment = c->x86_clflush_size;
635 
636 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
637 	c->extended_cpuid_level = 0;
638 
639 	if (!have_cpuid_p())
640 		identify_cpu_without_cpuid(c);
641 
642 	/* cyrix could have cpuid enabled via c_identify()*/
643 	if (!have_cpuid_p())
644 		return;
645 
646 	cpu_detect(c);
647 
648 	get_cpu_vendor(c);
649 
650 	get_cpu_cap(c);
651 
652 	if (this_cpu->c_early_init)
653 		this_cpu->c_early_init(c);
654 
655 #ifdef CONFIG_SMP
656 	c->cpu_index = boot_cpu_id;
657 #endif
658 	filter_cpuid_features(c, false);
659 }
660 
661 void __init early_cpu_init(void)
662 {
663 	const struct cpu_dev *const *cdev;
664 	int count = 0;
665 
666 	printk(KERN_INFO "KERNEL supported cpus:\n");
667 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
668 		const struct cpu_dev *cpudev = *cdev;
669 		unsigned int j;
670 
671 		if (count >= X86_VENDOR_NUM)
672 			break;
673 		cpu_devs[count] = cpudev;
674 		count++;
675 
676 		for (j = 0; j < 2; j++) {
677 			if (!cpudev->c_ident[j])
678 				continue;
679 			printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
680 				cpudev->c_ident[j]);
681 		}
682 	}
683 
684 	early_identify_cpu(&boot_cpu_data);
685 }
686 
687 /*
688  * The NOPL instruction is supposed to exist on all CPUs with
689  * family >= 6; unfortunately, that's not true in practice because
690  * of early VIA chips and (more importantly) broken virtualizers that
691  * are not easy to detect.  In the latter case it doesn't even *fail*
692  * reliably, so probing for it doesn't even work.  Disable it completely
693  * unless we can find a reliable way to detect all the broken cases.
694  */
695 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
696 {
697 	clear_cpu_cap(c, X86_FEATURE_NOPL);
698 }
699 
700 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
701 {
702 	c->extended_cpuid_level = 0;
703 
704 	if (!have_cpuid_p())
705 		identify_cpu_without_cpuid(c);
706 
707 	/* cyrix could have cpuid enabled via c_identify()*/
708 	if (!have_cpuid_p())
709 		return;
710 
711 	cpu_detect(c);
712 
713 	get_cpu_vendor(c);
714 
715 	get_cpu_cap(c);
716 
717 	if (c->cpuid_level >= 0x00000001) {
718 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
719 #ifdef CONFIG_X86_32
720 # ifdef CONFIG_X86_HT
721 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
722 # else
723 		c->apicid = c->initial_apicid;
724 # endif
725 #endif
726 
727 #ifdef CONFIG_X86_HT
728 		c->phys_proc_id = c->initial_apicid;
729 #endif
730 	}
731 
732 	get_model_name(c); /* Default name */
733 
734 	init_scattered_cpuid_features(c);
735 	detect_nopl(c);
736 }
737 
738 /*
739  * This does the hard work of actually picking apart the CPU stuff...
740  */
741 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
742 {
743 	int i;
744 
745 	c->loops_per_jiffy = loops_per_jiffy;
746 	c->x86_cache_size = -1;
747 	c->x86_vendor = X86_VENDOR_UNKNOWN;
748 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
749 	c->x86_vendor_id[0] = '\0'; /* Unset */
750 	c->x86_model_id[0] = '\0';  /* Unset */
751 	c->x86_max_cores = 1;
752 	c->x86_coreid_bits = 0;
753 #ifdef CONFIG_X86_64
754 	c->x86_clflush_size = 64;
755 	c->x86_phys_bits = 36;
756 	c->x86_virt_bits = 48;
757 #else
758 	c->cpuid_level = -1;	/* CPUID not detected */
759 	c->x86_clflush_size = 32;
760 	c->x86_phys_bits = 32;
761 	c->x86_virt_bits = 32;
762 #endif
763 	c->x86_cache_alignment = c->x86_clflush_size;
764 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
765 
766 	generic_identify(c);
767 
768 	if (this_cpu->c_identify)
769 		this_cpu->c_identify(c);
770 
771 #ifdef CONFIG_X86_64
772 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
773 #endif
774 
775 	/*
776 	 * Vendor-specific initialization.  In this section we
777 	 * canonicalize the feature flags, meaning if there are
778 	 * features a certain CPU supports which CPUID doesn't
779 	 * tell us, CPUID claiming incorrect flags, or other bugs,
780 	 * we handle them here.
781 	 *
782 	 * At the end of this section, c->x86_capability better
783 	 * indicate the features this CPU genuinely supports!
784 	 */
785 	if (this_cpu->c_init)
786 		this_cpu->c_init(c);
787 
788 	/* Disable the PN if appropriate */
789 	squash_the_stupid_serial_number(c);
790 
791 	/*
792 	 * The vendor-specific functions might have changed features.
793 	 * Now we do "generic changes."
794 	 */
795 
796 	/* Filter out anything that depends on CPUID levels we don't have */
797 	filter_cpuid_features(c, true);
798 
799 	/* If the model name is still unset, do table lookup. */
800 	if (!c->x86_model_id[0]) {
801 		const char *p;
802 		p = table_lookup_model(c);
803 		if (p)
804 			strcpy(c->x86_model_id, p);
805 		else
806 			/* Last resort... */
807 			sprintf(c->x86_model_id, "%02x/%02x",
808 				c->x86, c->x86_model);
809 	}
810 
811 #ifdef CONFIG_X86_64
812 	detect_ht(c);
813 #endif
814 
815 	init_hypervisor(c);
816 	/*
817 	 * On SMP, boot_cpu_data holds the common feature set between
818 	 * all CPUs; so make sure that we indicate which features are
819 	 * common between the CPUs.  The first time this routine gets
820 	 * executed, c == &boot_cpu_data.
821 	 */
822 	if (c != &boot_cpu_data) {
823 		/* AND the already accumulated flags with these */
824 		for (i = 0; i < NCAPINTS; i++)
825 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
826 	}
827 
828 	/* Clear all flags overriden by options */
829 	for (i = 0; i < NCAPINTS; i++)
830 		c->x86_capability[i] &= ~cleared_cpu_caps[i];
831 
832 #ifdef CONFIG_X86_MCE
833 	/* Init Machine Check Exception if available. */
834 	mcheck_init(c);
835 #endif
836 
837 	select_idle_routine(c);
838 
839 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
840 	numa_add_cpu(smp_processor_id());
841 #endif
842 }
843 
844 #ifdef CONFIG_X86_64
845 static void vgetcpu_set_mode(void)
846 {
847 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
848 		vgetcpu_mode = VGETCPU_RDTSCP;
849 	else
850 		vgetcpu_mode = VGETCPU_LSL;
851 }
852 #endif
853 
854 void __init identify_boot_cpu(void)
855 {
856 	identify_cpu(&boot_cpu_data);
857 	init_c1e_mask();
858 #ifdef CONFIG_X86_32
859 	sysenter_setup();
860 	enable_sep_cpu();
861 #else
862 	vgetcpu_set_mode();
863 #endif
864 }
865 
866 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
867 {
868 	BUG_ON(c == &boot_cpu_data);
869 	identify_cpu(c);
870 #ifdef CONFIG_X86_32
871 	enable_sep_cpu();
872 #endif
873 	mtrr_ap_init();
874 }
875 
876 struct msr_range {
877 	unsigned	min;
878 	unsigned	max;
879 };
880 
881 static const struct msr_range msr_range_array[] __cpuinitconst = {
882 	{ 0x00000000, 0x00000418},
883 	{ 0xc0000000, 0xc000040b},
884 	{ 0xc0010000, 0xc0010142},
885 	{ 0xc0011000, 0xc001103b},
886 };
887 
888 static void __cpuinit print_cpu_msr(void)
889 {
890 	unsigned index_min, index_max;
891 	unsigned index;
892 	u64 val;
893 	int i;
894 
895 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
896 		index_min = msr_range_array[i].min;
897 		index_max = msr_range_array[i].max;
898 
899 		for (index = index_min; index < index_max; index++) {
900 			if (rdmsrl_amd_safe(index, &val))
901 				continue;
902 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
903 		}
904 	}
905 }
906 
907 static int show_msr __cpuinitdata;
908 
909 static __init int setup_show_msr(char *arg)
910 {
911 	int num;
912 
913 	get_option(&arg, &num);
914 
915 	if (num > 0)
916 		show_msr = num;
917 	return 1;
918 }
919 __setup("show_msr=", setup_show_msr);
920 
921 static __init int setup_noclflush(char *arg)
922 {
923 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
924 	return 1;
925 }
926 __setup("noclflush", setup_noclflush);
927 
928 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
929 {
930 	const char *vendor = NULL;
931 
932 	if (c->x86_vendor < X86_VENDOR_NUM) {
933 		vendor = this_cpu->c_vendor;
934 	} else {
935 		if (c->cpuid_level >= 0)
936 			vendor = c->x86_vendor_id;
937 	}
938 
939 	if (vendor && !strstr(c->x86_model_id, vendor))
940 		printk(KERN_CONT "%s ", vendor);
941 
942 	if (c->x86_model_id[0])
943 		printk(KERN_CONT "%s", c->x86_model_id);
944 	else
945 		printk(KERN_CONT "%d86", c->x86);
946 
947 	if (c->x86_mask || c->cpuid_level >= 0)
948 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
949 	else
950 		printk(KERN_CONT "\n");
951 
952 #ifdef CONFIG_SMP
953 	if (c->cpu_index < show_msr)
954 		print_cpu_msr();
955 #else
956 	if (show_msr)
957 		print_cpu_msr();
958 #endif
959 }
960 
961 static __init int setup_disablecpuid(char *arg)
962 {
963 	int bit;
964 
965 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
966 		setup_clear_cpu_cap(bit);
967 	else
968 		return 0;
969 
970 	return 1;
971 }
972 __setup("clearcpuid=", setup_disablecpuid);
973 
974 #ifdef CONFIG_X86_64
975 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
976 
977 DEFINE_PER_CPU_FIRST(union irq_stack_union,
978 		     irq_stack_union) __aligned(PAGE_SIZE);
979 
980 DEFINE_PER_CPU(char *, irq_stack_ptr) =
981 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
982 
983 DEFINE_PER_CPU(unsigned long, kernel_stack) =
984 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
985 EXPORT_PER_CPU_SYMBOL(kernel_stack);
986 
987 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
988 
989 /*
990  * Special IST stacks which the CPU switches to when it calls
991  * an IST-marked descriptor entry. Up to 7 stacks (hardware
992  * limit), all of them are 4K, except the debug stack which
993  * is 8K.
994  */
995 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
996 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
997 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
998 };
999 
1000 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1001 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1002 	__aligned(PAGE_SIZE);
1003 
1004 /* May not be marked __init: used by software suspend */
1005 void syscall_init(void)
1006 {
1007 	/*
1008 	 * LSTAR and STAR live in a bit strange symbiosis.
1009 	 * They both write to the same internal register. STAR allows to
1010 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1011 	 */
1012 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1013 	wrmsrl(MSR_LSTAR, system_call);
1014 	wrmsrl(MSR_CSTAR, ignore_sysret);
1015 
1016 #ifdef CONFIG_IA32_EMULATION
1017 	syscall32_cpu_init();
1018 #endif
1019 
1020 	/* Flags to clear on syscall */
1021 	wrmsrl(MSR_SYSCALL_MASK,
1022 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1023 }
1024 
1025 unsigned long kernel_eflags;
1026 
1027 /*
1028  * Copies of the original ist values from the tss are only accessed during
1029  * debugging, no special alignment required.
1030  */
1031 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1032 
1033 #else	/* CONFIG_X86_64 */
1034 
1035 #ifdef CONFIG_CC_STACKPROTECTOR
1036 DEFINE_PER_CPU(unsigned long, stack_canary);
1037 #endif
1038 
1039 /* Make sure %fs and %gs are initialized properly in idle threads */
1040 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1041 {
1042 	memset(regs, 0, sizeof(struct pt_regs));
1043 	regs->fs = __KERNEL_PERCPU;
1044 	regs->gs = __KERNEL_STACK_CANARY;
1045 
1046 	return regs;
1047 }
1048 #endif	/* CONFIG_X86_64 */
1049 
1050 /*
1051  * Clear all 6 debug registers:
1052  */
1053 static void clear_all_debug_regs(void)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < 8; i++) {
1058 		/* Ignore db4, db5 */
1059 		if ((i == 4) || (i == 5))
1060 			continue;
1061 
1062 		set_debugreg(0, i);
1063 	}
1064 }
1065 
1066 /*
1067  * cpu_init() initializes state that is per-CPU. Some data is already
1068  * initialized (naturally) in the bootstrap process, such as the GDT
1069  * and IDT. We reload them nevertheless, this function acts as a
1070  * 'CPU state barrier', nothing should get across.
1071  * A lot of state is already set up in PDA init for 64 bit
1072  */
1073 #ifdef CONFIG_X86_64
1074 
1075 void __cpuinit cpu_init(void)
1076 {
1077 	struct orig_ist *orig_ist;
1078 	struct task_struct *me;
1079 	struct tss_struct *t;
1080 	unsigned long v;
1081 	int cpu;
1082 	int i;
1083 
1084 	cpu = stack_smp_processor_id();
1085 	t = &per_cpu(init_tss, cpu);
1086 	orig_ist = &per_cpu(orig_ist, cpu);
1087 
1088 #ifdef CONFIG_NUMA
1089 	if (cpu != 0 && percpu_read(node_number) == 0 &&
1090 	    cpu_to_node(cpu) != NUMA_NO_NODE)
1091 		percpu_write(node_number, cpu_to_node(cpu));
1092 #endif
1093 
1094 	me = current;
1095 
1096 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1097 		panic("CPU#%d already initialized!\n", cpu);
1098 
1099 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1100 
1101 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1102 
1103 	/*
1104 	 * Initialize the per-CPU GDT with the boot GDT,
1105 	 * and set up the GDT descriptor:
1106 	 */
1107 
1108 	switch_to_new_gdt(cpu);
1109 	loadsegment(fs, 0);
1110 
1111 	load_idt((const struct desc_ptr *)&idt_descr);
1112 
1113 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1114 	syscall_init();
1115 
1116 	wrmsrl(MSR_FS_BASE, 0);
1117 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1118 	barrier();
1119 
1120 	check_efer();
1121 	if (cpu != 0)
1122 		enable_x2apic();
1123 
1124 	/*
1125 	 * set up and load the per-CPU TSS
1126 	 */
1127 	if (!orig_ist->ist[0]) {
1128 		char *estacks = per_cpu(exception_stacks, cpu);
1129 
1130 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1131 			estacks += exception_stack_sizes[v];
1132 			orig_ist->ist[v] = t->x86_tss.ist[v] =
1133 					(unsigned long)estacks;
1134 		}
1135 	}
1136 
1137 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1138 
1139 	/*
1140 	 * <= is required because the CPU will access up to
1141 	 * 8 bits beyond the end of the IO permission bitmap.
1142 	 */
1143 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1144 		t->io_bitmap[i] = ~0UL;
1145 
1146 	atomic_inc(&init_mm.mm_count);
1147 	me->active_mm = &init_mm;
1148 	BUG_ON(me->mm);
1149 	enter_lazy_tlb(&init_mm, me);
1150 
1151 	load_sp0(t, &current->thread);
1152 	set_tss_desc(cpu, t);
1153 	load_TR_desc();
1154 	load_LDT(&init_mm.context);
1155 
1156 #ifdef CONFIG_KGDB
1157 	/*
1158 	 * If the kgdb is connected no debug regs should be altered.  This
1159 	 * is only applicable when KGDB and a KGDB I/O module are built
1160 	 * into the kernel and you are using early debugging with
1161 	 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1162 	 */
1163 	if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1164 		arch_kgdb_ops.correct_hw_break();
1165 	else
1166 #endif
1167 		clear_all_debug_regs();
1168 
1169 	fpu_init();
1170 
1171 	raw_local_save_flags(kernel_eflags);
1172 
1173 	if (is_uv_system())
1174 		uv_cpu_init();
1175 }
1176 
1177 #else
1178 
1179 void __cpuinit cpu_init(void)
1180 {
1181 	int cpu = smp_processor_id();
1182 	struct task_struct *curr = current;
1183 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1184 	struct thread_struct *thread = &curr->thread;
1185 
1186 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1187 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1188 		for (;;)
1189 			local_irq_enable();
1190 	}
1191 
1192 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1193 
1194 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1195 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1196 
1197 	load_idt(&idt_descr);
1198 	switch_to_new_gdt(cpu);
1199 
1200 	/*
1201 	 * Set up and load the per-CPU TSS and LDT
1202 	 */
1203 	atomic_inc(&init_mm.mm_count);
1204 	curr->active_mm = &init_mm;
1205 	BUG_ON(curr->mm);
1206 	enter_lazy_tlb(&init_mm, curr);
1207 
1208 	load_sp0(t, thread);
1209 	set_tss_desc(cpu, t);
1210 	load_TR_desc();
1211 	load_LDT(&init_mm.context);
1212 
1213 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1214 
1215 #ifdef CONFIG_DOUBLEFAULT
1216 	/* Set up doublefault TSS pointer in the GDT */
1217 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1218 #endif
1219 
1220 	clear_all_debug_regs();
1221 
1222 	/*
1223 	 * Force FPU initialization:
1224 	 */
1225 	if (cpu_has_xsave)
1226 		current_thread_info()->status = TS_XSAVE;
1227 	else
1228 		current_thread_info()->status = 0;
1229 	clear_used_math();
1230 	mxcsr_feature_mask_init();
1231 
1232 	/*
1233 	 * Boot processor to setup the FP and extended state context info.
1234 	 */
1235 	if (smp_processor_id() == boot_cpu_id)
1236 		init_thread_xstate();
1237 
1238 	xsave_init();
1239 }
1240 #endif
1241