1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/export.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/init.h> 12 #include <linux/kprobes.h> 13 #include <linux/kgdb.h> 14 #include <linux/smp.h> 15 #include <linux/io.h> 16 #include <linux/syscore_ops.h> 17 18 #include <asm/stackprotector.h> 19 #include <asm/perf_event.h> 20 #include <asm/mmu_context.h> 21 #include <asm/archrandom.h> 22 #include <asm/hypervisor.h> 23 #include <asm/processor.h> 24 #include <asm/tlbflush.h> 25 #include <asm/debugreg.h> 26 #include <asm/sections.h> 27 #include <asm/vsyscall.h> 28 #include <linux/topology.h> 29 #include <linux/cpumask.h> 30 #include <asm/pgtable.h> 31 #include <linux/atomic.h> 32 #include <asm/proto.h> 33 #include <asm/setup.h> 34 #include <asm/apic.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/mtrr.h> 38 #include <linux/numa.h> 39 #include <asm/asm.h> 40 #include <asm/bugs.h> 41 #include <asm/cpu.h> 42 #include <asm/mce.h> 43 #include <asm/msr.h> 44 #include <asm/pat.h> 45 #include <asm/microcode.h> 46 #include <asm/microcode_intel.h> 47 48 #ifdef CONFIG_X86_LOCAL_APIC 49 #include <asm/uv/uv.h> 50 #endif 51 52 #include "cpu.h" 53 54 /* all of these masks are initialized in setup_cpu_local_masks() */ 55 cpumask_var_t cpu_initialized_mask; 56 cpumask_var_t cpu_callout_mask; 57 cpumask_var_t cpu_callin_mask; 58 59 /* representing cpus for which sibling maps can be computed */ 60 cpumask_var_t cpu_sibling_setup_mask; 61 62 /* correctly size the local cpu masks */ 63 void __init setup_cpu_local_masks(void) 64 { 65 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 66 alloc_bootmem_cpumask_var(&cpu_callin_mask); 67 alloc_bootmem_cpumask_var(&cpu_callout_mask); 68 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 69 } 70 71 static void default_init(struct cpuinfo_x86 *c) 72 { 73 #ifdef CONFIG_X86_64 74 cpu_detect_cache_sizes(c); 75 #else 76 /* Not much we can do here... */ 77 /* Check if at least it has cpuid */ 78 if (c->cpuid_level == -1) { 79 /* No cpuid. It must be an ancient CPU */ 80 if (c->x86 == 4) 81 strcpy(c->x86_model_id, "486"); 82 else if (c->x86 == 3) 83 strcpy(c->x86_model_id, "386"); 84 } 85 #endif 86 } 87 88 static const struct cpu_dev default_cpu = { 89 .c_init = default_init, 90 .c_vendor = "Unknown", 91 .c_x86_vendor = X86_VENDOR_UNKNOWN, 92 }; 93 94 static const struct cpu_dev *this_cpu = &default_cpu; 95 96 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 97 #ifdef CONFIG_X86_64 98 /* 99 * We need valid kernel segments for data and code in long mode too 100 * IRET will check the segment types kkeil 2000/10/28 101 * Also sysret mandates a special GDT layout 102 * 103 * TLS descriptors are currently at a different place compared to i386. 104 * Hopefully nobody expects them at a fixed place (Wine?) 105 */ 106 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 107 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 108 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 109 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 110 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 112 #else 113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 117 /* 118 * Segments used for calling PnP BIOS have byte granularity. 119 * They code segments and data segments have fixed 64k limits, 120 * the transfer segment sizes are set at run time. 121 */ 122 /* 32-bit code */ 123 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 124 /* 16-bit code */ 125 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 126 /* 16-bit data */ 127 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 128 /* 16-bit data */ 129 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 130 /* 16-bit data */ 131 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 132 /* 133 * The APM segments have byte granularity and their bases 134 * are set at run time. All have 64k limits. 135 */ 136 /* 32-bit code */ 137 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 138 /* 16-bit code */ 139 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 140 /* data */ 141 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 142 143 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 144 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 145 GDT_STACK_CANARY_INIT 146 #endif 147 } }; 148 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 149 150 static int __init x86_mpx_setup(char *s) 151 { 152 /* require an exact match without trailing characters */ 153 if (strlen(s)) 154 return 0; 155 156 /* do not emit a message if the feature is not present */ 157 if (!boot_cpu_has(X86_FEATURE_MPX)) 158 return 1; 159 160 setup_clear_cpu_cap(X86_FEATURE_MPX); 161 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 162 return 1; 163 } 164 __setup("nompx", x86_mpx_setup); 165 166 static int __init x86_noinvpcid_setup(char *s) 167 { 168 /* noinvpcid doesn't accept parameters */ 169 if (s) 170 return -EINVAL; 171 172 /* do not emit a message if the feature is not present */ 173 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 174 return 0; 175 176 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 177 pr_info("noinvpcid: INVPCID feature disabled\n"); 178 return 0; 179 } 180 early_param("noinvpcid", x86_noinvpcid_setup); 181 182 #ifdef CONFIG_X86_32 183 static int cachesize_override = -1; 184 static int disable_x86_serial_nr = 1; 185 186 static int __init cachesize_setup(char *str) 187 { 188 get_option(&str, &cachesize_override); 189 return 1; 190 } 191 __setup("cachesize=", cachesize_setup); 192 193 static int __init x86_sep_setup(char *s) 194 { 195 setup_clear_cpu_cap(X86_FEATURE_SEP); 196 return 1; 197 } 198 __setup("nosep", x86_sep_setup); 199 200 /* Standard macro to see if a specific flag is changeable */ 201 static inline int flag_is_changeable_p(u32 flag) 202 { 203 u32 f1, f2; 204 205 /* 206 * Cyrix and IDT cpus allow disabling of CPUID 207 * so the code below may return different results 208 * when it is executed before and after enabling 209 * the CPUID. Add "volatile" to not allow gcc to 210 * optimize the subsequent calls to this function. 211 */ 212 asm volatile ("pushfl \n\t" 213 "pushfl \n\t" 214 "popl %0 \n\t" 215 "movl %0, %1 \n\t" 216 "xorl %2, %0 \n\t" 217 "pushl %0 \n\t" 218 "popfl \n\t" 219 "pushfl \n\t" 220 "popl %0 \n\t" 221 "popfl \n\t" 222 223 : "=&r" (f1), "=&r" (f2) 224 : "ir" (flag)); 225 226 return ((f1^f2) & flag) != 0; 227 } 228 229 /* Probe for the CPUID instruction */ 230 int have_cpuid_p(void) 231 { 232 return flag_is_changeable_p(X86_EFLAGS_ID); 233 } 234 235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 236 { 237 unsigned long lo, hi; 238 239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 240 return; 241 242 /* Disable processor serial number: */ 243 244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 245 lo |= 0x200000; 246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 247 248 pr_notice("CPU serial number disabled.\n"); 249 clear_cpu_cap(c, X86_FEATURE_PN); 250 251 /* Disabling the serial number may affect the cpuid level */ 252 c->cpuid_level = cpuid_eax(0); 253 } 254 255 static int __init x86_serial_nr_setup(char *s) 256 { 257 disable_x86_serial_nr = 0; 258 return 1; 259 } 260 __setup("serialnumber", x86_serial_nr_setup); 261 #else 262 static inline int flag_is_changeable_p(u32 flag) 263 { 264 return 1; 265 } 266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 267 { 268 } 269 #endif 270 271 static __init int setup_disable_smep(char *arg) 272 { 273 setup_clear_cpu_cap(X86_FEATURE_SMEP); 274 /* Check for things that depend on SMEP being enabled: */ 275 check_mpx_erratum(&boot_cpu_data); 276 return 1; 277 } 278 __setup("nosmep", setup_disable_smep); 279 280 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 281 { 282 if (cpu_has(c, X86_FEATURE_SMEP)) 283 cr4_set_bits(X86_CR4_SMEP); 284 } 285 286 static __init int setup_disable_smap(char *arg) 287 { 288 setup_clear_cpu_cap(X86_FEATURE_SMAP); 289 return 1; 290 } 291 __setup("nosmap", setup_disable_smap); 292 293 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 294 { 295 unsigned long eflags = native_save_fl(); 296 297 /* This should have been cleared long ago */ 298 BUG_ON(eflags & X86_EFLAGS_AC); 299 300 if (cpu_has(c, X86_FEATURE_SMAP)) { 301 #ifdef CONFIG_X86_SMAP 302 cr4_set_bits(X86_CR4_SMAP); 303 #else 304 cr4_clear_bits(X86_CR4_SMAP); 305 #endif 306 } 307 } 308 309 /* 310 * Protection Keys are not available in 32-bit mode. 311 */ 312 static bool pku_disabled; 313 314 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 315 { 316 /* check the boot processor, plus compile options for PKU: */ 317 if (!cpu_feature_enabled(X86_FEATURE_PKU)) 318 return; 319 /* checks the actual processor's cpuid bits: */ 320 if (!cpu_has(c, X86_FEATURE_PKU)) 321 return; 322 if (pku_disabled) 323 return; 324 325 cr4_set_bits(X86_CR4_PKE); 326 /* 327 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE 328 * cpuid bit to be set. We need to ensure that we 329 * update that bit in this CPU's "cpu_info". 330 */ 331 get_cpu_cap(c); 332 } 333 334 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 335 static __init int setup_disable_pku(char *arg) 336 { 337 /* 338 * Do not clear the X86_FEATURE_PKU bit. All of the 339 * runtime checks are against OSPKE so clearing the 340 * bit does nothing. 341 * 342 * This way, we will see "pku" in cpuinfo, but not 343 * "ospke", which is exactly what we want. It shows 344 * that the CPU has PKU, but the OS has not enabled it. 345 * This happens to be exactly how a system would look 346 * if we disabled the config option. 347 */ 348 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 349 pku_disabled = true; 350 return 1; 351 } 352 __setup("nopku", setup_disable_pku); 353 #endif /* CONFIG_X86_64 */ 354 355 /* 356 * Some CPU features depend on higher CPUID levels, which may not always 357 * be available due to CPUID level capping or broken virtualization 358 * software. Add those features to this table to auto-disable them. 359 */ 360 struct cpuid_dependent_feature { 361 u32 feature; 362 u32 level; 363 }; 364 365 static const struct cpuid_dependent_feature 366 cpuid_dependent_features[] = { 367 { X86_FEATURE_MWAIT, 0x00000005 }, 368 { X86_FEATURE_DCA, 0x00000009 }, 369 { X86_FEATURE_XSAVE, 0x0000000d }, 370 { 0, 0 } 371 }; 372 373 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 374 { 375 const struct cpuid_dependent_feature *df; 376 377 for (df = cpuid_dependent_features; df->feature; df++) { 378 379 if (!cpu_has(c, df->feature)) 380 continue; 381 /* 382 * Note: cpuid_level is set to -1 if unavailable, but 383 * extended_extended_level is set to 0 if unavailable 384 * and the legitimate extended levels are all negative 385 * when signed; hence the weird messing around with 386 * signs here... 387 */ 388 if (!((s32)df->level < 0 ? 389 (u32)df->level > (u32)c->extended_cpuid_level : 390 (s32)df->level > (s32)c->cpuid_level)) 391 continue; 392 393 clear_cpu_cap(c, df->feature); 394 if (!warn) 395 continue; 396 397 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 398 x86_cap_flag(df->feature), df->level); 399 } 400 } 401 402 /* 403 * Naming convention should be: <Name> [(<Codename>)] 404 * This table only is used unless init_<vendor>() below doesn't set it; 405 * in particular, if CPUID levels 0x80000002..4 are supported, this 406 * isn't used 407 */ 408 409 /* Look up CPU names by table lookup. */ 410 static const char *table_lookup_model(struct cpuinfo_x86 *c) 411 { 412 #ifdef CONFIG_X86_32 413 const struct legacy_cpu_model_info *info; 414 415 if (c->x86_model >= 16) 416 return NULL; /* Range check */ 417 418 if (!this_cpu) 419 return NULL; 420 421 info = this_cpu->legacy_models; 422 423 while (info->family) { 424 if (info->family == c->x86) 425 return info->model_names[c->x86_model]; 426 info++; 427 } 428 #endif 429 return NULL; /* Not found */ 430 } 431 432 __u32 cpu_caps_cleared[NCAPINTS]; 433 __u32 cpu_caps_set[NCAPINTS]; 434 435 void load_percpu_segment(int cpu) 436 { 437 #ifdef CONFIG_X86_32 438 loadsegment(fs, __KERNEL_PERCPU); 439 #else 440 __loadsegment_simple(gs, 0); 441 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 442 #endif 443 load_stack_canary_segment(); 444 } 445 446 /* 447 * Current gdt points %fs at the "master" per-cpu area: after this, 448 * it's on the real one. 449 */ 450 void switch_to_new_gdt(int cpu) 451 { 452 struct desc_ptr gdt_descr; 453 454 gdt_descr.address = (long)get_cpu_gdt_table(cpu); 455 gdt_descr.size = GDT_SIZE - 1; 456 load_gdt(&gdt_descr); 457 /* Reload the per-cpu base */ 458 459 load_percpu_segment(cpu); 460 } 461 462 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 463 464 static void get_model_name(struct cpuinfo_x86 *c) 465 { 466 unsigned int *v; 467 char *p, *q, *s; 468 469 if (c->extended_cpuid_level < 0x80000004) 470 return; 471 472 v = (unsigned int *)c->x86_model_id; 473 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 474 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 475 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 476 c->x86_model_id[48] = 0; 477 478 /* Trim whitespace */ 479 p = q = s = &c->x86_model_id[0]; 480 481 while (*p == ' ') 482 p++; 483 484 while (*p) { 485 /* Note the last non-whitespace index */ 486 if (!isspace(*p)) 487 s = q; 488 489 *q++ = *p++; 490 } 491 492 *(s + 1) = '\0'; 493 } 494 495 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 496 { 497 unsigned int n, dummy, ebx, ecx, edx, l2size; 498 499 n = c->extended_cpuid_level; 500 501 if (n >= 0x80000005) { 502 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 503 c->x86_cache_size = (ecx>>24) + (edx>>24); 504 #ifdef CONFIG_X86_64 505 /* On K8 L1 TLB is inclusive, so don't count it */ 506 c->x86_tlbsize = 0; 507 #endif 508 } 509 510 if (n < 0x80000006) /* Some chips just has a large L1. */ 511 return; 512 513 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 514 l2size = ecx >> 16; 515 516 #ifdef CONFIG_X86_64 517 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 518 #else 519 /* do processor-specific cache resizing */ 520 if (this_cpu->legacy_cache_size) 521 l2size = this_cpu->legacy_cache_size(c, l2size); 522 523 /* Allow user to override all this if necessary. */ 524 if (cachesize_override != -1) 525 l2size = cachesize_override; 526 527 if (l2size == 0) 528 return; /* Again, no L2 cache is possible */ 529 #endif 530 531 c->x86_cache_size = l2size; 532 } 533 534 u16 __read_mostly tlb_lli_4k[NR_INFO]; 535 u16 __read_mostly tlb_lli_2m[NR_INFO]; 536 u16 __read_mostly tlb_lli_4m[NR_INFO]; 537 u16 __read_mostly tlb_lld_4k[NR_INFO]; 538 u16 __read_mostly tlb_lld_2m[NR_INFO]; 539 u16 __read_mostly tlb_lld_4m[NR_INFO]; 540 u16 __read_mostly tlb_lld_1g[NR_INFO]; 541 542 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 543 { 544 if (this_cpu->c_detect_tlb) 545 this_cpu->c_detect_tlb(c); 546 547 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 548 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 549 tlb_lli_4m[ENTRIES]); 550 551 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 552 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 553 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 554 } 555 556 void detect_ht(struct cpuinfo_x86 *c) 557 { 558 #ifdef CONFIG_SMP 559 u32 eax, ebx, ecx, edx; 560 int index_msb, core_bits; 561 static bool printed; 562 563 if (!cpu_has(c, X86_FEATURE_HT)) 564 return; 565 566 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 567 goto out; 568 569 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 570 return; 571 572 cpuid(1, &eax, &ebx, &ecx, &edx); 573 574 smp_num_siblings = (ebx & 0xff0000) >> 16; 575 576 if (smp_num_siblings == 1) { 577 pr_info_once("CPU0: Hyper-Threading is disabled\n"); 578 goto out; 579 } 580 581 if (smp_num_siblings <= 1) 582 goto out; 583 584 index_msb = get_count_order(smp_num_siblings); 585 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 586 587 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 588 589 index_msb = get_count_order(smp_num_siblings); 590 591 core_bits = get_count_order(c->x86_max_cores); 592 593 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 594 ((1 << core_bits) - 1); 595 596 out: 597 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 598 pr_info("CPU: Physical Processor ID: %d\n", 599 c->phys_proc_id); 600 pr_info("CPU: Processor Core ID: %d\n", 601 c->cpu_core_id); 602 printed = 1; 603 } 604 #endif 605 } 606 607 static void get_cpu_vendor(struct cpuinfo_x86 *c) 608 { 609 char *v = c->x86_vendor_id; 610 int i; 611 612 for (i = 0; i < X86_VENDOR_NUM; i++) { 613 if (!cpu_devs[i]) 614 break; 615 616 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 617 (cpu_devs[i]->c_ident[1] && 618 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 619 620 this_cpu = cpu_devs[i]; 621 c->x86_vendor = this_cpu->c_x86_vendor; 622 return; 623 } 624 } 625 626 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 627 "CPU: Your system may be unstable.\n", v); 628 629 c->x86_vendor = X86_VENDOR_UNKNOWN; 630 this_cpu = &default_cpu; 631 } 632 633 void cpu_detect(struct cpuinfo_x86 *c) 634 { 635 /* Get vendor name */ 636 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 637 (unsigned int *)&c->x86_vendor_id[0], 638 (unsigned int *)&c->x86_vendor_id[8], 639 (unsigned int *)&c->x86_vendor_id[4]); 640 641 c->x86 = 4; 642 /* Intel-defined flags: level 0x00000001 */ 643 if (c->cpuid_level >= 0x00000001) { 644 u32 junk, tfms, cap0, misc; 645 646 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 647 c->x86 = x86_family(tfms); 648 c->x86_model = x86_model(tfms); 649 c->x86_mask = x86_stepping(tfms); 650 651 if (cap0 & (1<<19)) { 652 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 653 c->x86_cache_alignment = c->x86_clflush_size; 654 } 655 } 656 } 657 658 void get_cpu_cap(struct cpuinfo_x86 *c) 659 { 660 u32 eax, ebx, ecx, edx; 661 662 /* Intel-defined flags: level 0x00000001 */ 663 if (c->cpuid_level >= 0x00000001) { 664 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 665 666 c->x86_capability[CPUID_1_ECX] = ecx; 667 c->x86_capability[CPUID_1_EDX] = edx; 668 } 669 670 /* Additional Intel-defined flags: level 0x00000007 */ 671 if (c->cpuid_level >= 0x00000007) { 672 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 673 674 c->x86_capability[CPUID_7_0_EBX] = ebx; 675 676 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 677 c->x86_capability[CPUID_7_ECX] = ecx; 678 } 679 680 /* Extended state features: level 0x0000000d */ 681 if (c->cpuid_level >= 0x0000000d) { 682 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 683 684 c->x86_capability[CPUID_D_1_EAX] = eax; 685 } 686 687 /* Additional Intel-defined flags: level 0x0000000F */ 688 if (c->cpuid_level >= 0x0000000F) { 689 690 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 691 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 692 c->x86_capability[CPUID_F_0_EDX] = edx; 693 694 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 695 /* will be overridden if occupancy monitoring exists */ 696 c->x86_cache_max_rmid = ebx; 697 698 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 699 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 700 c->x86_capability[CPUID_F_1_EDX] = edx; 701 702 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || 703 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || 704 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { 705 c->x86_cache_max_rmid = ecx; 706 c->x86_cache_occ_scale = ebx; 707 } 708 } else { 709 c->x86_cache_max_rmid = -1; 710 c->x86_cache_occ_scale = -1; 711 } 712 } 713 714 /* AMD-defined flags: level 0x80000001 */ 715 eax = cpuid_eax(0x80000000); 716 c->extended_cpuid_level = eax; 717 718 if ((eax & 0xffff0000) == 0x80000000) { 719 if (eax >= 0x80000001) { 720 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 721 722 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 723 c->x86_capability[CPUID_8000_0001_EDX] = edx; 724 } 725 } 726 727 if (c->extended_cpuid_level >= 0x80000007) { 728 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 729 730 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 731 c->x86_power = edx; 732 } 733 734 if (c->extended_cpuid_level >= 0x80000008) { 735 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 736 737 c->x86_virt_bits = (eax >> 8) & 0xff; 738 c->x86_phys_bits = eax & 0xff; 739 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 740 } 741 #ifdef CONFIG_X86_32 742 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 743 c->x86_phys_bits = 36; 744 #endif 745 746 if (c->extended_cpuid_level >= 0x8000000a) 747 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 748 749 init_scattered_cpuid_features(c); 750 } 751 752 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 753 { 754 #ifdef CONFIG_X86_32 755 int i; 756 757 /* 758 * First of all, decide if this is a 486 or higher 759 * It's a 486 if we can modify the AC flag 760 */ 761 if (flag_is_changeable_p(X86_EFLAGS_AC)) 762 c->x86 = 4; 763 else 764 c->x86 = 3; 765 766 for (i = 0; i < X86_VENDOR_NUM; i++) 767 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 768 c->x86_vendor_id[0] = 0; 769 cpu_devs[i]->c_identify(c); 770 if (c->x86_vendor_id[0]) { 771 get_cpu_vendor(c); 772 break; 773 } 774 } 775 #endif 776 } 777 778 /* 779 * Do minimum CPU detection early. 780 * Fields really needed: vendor, cpuid_level, family, model, mask, 781 * cache alignment. 782 * The others are not touched to avoid unwanted side effects. 783 * 784 * WARNING: this function is only called on the BP. Don't add code here 785 * that is supposed to run on all CPUs. 786 */ 787 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 788 { 789 #ifdef CONFIG_X86_64 790 c->x86_clflush_size = 64; 791 c->x86_phys_bits = 36; 792 c->x86_virt_bits = 48; 793 #else 794 c->x86_clflush_size = 32; 795 c->x86_phys_bits = 32; 796 c->x86_virt_bits = 32; 797 #endif 798 c->x86_cache_alignment = c->x86_clflush_size; 799 800 memset(&c->x86_capability, 0, sizeof c->x86_capability); 801 c->extended_cpuid_level = 0; 802 803 if (!have_cpuid_p()) 804 identify_cpu_without_cpuid(c); 805 806 /* cyrix could have cpuid enabled via c_identify()*/ 807 if (have_cpuid_p()) { 808 cpu_detect(c); 809 get_cpu_vendor(c); 810 get_cpu_cap(c); 811 812 if (this_cpu->c_early_init) 813 this_cpu->c_early_init(c); 814 815 c->cpu_index = 0; 816 filter_cpuid_features(c, false); 817 818 if (this_cpu->c_bsp_init) 819 this_cpu->c_bsp_init(c); 820 } 821 822 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 823 fpu__init_system(c); 824 } 825 826 void __init early_cpu_init(void) 827 { 828 const struct cpu_dev *const *cdev; 829 int count = 0; 830 831 #ifdef CONFIG_PROCESSOR_SELECT 832 pr_info("KERNEL supported cpus:\n"); 833 #endif 834 835 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 836 const struct cpu_dev *cpudev = *cdev; 837 838 if (count >= X86_VENDOR_NUM) 839 break; 840 cpu_devs[count] = cpudev; 841 count++; 842 843 #ifdef CONFIG_PROCESSOR_SELECT 844 { 845 unsigned int j; 846 847 for (j = 0; j < 2; j++) { 848 if (!cpudev->c_ident[j]) 849 continue; 850 pr_info(" %s %s\n", cpudev->c_vendor, 851 cpudev->c_ident[j]); 852 } 853 } 854 #endif 855 } 856 early_identify_cpu(&boot_cpu_data); 857 } 858 859 /* 860 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 861 * unfortunately, that's not true in practice because of early VIA 862 * chips and (more importantly) broken virtualizers that are not easy 863 * to detect. In the latter case it doesn't even *fail* reliably, so 864 * probing for it doesn't even work. Disable it completely on 32-bit 865 * unless we can find a reliable way to detect all the broken cases. 866 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 867 */ 868 static void detect_nopl(struct cpuinfo_x86 *c) 869 { 870 #ifdef CONFIG_X86_32 871 clear_cpu_cap(c, X86_FEATURE_NOPL); 872 #else 873 set_cpu_cap(c, X86_FEATURE_NOPL); 874 #endif 875 } 876 877 static void detect_null_seg_behavior(struct cpuinfo_x86 *c) 878 { 879 #ifdef CONFIG_X86_64 880 /* 881 * Empirically, writing zero to a segment selector on AMD does 882 * not clear the base, whereas writing zero to a segment 883 * selector on Intel does clear the base. Intel's behavior 884 * allows slightly faster context switches in the common case 885 * where GS is unused by the prev and next threads. 886 * 887 * Since neither vendor documents this anywhere that I can see, 888 * detect it directly instead of hardcoding the choice by 889 * vendor. 890 * 891 * I've designated AMD's behavior as the "bug" because it's 892 * counterintuitive and less friendly. 893 */ 894 895 unsigned long old_base, tmp; 896 rdmsrl(MSR_FS_BASE, old_base); 897 wrmsrl(MSR_FS_BASE, 1); 898 loadsegment(fs, 0); 899 rdmsrl(MSR_FS_BASE, tmp); 900 if (tmp != 0) 901 set_cpu_bug(c, X86_BUG_NULL_SEG); 902 wrmsrl(MSR_FS_BASE, old_base); 903 #endif 904 } 905 906 static void generic_identify(struct cpuinfo_x86 *c) 907 { 908 c->extended_cpuid_level = 0; 909 910 if (!have_cpuid_p()) 911 identify_cpu_without_cpuid(c); 912 913 /* cyrix could have cpuid enabled via c_identify()*/ 914 if (!have_cpuid_p()) 915 return; 916 917 cpu_detect(c); 918 919 get_cpu_vendor(c); 920 921 get_cpu_cap(c); 922 923 if (c->cpuid_level >= 0x00000001) { 924 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 925 #ifdef CONFIG_X86_32 926 # ifdef CONFIG_SMP 927 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 928 # else 929 c->apicid = c->initial_apicid; 930 # endif 931 #endif 932 c->phys_proc_id = c->initial_apicid; 933 } 934 935 get_model_name(c); /* Default name */ 936 937 detect_nopl(c); 938 939 detect_null_seg_behavior(c); 940 941 /* 942 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 943 * systems that run Linux at CPL > 0 may or may not have the 944 * issue, but, even if they have the issue, there's absolutely 945 * nothing we can do about it because we can't use the real IRET 946 * instruction. 947 * 948 * NB: For the time being, only 32-bit kernels support 949 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 950 * whether to apply espfix using paravirt hooks. If any 951 * non-paravirt system ever shows up that does *not* have the 952 * ESPFIX issue, we can change this. 953 */ 954 #ifdef CONFIG_X86_32 955 # ifdef CONFIG_PARAVIRT 956 do { 957 extern void native_iret(void); 958 if (pv_cpu_ops.iret == native_iret) 959 set_cpu_bug(c, X86_BUG_ESPFIX); 960 } while (0); 961 # else 962 set_cpu_bug(c, X86_BUG_ESPFIX); 963 # endif 964 #endif 965 } 966 967 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 968 { 969 /* 970 * The heavy lifting of max_rmid and cache_occ_scale are handled 971 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 972 * in case CQM bits really aren't there in this CPU. 973 */ 974 if (c != &boot_cpu_data) { 975 boot_cpu_data.x86_cache_max_rmid = 976 min(boot_cpu_data.x86_cache_max_rmid, 977 c->x86_cache_max_rmid); 978 } 979 } 980 981 /* 982 * This does the hard work of actually picking apart the CPU stuff... 983 */ 984 static void identify_cpu(struct cpuinfo_x86 *c) 985 { 986 int i; 987 988 c->loops_per_jiffy = loops_per_jiffy; 989 c->x86_cache_size = -1; 990 c->x86_vendor = X86_VENDOR_UNKNOWN; 991 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 992 c->x86_vendor_id[0] = '\0'; /* Unset */ 993 c->x86_model_id[0] = '\0'; /* Unset */ 994 c->x86_max_cores = 1; 995 c->x86_coreid_bits = 0; 996 #ifdef CONFIG_X86_64 997 c->x86_clflush_size = 64; 998 c->x86_phys_bits = 36; 999 c->x86_virt_bits = 48; 1000 #else 1001 c->cpuid_level = -1; /* CPUID not detected */ 1002 c->x86_clflush_size = 32; 1003 c->x86_phys_bits = 32; 1004 c->x86_virt_bits = 32; 1005 #endif 1006 c->x86_cache_alignment = c->x86_clflush_size; 1007 memset(&c->x86_capability, 0, sizeof c->x86_capability); 1008 1009 generic_identify(c); 1010 1011 if (this_cpu->c_identify) 1012 this_cpu->c_identify(c); 1013 1014 /* Clear/Set all flags overridden by options, after probe */ 1015 for (i = 0; i < NCAPINTS; i++) { 1016 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1017 c->x86_capability[i] |= cpu_caps_set[i]; 1018 } 1019 1020 #ifdef CONFIG_X86_64 1021 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1022 #endif 1023 1024 /* 1025 * Vendor-specific initialization. In this section we 1026 * canonicalize the feature flags, meaning if there are 1027 * features a certain CPU supports which CPUID doesn't 1028 * tell us, CPUID claiming incorrect flags, or other bugs, 1029 * we handle them here. 1030 * 1031 * At the end of this section, c->x86_capability better 1032 * indicate the features this CPU genuinely supports! 1033 */ 1034 if (this_cpu->c_init) 1035 this_cpu->c_init(c); 1036 1037 /* Disable the PN if appropriate */ 1038 squash_the_stupid_serial_number(c); 1039 1040 /* Set up SMEP/SMAP */ 1041 setup_smep(c); 1042 setup_smap(c); 1043 1044 /* 1045 * The vendor-specific functions might have changed features. 1046 * Now we do "generic changes." 1047 */ 1048 1049 /* Filter out anything that depends on CPUID levels we don't have */ 1050 filter_cpuid_features(c, true); 1051 1052 /* If the model name is still unset, do table lookup. */ 1053 if (!c->x86_model_id[0]) { 1054 const char *p; 1055 p = table_lookup_model(c); 1056 if (p) 1057 strcpy(c->x86_model_id, p); 1058 else 1059 /* Last resort... */ 1060 sprintf(c->x86_model_id, "%02x/%02x", 1061 c->x86, c->x86_model); 1062 } 1063 1064 #ifdef CONFIG_X86_64 1065 detect_ht(c); 1066 #endif 1067 1068 init_hypervisor(c); 1069 x86_init_rdrand(c); 1070 x86_init_cache_qos(c); 1071 setup_pku(c); 1072 1073 /* 1074 * Clear/Set all flags overridden by options, need do it 1075 * before following smp all cpus cap AND. 1076 */ 1077 for (i = 0; i < NCAPINTS; i++) { 1078 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1079 c->x86_capability[i] |= cpu_caps_set[i]; 1080 } 1081 1082 /* 1083 * On SMP, boot_cpu_data holds the common feature set between 1084 * all CPUs; so make sure that we indicate which features are 1085 * common between the CPUs. The first time this routine gets 1086 * executed, c == &boot_cpu_data. 1087 */ 1088 if (c != &boot_cpu_data) { 1089 /* AND the already accumulated flags with these */ 1090 for (i = 0; i < NCAPINTS; i++) 1091 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1092 1093 /* OR, i.e. replicate the bug flags */ 1094 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1095 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1096 } 1097 1098 /* Init Machine Check Exception if available. */ 1099 mcheck_cpu_init(c); 1100 1101 select_idle_routine(c); 1102 1103 #ifdef CONFIG_NUMA 1104 numa_add_cpu(smp_processor_id()); 1105 #endif 1106 /* The boot/hotplug time assigment got cleared, restore it */ 1107 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id); 1108 } 1109 1110 /* 1111 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1112 * on 32-bit kernels: 1113 */ 1114 #ifdef CONFIG_X86_32 1115 void enable_sep_cpu(void) 1116 { 1117 struct tss_struct *tss; 1118 int cpu; 1119 1120 if (!boot_cpu_has(X86_FEATURE_SEP)) 1121 return; 1122 1123 cpu = get_cpu(); 1124 tss = &per_cpu(cpu_tss, cpu); 1125 1126 /* 1127 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1128 * see the big comment in struct x86_hw_tss's definition. 1129 */ 1130 1131 tss->x86_tss.ss1 = __KERNEL_CS; 1132 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1133 1134 wrmsr(MSR_IA32_SYSENTER_ESP, 1135 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack), 1136 0); 1137 1138 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1139 1140 put_cpu(); 1141 } 1142 #endif 1143 1144 void __init identify_boot_cpu(void) 1145 { 1146 identify_cpu(&boot_cpu_data); 1147 init_amd_e400_c1e_mask(); 1148 #ifdef CONFIG_X86_32 1149 sysenter_setup(); 1150 enable_sep_cpu(); 1151 #endif 1152 cpu_detect_tlb(&boot_cpu_data); 1153 } 1154 1155 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1156 { 1157 BUG_ON(c == &boot_cpu_data); 1158 identify_cpu(c); 1159 #ifdef CONFIG_X86_32 1160 enable_sep_cpu(); 1161 #endif 1162 mtrr_ap_init(); 1163 } 1164 1165 struct msr_range { 1166 unsigned min; 1167 unsigned max; 1168 }; 1169 1170 static const struct msr_range msr_range_array[] = { 1171 { 0x00000000, 0x00000418}, 1172 { 0xc0000000, 0xc000040b}, 1173 { 0xc0010000, 0xc0010142}, 1174 { 0xc0011000, 0xc001103b}, 1175 }; 1176 1177 static void __print_cpu_msr(void) 1178 { 1179 unsigned index_min, index_max; 1180 unsigned index; 1181 u64 val; 1182 int i; 1183 1184 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { 1185 index_min = msr_range_array[i].min; 1186 index_max = msr_range_array[i].max; 1187 1188 for (index = index_min; index < index_max; index++) { 1189 if (rdmsrl_safe(index, &val)) 1190 continue; 1191 pr_info(" MSR%08x: %016llx\n", index, val); 1192 } 1193 } 1194 } 1195 1196 static int show_msr; 1197 1198 static __init int setup_show_msr(char *arg) 1199 { 1200 int num; 1201 1202 get_option(&arg, &num); 1203 1204 if (num > 0) 1205 show_msr = num; 1206 return 1; 1207 } 1208 __setup("show_msr=", setup_show_msr); 1209 1210 static __init int setup_noclflush(char *arg) 1211 { 1212 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1213 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1214 return 1; 1215 } 1216 __setup("noclflush", setup_noclflush); 1217 1218 void print_cpu_info(struct cpuinfo_x86 *c) 1219 { 1220 const char *vendor = NULL; 1221 1222 if (c->x86_vendor < X86_VENDOR_NUM) { 1223 vendor = this_cpu->c_vendor; 1224 } else { 1225 if (c->cpuid_level >= 0) 1226 vendor = c->x86_vendor_id; 1227 } 1228 1229 if (vendor && !strstr(c->x86_model_id, vendor)) 1230 pr_cont("%s ", vendor); 1231 1232 if (c->x86_model_id[0]) 1233 pr_cont("%s", c->x86_model_id); 1234 else 1235 pr_cont("%d86", c->x86); 1236 1237 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1238 1239 if (c->x86_mask || c->cpuid_level >= 0) 1240 pr_cont(", stepping: 0x%x)\n", c->x86_mask); 1241 else 1242 pr_cont(")\n"); 1243 1244 print_cpu_msr(c); 1245 } 1246 1247 void print_cpu_msr(struct cpuinfo_x86 *c) 1248 { 1249 if (c->cpu_index < show_msr) 1250 __print_cpu_msr(); 1251 } 1252 1253 static __init int setup_disablecpuid(char *arg) 1254 { 1255 int bit; 1256 1257 if (get_option(&arg, &bit) && bit < NCAPINTS*32) 1258 setup_clear_cpu_cap(bit); 1259 else 1260 return 0; 1261 1262 return 1; 1263 } 1264 __setup("clearcpuid=", setup_disablecpuid); 1265 1266 #ifdef CONFIG_X86_64 1267 struct desc_ptr idt_descr __ro_after_init = { 1268 .size = NR_VECTORS * 16 - 1, 1269 .address = (unsigned long) idt_table, 1270 }; 1271 const struct desc_ptr debug_idt_descr = { 1272 .size = NR_VECTORS * 16 - 1, 1273 .address = (unsigned long) debug_idt_table, 1274 }; 1275 1276 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1277 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1278 1279 /* 1280 * The following percpu variables are hot. Align current_task to 1281 * cacheline size such that they fall in the same cacheline. 1282 */ 1283 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1284 &init_task; 1285 EXPORT_PER_CPU_SYMBOL(current_task); 1286 1287 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1288 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE; 1289 1290 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1291 1292 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1293 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1294 1295 /* 1296 * Special IST stacks which the CPU switches to when it calls 1297 * an IST-marked descriptor entry. Up to 7 stacks (hardware 1298 * limit), all of them are 4K, except the debug stack which 1299 * is 8K. 1300 */ 1301 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 1302 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 1303 [DEBUG_STACK - 1] = DEBUG_STKSZ 1304 }; 1305 1306 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks 1307 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); 1308 1309 /* May not be marked __init: used by software suspend */ 1310 void syscall_init(void) 1311 { 1312 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 1313 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1314 1315 #ifdef CONFIG_IA32_EMULATION 1316 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1317 /* 1318 * This only works on Intel CPUs. 1319 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1320 * This does not cause SYSENTER to jump to the wrong location, because 1321 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1322 */ 1323 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1324 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1325 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1326 #else 1327 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1328 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1329 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1330 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1331 #endif 1332 1333 /* Flags to clear on syscall */ 1334 wrmsrl(MSR_SYSCALL_MASK, 1335 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1336 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1337 } 1338 1339 /* 1340 * Copies of the original ist values from the tss are only accessed during 1341 * debugging, no special alignment required. 1342 */ 1343 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1344 1345 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1346 DEFINE_PER_CPU(int, debug_stack_usage); 1347 1348 int is_debug_stack(unsigned long addr) 1349 { 1350 return __this_cpu_read(debug_stack_usage) || 1351 (addr <= __this_cpu_read(debug_stack_addr) && 1352 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1353 } 1354 NOKPROBE_SYMBOL(is_debug_stack); 1355 1356 DEFINE_PER_CPU(u32, debug_idt_ctr); 1357 1358 void debug_stack_set_zero(void) 1359 { 1360 this_cpu_inc(debug_idt_ctr); 1361 load_current_idt(); 1362 } 1363 NOKPROBE_SYMBOL(debug_stack_set_zero); 1364 1365 void debug_stack_reset(void) 1366 { 1367 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1368 return; 1369 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1370 load_current_idt(); 1371 } 1372 NOKPROBE_SYMBOL(debug_stack_reset); 1373 1374 #else /* CONFIG_X86_64 */ 1375 1376 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1377 EXPORT_PER_CPU_SYMBOL(current_task); 1378 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1379 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1380 1381 /* 1382 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1383 * the top of the kernel stack. Use an extra percpu variable to track the 1384 * top of the kernel stack directly. 1385 */ 1386 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1387 (unsigned long)&init_thread_union + THREAD_SIZE; 1388 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1389 1390 #ifdef CONFIG_CC_STACKPROTECTOR 1391 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1392 #endif 1393 1394 #endif /* CONFIG_X86_64 */ 1395 1396 /* 1397 * Clear all 6 debug registers: 1398 */ 1399 static void clear_all_debug_regs(void) 1400 { 1401 int i; 1402 1403 for (i = 0; i < 8; i++) { 1404 /* Ignore db4, db5 */ 1405 if ((i == 4) || (i == 5)) 1406 continue; 1407 1408 set_debugreg(0, i); 1409 } 1410 } 1411 1412 #ifdef CONFIG_KGDB 1413 /* 1414 * Restore debug regs if using kgdbwait and you have a kernel debugger 1415 * connection established. 1416 */ 1417 static void dbg_restore_debug_regs(void) 1418 { 1419 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1420 arch_kgdb_ops.correct_hw_break(); 1421 } 1422 #else /* ! CONFIG_KGDB */ 1423 #define dbg_restore_debug_regs() 1424 #endif /* ! CONFIG_KGDB */ 1425 1426 static void wait_for_master_cpu(int cpu) 1427 { 1428 #ifdef CONFIG_SMP 1429 /* 1430 * wait for ACK from master CPU before continuing 1431 * with AP initialization 1432 */ 1433 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1434 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1435 cpu_relax(); 1436 #endif 1437 } 1438 1439 /* 1440 * cpu_init() initializes state that is per-CPU. Some data is already 1441 * initialized (naturally) in the bootstrap process, such as the GDT 1442 * and IDT. We reload them nevertheless, this function acts as a 1443 * 'CPU state barrier', nothing should get across. 1444 * A lot of state is already set up in PDA init for 64 bit 1445 */ 1446 #ifdef CONFIG_X86_64 1447 1448 void cpu_init(void) 1449 { 1450 struct orig_ist *oist; 1451 struct task_struct *me; 1452 struct tss_struct *t; 1453 unsigned long v; 1454 int cpu = raw_smp_processor_id(); 1455 int i; 1456 1457 wait_for_master_cpu(cpu); 1458 1459 /* 1460 * Initialize the CR4 shadow before doing anything that could 1461 * try to read it. 1462 */ 1463 cr4_init_shadow(); 1464 1465 /* 1466 * Load microcode on this cpu if a valid microcode is available. 1467 * This is early microcode loading procedure. 1468 */ 1469 load_ucode_ap(); 1470 1471 t = &per_cpu(cpu_tss, cpu); 1472 oist = &per_cpu(orig_ist, cpu); 1473 1474 #ifdef CONFIG_NUMA 1475 if (this_cpu_read(numa_node) == 0 && 1476 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1477 set_numa_node(early_cpu_to_node(cpu)); 1478 #endif 1479 1480 me = current; 1481 1482 pr_debug("Initializing CPU#%d\n", cpu); 1483 1484 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1485 1486 /* 1487 * Initialize the per-CPU GDT with the boot GDT, 1488 * and set up the GDT descriptor: 1489 */ 1490 1491 switch_to_new_gdt(cpu); 1492 loadsegment(fs, 0); 1493 1494 load_current_idt(); 1495 1496 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1497 syscall_init(); 1498 1499 wrmsrl(MSR_FS_BASE, 0); 1500 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1501 barrier(); 1502 1503 x86_configure_nx(); 1504 x2apic_setup(); 1505 1506 /* 1507 * set up and load the per-CPU TSS 1508 */ 1509 if (!oist->ist[0]) { 1510 char *estacks = per_cpu(exception_stacks, cpu); 1511 1512 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1513 estacks += exception_stack_sizes[v]; 1514 oist->ist[v] = t->x86_tss.ist[v] = 1515 (unsigned long)estacks; 1516 if (v == DEBUG_STACK-1) 1517 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1518 } 1519 } 1520 1521 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1522 1523 /* 1524 * <= is required because the CPU will access up to 1525 * 8 bits beyond the end of the IO permission bitmap. 1526 */ 1527 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1528 t->io_bitmap[i] = ~0UL; 1529 1530 atomic_inc(&init_mm.mm_count); 1531 me->active_mm = &init_mm; 1532 BUG_ON(me->mm); 1533 enter_lazy_tlb(&init_mm, me); 1534 1535 load_sp0(t, ¤t->thread); 1536 set_tss_desc(cpu, t); 1537 load_TR_desc(); 1538 load_mm_ldt(&init_mm); 1539 1540 clear_all_debug_regs(); 1541 dbg_restore_debug_regs(); 1542 1543 fpu__init_cpu(); 1544 1545 if (is_uv_system()) 1546 uv_cpu_init(); 1547 } 1548 1549 #else 1550 1551 void cpu_init(void) 1552 { 1553 int cpu = smp_processor_id(); 1554 struct task_struct *curr = current; 1555 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 1556 struct thread_struct *thread = &curr->thread; 1557 1558 wait_for_master_cpu(cpu); 1559 1560 /* 1561 * Initialize the CR4 shadow before doing anything that could 1562 * try to read it. 1563 */ 1564 cr4_init_shadow(); 1565 1566 show_ucode_info_early(); 1567 1568 pr_info("Initializing CPU#%d\n", cpu); 1569 1570 if (cpu_feature_enabled(X86_FEATURE_VME) || 1571 boot_cpu_has(X86_FEATURE_TSC) || 1572 boot_cpu_has(X86_FEATURE_DE)) 1573 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1574 1575 load_current_idt(); 1576 switch_to_new_gdt(cpu); 1577 1578 /* 1579 * Set up and load the per-CPU TSS and LDT 1580 */ 1581 atomic_inc(&init_mm.mm_count); 1582 curr->active_mm = &init_mm; 1583 BUG_ON(curr->mm); 1584 enter_lazy_tlb(&init_mm, curr); 1585 1586 load_sp0(t, thread); 1587 set_tss_desc(cpu, t); 1588 load_TR_desc(); 1589 load_mm_ldt(&init_mm); 1590 1591 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1592 1593 #ifdef CONFIG_DOUBLEFAULT 1594 /* Set up doublefault TSS pointer in the GDT */ 1595 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1596 #endif 1597 1598 clear_all_debug_regs(); 1599 dbg_restore_debug_regs(); 1600 1601 fpu__init_cpu(); 1602 } 1603 #endif 1604 1605 static void bsp_resume(void) 1606 { 1607 if (this_cpu->c_bsp_resume) 1608 this_cpu->c_bsp_resume(&boot_cpu_data); 1609 } 1610 1611 static struct syscore_ops cpu_syscore_ops = { 1612 .resume = bsp_resume, 1613 }; 1614 1615 static int __init init_cpu_syscore(void) 1616 { 1617 register_syscore_ops(&cpu_syscore_ops); 1618 return 0; 1619 } 1620 core_initcall(init_cpu_syscore); 1621