xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 7bcae826)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <asm/hwcap2.h>
39 #include <linux/numa.h>
40 #include <asm/asm.h>
41 #include <asm/bugs.h>
42 #include <asm/cpu.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45 #include <asm/pat.h>
46 #include <asm/microcode.h>
47 #include <asm/microcode_intel.h>
48 
49 #ifdef CONFIG_X86_LOCAL_APIC
50 #include <asm/uv/uv.h>
51 #endif
52 
53 #include "cpu.h"
54 
55 u32 elf_hwcap2 __read_mostly;
56 
57 /* all of these masks are initialized in setup_cpu_local_masks() */
58 cpumask_var_t cpu_initialized_mask;
59 cpumask_var_t cpu_callout_mask;
60 cpumask_var_t cpu_callin_mask;
61 
62 /* representing cpus for which sibling maps can be computed */
63 cpumask_var_t cpu_sibling_setup_mask;
64 
65 /* correctly size the local cpu masks */
66 void __init setup_cpu_local_masks(void)
67 {
68 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
69 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
70 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
71 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
72 }
73 
74 static void default_init(struct cpuinfo_x86 *c)
75 {
76 #ifdef CONFIG_X86_64
77 	cpu_detect_cache_sizes(c);
78 #else
79 	/* Not much we can do here... */
80 	/* Check if at least it has cpuid */
81 	if (c->cpuid_level == -1) {
82 		/* No cpuid. It must be an ancient CPU */
83 		if (c->x86 == 4)
84 			strcpy(c->x86_model_id, "486");
85 		else if (c->x86 == 3)
86 			strcpy(c->x86_model_id, "386");
87 	}
88 #endif
89 	clear_sched_clock_stable();
90 }
91 
92 static const struct cpu_dev default_cpu = {
93 	.c_init		= default_init,
94 	.c_vendor	= "Unknown",
95 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
96 };
97 
98 static const struct cpu_dev *this_cpu = &default_cpu;
99 
100 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
101 #ifdef CONFIG_X86_64
102 	/*
103 	 * We need valid kernel segments for data and code in long mode too
104 	 * IRET will check the segment types  kkeil 2000/10/28
105 	 * Also sysret mandates a special GDT layout
106 	 *
107 	 * TLS descriptors are currently at a different place compared to i386.
108 	 * Hopefully nobody expects them at a fixed place (Wine?)
109 	 */
110 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
111 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
116 #else
117 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
118 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
119 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
120 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
121 	/*
122 	 * Segments used for calling PnP BIOS have byte granularity.
123 	 * They code segments and data segments have fixed 64k limits,
124 	 * the transfer segment sizes are set at run time.
125 	 */
126 	/* 32-bit code */
127 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 	/* 16-bit code */
129 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 	/* 16-bit data */
131 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
132 	/* 16-bit data */
133 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
134 	/* 16-bit data */
135 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
136 	/*
137 	 * The APM segments have byte granularity and their bases
138 	 * are set at run time.  All have 64k limits.
139 	 */
140 	/* 32-bit code */
141 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 	/* 16-bit code */
143 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 	/* data */
145 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
146 
147 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
148 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 	GDT_STACK_CANARY_INIT
150 #endif
151 } };
152 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
153 
154 static int __init x86_mpx_setup(char *s)
155 {
156 	/* require an exact match without trailing characters */
157 	if (strlen(s))
158 		return 0;
159 
160 	/* do not emit a message if the feature is not present */
161 	if (!boot_cpu_has(X86_FEATURE_MPX))
162 		return 1;
163 
164 	setup_clear_cpu_cap(X86_FEATURE_MPX);
165 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
166 	return 1;
167 }
168 __setup("nompx", x86_mpx_setup);
169 
170 static int __init x86_noinvpcid_setup(char *s)
171 {
172 	/* noinvpcid doesn't accept parameters */
173 	if (s)
174 		return -EINVAL;
175 
176 	/* do not emit a message if the feature is not present */
177 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
178 		return 0;
179 
180 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
181 	pr_info("noinvpcid: INVPCID feature disabled\n");
182 	return 0;
183 }
184 early_param("noinvpcid", x86_noinvpcid_setup);
185 
186 #ifdef CONFIG_X86_32
187 static int cachesize_override = -1;
188 static int disable_x86_serial_nr = 1;
189 
190 static int __init cachesize_setup(char *str)
191 {
192 	get_option(&str, &cachesize_override);
193 	return 1;
194 }
195 __setup("cachesize=", cachesize_setup);
196 
197 static int __init x86_sep_setup(char *s)
198 {
199 	setup_clear_cpu_cap(X86_FEATURE_SEP);
200 	return 1;
201 }
202 __setup("nosep", x86_sep_setup);
203 
204 /* Standard macro to see if a specific flag is changeable */
205 static inline int flag_is_changeable_p(u32 flag)
206 {
207 	u32 f1, f2;
208 
209 	/*
210 	 * Cyrix and IDT cpus allow disabling of CPUID
211 	 * so the code below may return different results
212 	 * when it is executed before and after enabling
213 	 * the CPUID. Add "volatile" to not allow gcc to
214 	 * optimize the subsequent calls to this function.
215 	 */
216 	asm volatile ("pushfl		\n\t"
217 		      "pushfl		\n\t"
218 		      "popl %0		\n\t"
219 		      "movl %0, %1	\n\t"
220 		      "xorl %2, %0	\n\t"
221 		      "pushl %0		\n\t"
222 		      "popfl		\n\t"
223 		      "pushfl		\n\t"
224 		      "popl %0		\n\t"
225 		      "popfl		\n\t"
226 
227 		      : "=&r" (f1), "=&r" (f2)
228 		      : "ir" (flag));
229 
230 	return ((f1^f2) & flag) != 0;
231 }
232 
233 /* Probe for the CPUID instruction */
234 int have_cpuid_p(void)
235 {
236 	return flag_is_changeable_p(X86_EFLAGS_ID);
237 }
238 
239 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
240 {
241 	unsigned long lo, hi;
242 
243 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
244 		return;
245 
246 	/* Disable processor serial number: */
247 
248 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
249 	lo |= 0x200000;
250 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
251 
252 	pr_notice("CPU serial number disabled.\n");
253 	clear_cpu_cap(c, X86_FEATURE_PN);
254 
255 	/* Disabling the serial number may affect the cpuid level */
256 	c->cpuid_level = cpuid_eax(0);
257 }
258 
259 static int __init x86_serial_nr_setup(char *s)
260 {
261 	disable_x86_serial_nr = 0;
262 	return 1;
263 }
264 __setup("serialnumber", x86_serial_nr_setup);
265 #else
266 static inline int flag_is_changeable_p(u32 flag)
267 {
268 	return 1;
269 }
270 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272 }
273 #endif
274 
275 static __init int setup_disable_smep(char *arg)
276 {
277 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
278 	/* Check for things that depend on SMEP being enabled: */
279 	check_mpx_erratum(&boot_cpu_data);
280 	return 1;
281 }
282 __setup("nosmep", setup_disable_smep);
283 
284 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
285 {
286 	if (cpu_has(c, X86_FEATURE_SMEP))
287 		cr4_set_bits(X86_CR4_SMEP);
288 }
289 
290 static __init int setup_disable_smap(char *arg)
291 {
292 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
293 	return 1;
294 }
295 __setup("nosmap", setup_disable_smap);
296 
297 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
298 {
299 	unsigned long eflags = native_save_fl();
300 
301 	/* This should have been cleared long ago */
302 	BUG_ON(eflags & X86_EFLAGS_AC);
303 
304 	if (cpu_has(c, X86_FEATURE_SMAP)) {
305 #ifdef CONFIG_X86_SMAP
306 		cr4_set_bits(X86_CR4_SMAP);
307 #else
308 		cr4_clear_bits(X86_CR4_SMAP);
309 #endif
310 	}
311 }
312 
313 /*
314  * Protection Keys are not available in 32-bit mode.
315  */
316 static bool pku_disabled;
317 
318 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
319 {
320 	/* check the boot processor, plus compile options for PKU: */
321 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
322 		return;
323 	/* checks the actual processor's cpuid bits: */
324 	if (!cpu_has(c, X86_FEATURE_PKU))
325 		return;
326 	if (pku_disabled)
327 		return;
328 
329 	cr4_set_bits(X86_CR4_PKE);
330 	/*
331 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
332 	 * cpuid bit to be set.  We need to ensure that we
333 	 * update that bit in this CPU's "cpu_info".
334 	 */
335 	get_cpu_cap(c);
336 }
337 
338 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
339 static __init int setup_disable_pku(char *arg)
340 {
341 	/*
342 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
343 	 * runtime checks are against OSPKE so clearing the
344 	 * bit does nothing.
345 	 *
346 	 * This way, we will see "pku" in cpuinfo, but not
347 	 * "ospke", which is exactly what we want.  It shows
348 	 * that the CPU has PKU, but the OS has not enabled it.
349 	 * This happens to be exactly how a system would look
350 	 * if we disabled the config option.
351 	 */
352 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
353 	pku_disabled = true;
354 	return 1;
355 }
356 __setup("nopku", setup_disable_pku);
357 #endif /* CONFIG_X86_64 */
358 
359 /*
360  * Some CPU features depend on higher CPUID levels, which may not always
361  * be available due to CPUID level capping or broken virtualization
362  * software.  Add those features to this table to auto-disable them.
363  */
364 struct cpuid_dependent_feature {
365 	u32 feature;
366 	u32 level;
367 };
368 
369 static const struct cpuid_dependent_feature
370 cpuid_dependent_features[] = {
371 	{ X86_FEATURE_MWAIT,		0x00000005 },
372 	{ X86_FEATURE_DCA,		0x00000009 },
373 	{ X86_FEATURE_XSAVE,		0x0000000d },
374 	{ 0, 0 }
375 };
376 
377 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
378 {
379 	const struct cpuid_dependent_feature *df;
380 
381 	for (df = cpuid_dependent_features; df->feature; df++) {
382 
383 		if (!cpu_has(c, df->feature))
384 			continue;
385 		/*
386 		 * Note: cpuid_level is set to -1 if unavailable, but
387 		 * extended_extended_level is set to 0 if unavailable
388 		 * and the legitimate extended levels are all negative
389 		 * when signed; hence the weird messing around with
390 		 * signs here...
391 		 */
392 		if (!((s32)df->level < 0 ?
393 		     (u32)df->level > (u32)c->extended_cpuid_level :
394 		     (s32)df->level > (s32)c->cpuid_level))
395 			continue;
396 
397 		clear_cpu_cap(c, df->feature);
398 		if (!warn)
399 			continue;
400 
401 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
402 			x86_cap_flag(df->feature), df->level);
403 	}
404 }
405 
406 /*
407  * Naming convention should be: <Name> [(<Codename>)]
408  * This table only is used unless init_<vendor>() below doesn't set it;
409  * in particular, if CPUID levels 0x80000002..4 are supported, this
410  * isn't used
411  */
412 
413 /* Look up CPU names by table lookup. */
414 static const char *table_lookup_model(struct cpuinfo_x86 *c)
415 {
416 #ifdef CONFIG_X86_32
417 	const struct legacy_cpu_model_info *info;
418 
419 	if (c->x86_model >= 16)
420 		return NULL;	/* Range check */
421 
422 	if (!this_cpu)
423 		return NULL;
424 
425 	info = this_cpu->legacy_models;
426 
427 	while (info->family) {
428 		if (info->family == c->x86)
429 			return info->model_names[c->x86_model];
430 		info++;
431 	}
432 #endif
433 	return NULL;		/* Not found */
434 }
435 
436 __u32 cpu_caps_cleared[NCAPINTS];
437 __u32 cpu_caps_set[NCAPINTS];
438 
439 void load_percpu_segment(int cpu)
440 {
441 #ifdef CONFIG_X86_32
442 	loadsegment(fs, __KERNEL_PERCPU);
443 #else
444 	__loadsegment_simple(gs, 0);
445 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
446 #endif
447 	load_stack_canary_segment();
448 }
449 
450 /*
451  * Current gdt points %fs at the "master" per-cpu area: after this,
452  * it's on the real one.
453  */
454 void switch_to_new_gdt(int cpu)
455 {
456 	struct desc_ptr gdt_descr;
457 
458 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
459 	gdt_descr.size = GDT_SIZE - 1;
460 	load_gdt(&gdt_descr);
461 	/* Reload the per-cpu base */
462 
463 	load_percpu_segment(cpu);
464 }
465 
466 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
467 
468 static void get_model_name(struct cpuinfo_x86 *c)
469 {
470 	unsigned int *v;
471 	char *p, *q, *s;
472 
473 	if (c->extended_cpuid_level < 0x80000004)
474 		return;
475 
476 	v = (unsigned int *)c->x86_model_id;
477 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
478 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
479 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
480 	c->x86_model_id[48] = 0;
481 
482 	/* Trim whitespace */
483 	p = q = s = &c->x86_model_id[0];
484 
485 	while (*p == ' ')
486 		p++;
487 
488 	while (*p) {
489 		/* Note the last non-whitespace index */
490 		if (!isspace(*p))
491 			s = q;
492 
493 		*q++ = *p++;
494 	}
495 
496 	*(s + 1) = '\0';
497 }
498 
499 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
500 {
501 	unsigned int n, dummy, ebx, ecx, edx, l2size;
502 
503 	n = c->extended_cpuid_level;
504 
505 	if (n >= 0x80000005) {
506 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
507 		c->x86_cache_size = (ecx>>24) + (edx>>24);
508 #ifdef CONFIG_X86_64
509 		/* On K8 L1 TLB is inclusive, so don't count it */
510 		c->x86_tlbsize = 0;
511 #endif
512 	}
513 
514 	if (n < 0x80000006)	/* Some chips just has a large L1. */
515 		return;
516 
517 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
518 	l2size = ecx >> 16;
519 
520 #ifdef CONFIG_X86_64
521 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
522 #else
523 	/* do processor-specific cache resizing */
524 	if (this_cpu->legacy_cache_size)
525 		l2size = this_cpu->legacy_cache_size(c, l2size);
526 
527 	/* Allow user to override all this if necessary. */
528 	if (cachesize_override != -1)
529 		l2size = cachesize_override;
530 
531 	if (l2size == 0)
532 		return;		/* Again, no L2 cache is possible */
533 #endif
534 
535 	c->x86_cache_size = l2size;
536 }
537 
538 u16 __read_mostly tlb_lli_4k[NR_INFO];
539 u16 __read_mostly tlb_lli_2m[NR_INFO];
540 u16 __read_mostly tlb_lli_4m[NR_INFO];
541 u16 __read_mostly tlb_lld_4k[NR_INFO];
542 u16 __read_mostly tlb_lld_2m[NR_INFO];
543 u16 __read_mostly tlb_lld_4m[NR_INFO];
544 u16 __read_mostly tlb_lld_1g[NR_INFO];
545 
546 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
547 {
548 	if (this_cpu->c_detect_tlb)
549 		this_cpu->c_detect_tlb(c);
550 
551 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
552 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
553 		tlb_lli_4m[ENTRIES]);
554 
555 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
556 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
557 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
558 }
559 
560 void detect_ht(struct cpuinfo_x86 *c)
561 {
562 #ifdef CONFIG_SMP
563 	u32 eax, ebx, ecx, edx;
564 	int index_msb, core_bits;
565 	static bool printed;
566 
567 	if (!cpu_has(c, X86_FEATURE_HT))
568 		return;
569 
570 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
571 		goto out;
572 
573 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
574 		return;
575 
576 	cpuid(1, &eax, &ebx, &ecx, &edx);
577 
578 	smp_num_siblings = (ebx & 0xff0000) >> 16;
579 
580 	if (smp_num_siblings == 1) {
581 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
582 		goto out;
583 	}
584 
585 	if (smp_num_siblings <= 1)
586 		goto out;
587 
588 	index_msb = get_count_order(smp_num_siblings);
589 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
590 
591 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
592 
593 	index_msb = get_count_order(smp_num_siblings);
594 
595 	core_bits = get_count_order(c->x86_max_cores);
596 
597 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
598 				       ((1 << core_bits) - 1);
599 
600 out:
601 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
602 		pr_info("CPU: Physical Processor ID: %d\n",
603 			c->phys_proc_id);
604 		pr_info("CPU: Processor Core ID: %d\n",
605 			c->cpu_core_id);
606 		printed = 1;
607 	}
608 #endif
609 }
610 
611 static void get_cpu_vendor(struct cpuinfo_x86 *c)
612 {
613 	char *v = c->x86_vendor_id;
614 	int i;
615 
616 	for (i = 0; i < X86_VENDOR_NUM; i++) {
617 		if (!cpu_devs[i])
618 			break;
619 
620 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
621 		    (cpu_devs[i]->c_ident[1] &&
622 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
623 
624 			this_cpu = cpu_devs[i];
625 			c->x86_vendor = this_cpu->c_x86_vendor;
626 			return;
627 		}
628 	}
629 
630 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
631 		    "CPU: Your system may be unstable.\n", v);
632 
633 	c->x86_vendor = X86_VENDOR_UNKNOWN;
634 	this_cpu = &default_cpu;
635 }
636 
637 void cpu_detect(struct cpuinfo_x86 *c)
638 {
639 	/* Get vendor name */
640 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
641 	      (unsigned int *)&c->x86_vendor_id[0],
642 	      (unsigned int *)&c->x86_vendor_id[8],
643 	      (unsigned int *)&c->x86_vendor_id[4]);
644 
645 	c->x86 = 4;
646 	/* Intel-defined flags: level 0x00000001 */
647 	if (c->cpuid_level >= 0x00000001) {
648 		u32 junk, tfms, cap0, misc;
649 
650 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
651 		c->x86		= x86_family(tfms);
652 		c->x86_model	= x86_model(tfms);
653 		c->x86_mask	= x86_stepping(tfms);
654 
655 		if (cap0 & (1<<19)) {
656 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
657 			c->x86_cache_alignment = c->x86_clflush_size;
658 		}
659 	}
660 }
661 
662 static void apply_forced_caps(struct cpuinfo_x86 *c)
663 {
664 	int i;
665 
666 	for (i = 0; i < NCAPINTS; i++) {
667 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
668 		c->x86_capability[i] |= cpu_caps_set[i];
669 	}
670 }
671 
672 void get_cpu_cap(struct cpuinfo_x86 *c)
673 {
674 	u32 eax, ebx, ecx, edx;
675 
676 	/* Intel-defined flags: level 0x00000001 */
677 	if (c->cpuid_level >= 0x00000001) {
678 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
679 
680 		c->x86_capability[CPUID_1_ECX] = ecx;
681 		c->x86_capability[CPUID_1_EDX] = edx;
682 	}
683 
684 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
685 	if (c->cpuid_level >= 0x00000006)
686 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
687 
688 	/* Additional Intel-defined flags: level 0x00000007 */
689 	if (c->cpuid_level >= 0x00000007) {
690 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
691 		c->x86_capability[CPUID_7_0_EBX] = ebx;
692 		c->x86_capability[CPUID_7_ECX] = ecx;
693 	}
694 
695 	/* Extended state features: level 0x0000000d */
696 	if (c->cpuid_level >= 0x0000000d) {
697 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
698 
699 		c->x86_capability[CPUID_D_1_EAX] = eax;
700 	}
701 
702 	/* Additional Intel-defined flags: level 0x0000000F */
703 	if (c->cpuid_level >= 0x0000000F) {
704 
705 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
706 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
707 		c->x86_capability[CPUID_F_0_EDX] = edx;
708 
709 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
710 			/* will be overridden if occupancy monitoring exists */
711 			c->x86_cache_max_rmid = ebx;
712 
713 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
714 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
715 			c->x86_capability[CPUID_F_1_EDX] = edx;
716 
717 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
718 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
719 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
720 				c->x86_cache_max_rmid = ecx;
721 				c->x86_cache_occ_scale = ebx;
722 			}
723 		} else {
724 			c->x86_cache_max_rmid = -1;
725 			c->x86_cache_occ_scale = -1;
726 		}
727 	}
728 
729 	/* AMD-defined flags: level 0x80000001 */
730 	eax = cpuid_eax(0x80000000);
731 	c->extended_cpuid_level = eax;
732 
733 	if ((eax & 0xffff0000) == 0x80000000) {
734 		if (eax >= 0x80000001) {
735 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
736 
737 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
738 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
739 		}
740 	}
741 
742 	if (c->extended_cpuid_level >= 0x80000007) {
743 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
744 
745 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
746 		c->x86_power = edx;
747 	}
748 
749 	if (c->extended_cpuid_level >= 0x80000008) {
750 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
751 
752 		c->x86_virt_bits = (eax >> 8) & 0xff;
753 		c->x86_phys_bits = eax & 0xff;
754 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
755 	}
756 #ifdef CONFIG_X86_32
757 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
758 		c->x86_phys_bits = 36;
759 #endif
760 
761 	if (c->extended_cpuid_level >= 0x8000000a)
762 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
763 
764 	init_scattered_cpuid_features(c);
765 
766 	/*
767 	 * Clear/Set all flags overridden by options, after probe.
768 	 * This needs to happen each time we re-probe, which may happen
769 	 * several times during CPU initialization.
770 	 */
771 	apply_forced_caps(c);
772 }
773 
774 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_X86_32
777 	int i;
778 
779 	/*
780 	 * First of all, decide if this is a 486 or higher
781 	 * It's a 486 if we can modify the AC flag
782 	 */
783 	if (flag_is_changeable_p(X86_EFLAGS_AC))
784 		c->x86 = 4;
785 	else
786 		c->x86 = 3;
787 
788 	for (i = 0; i < X86_VENDOR_NUM; i++)
789 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
790 			c->x86_vendor_id[0] = 0;
791 			cpu_devs[i]->c_identify(c);
792 			if (c->x86_vendor_id[0]) {
793 				get_cpu_vendor(c);
794 				break;
795 			}
796 		}
797 #endif
798 }
799 
800 /*
801  * Do minimum CPU detection early.
802  * Fields really needed: vendor, cpuid_level, family, model, mask,
803  * cache alignment.
804  * The others are not touched to avoid unwanted side effects.
805  *
806  * WARNING: this function is only called on the BP.  Don't add code here
807  * that is supposed to run on all CPUs.
808  */
809 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
810 {
811 #ifdef CONFIG_X86_64
812 	c->x86_clflush_size = 64;
813 	c->x86_phys_bits = 36;
814 	c->x86_virt_bits = 48;
815 #else
816 	c->x86_clflush_size = 32;
817 	c->x86_phys_bits = 32;
818 	c->x86_virt_bits = 32;
819 #endif
820 	c->x86_cache_alignment = c->x86_clflush_size;
821 
822 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
823 	c->extended_cpuid_level = 0;
824 
825 	/* cyrix could have cpuid enabled via c_identify()*/
826 	if (have_cpuid_p()) {
827 		cpu_detect(c);
828 		get_cpu_vendor(c);
829 		get_cpu_cap(c);
830 		setup_force_cpu_cap(X86_FEATURE_CPUID);
831 
832 		if (this_cpu->c_early_init)
833 			this_cpu->c_early_init(c);
834 
835 		c->cpu_index = 0;
836 		filter_cpuid_features(c, false);
837 
838 		if (this_cpu->c_bsp_init)
839 			this_cpu->c_bsp_init(c);
840 	} else {
841 		identify_cpu_without_cpuid(c);
842 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
843 	}
844 
845 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
846 	fpu__init_system(c);
847 }
848 
849 void __init early_cpu_init(void)
850 {
851 	const struct cpu_dev *const *cdev;
852 	int count = 0;
853 
854 #ifdef CONFIG_PROCESSOR_SELECT
855 	pr_info("KERNEL supported cpus:\n");
856 #endif
857 
858 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
859 		const struct cpu_dev *cpudev = *cdev;
860 
861 		if (count >= X86_VENDOR_NUM)
862 			break;
863 		cpu_devs[count] = cpudev;
864 		count++;
865 
866 #ifdef CONFIG_PROCESSOR_SELECT
867 		{
868 			unsigned int j;
869 
870 			for (j = 0; j < 2; j++) {
871 				if (!cpudev->c_ident[j])
872 					continue;
873 				pr_info("  %s %s\n", cpudev->c_vendor,
874 					cpudev->c_ident[j]);
875 			}
876 		}
877 #endif
878 	}
879 	early_identify_cpu(&boot_cpu_data);
880 }
881 
882 /*
883  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
884  * unfortunately, that's not true in practice because of early VIA
885  * chips and (more importantly) broken virtualizers that are not easy
886  * to detect. In the latter case it doesn't even *fail* reliably, so
887  * probing for it doesn't even work. Disable it completely on 32-bit
888  * unless we can find a reliable way to detect all the broken cases.
889  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
890  */
891 static void detect_nopl(struct cpuinfo_x86 *c)
892 {
893 #ifdef CONFIG_X86_32
894 	clear_cpu_cap(c, X86_FEATURE_NOPL);
895 #else
896 	set_cpu_cap(c, X86_FEATURE_NOPL);
897 #endif
898 }
899 
900 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
901 {
902 #ifdef CONFIG_X86_64
903 	/*
904 	 * Empirically, writing zero to a segment selector on AMD does
905 	 * not clear the base, whereas writing zero to a segment
906 	 * selector on Intel does clear the base.  Intel's behavior
907 	 * allows slightly faster context switches in the common case
908 	 * where GS is unused by the prev and next threads.
909 	 *
910 	 * Since neither vendor documents this anywhere that I can see,
911 	 * detect it directly instead of hardcoding the choice by
912 	 * vendor.
913 	 *
914 	 * I've designated AMD's behavior as the "bug" because it's
915 	 * counterintuitive and less friendly.
916 	 */
917 
918 	unsigned long old_base, tmp;
919 	rdmsrl(MSR_FS_BASE, old_base);
920 	wrmsrl(MSR_FS_BASE, 1);
921 	loadsegment(fs, 0);
922 	rdmsrl(MSR_FS_BASE, tmp);
923 	if (tmp != 0)
924 		set_cpu_bug(c, X86_BUG_NULL_SEG);
925 	wrmsrl(MSR_FS_BASE, old_base);
926 #endif
927 }
928 
929 static void generic_identify(struct cpuinfo_x86 *c)
930 {
931 	c->extended_cpuid_level = 0;
932 
933 	if (!have_cpuid_p())
934 		identify_cpu_without_cpuid(c);
935 
936 	/* cyrix could have cpuid enabled via c_identify()*/
937 	if (!have_cpuid_p())
938 		return;
939 
940 	cpu_detect(c);
941 
942 	get_cpu_vendor(c);
943 
944 	get_cpu_cap(c);
945 
946 	if (c->cpuid_level >= 0x00000001) {
947 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
948 #ifdef CONFIG_X86_32
949 # ifdef CONFIG_SMP
950 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
951 # else
952 		c->apicid = c->initial_apicid;
953 # endif
954 #endif
955 		c->phys_proc_id = c->initial_apicid;
956 	}
957 
958 	get_model_name(c); /* Default name */
959 
960 	detect_nopl(c);
961 
962 	detect_null_seg_behavior(c);
963 
964 	/*
965 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
966 	 * systems that run Linux at CPL > 0 may or may not have the
967 	 * issue, but, even if they have the issue, there's absolutely
968 	 * nothing we can do about it because we can't use the real IRET
969 	 * instruction.
970 	 *
971 	 * NB: For the time being, only 32-bit kernels support
972 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
973 	 * whether to apply espfix using paravirt hooks.  If any
974 	 * non-paravirt system ever shows up that does *not* have the
975 	 * ESPFIX issue, we can change this.
976 	 */
977 #ifdef CONFIG_X86_32
978 # ifdef CONFIG_PARAVIRT
979 	do {
980 		extern void native_iret(void);
981 		if (pv_cpu_ops.iret == native_iret)
982 			set_cpu_bug(c, X86_BUG_ESPFIX);
983 	} while (0);
984 # else
985 	set_cpu_bug(c, X86_BUG_ESPFIX);
986 # endif
987 #endif
988 }
989 
990 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
991 {
992 	/*
993 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
994 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
995 	 * in case CQM bits really aren't there in this CPU.
996 	 */
997 	if (c != &boot_cpu_data) {
998 		boot_cpu_data.x86_cache_max_rmid =
999 			min(boot_cpu_data.x86_cache_max_rmid,
1000 			    c->x86_cache_max_rmid);
1001 	}
1002 }
1003 
1004 /*
1005  * Validate that ACPI/mptables have the same information about the
1006  * effective APIC id and update the package map.
1007  */
1008 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1009 {
1010 #ifdef CONFIG_SMP
1011 	unsigned int apicid, cpu = smp_processor_id();
1012 
1013 	apicid = apic->cpu_present_to_apicid(cpu);
1014 
1015 	if (apicid != c->apicid) {
1016 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1017 		       cpu, apicid, c->initial_apicid);
1018 	}
1019 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1020 #else
1021 	c->logical_proc_id = 0;
1022 #endif
1023 }
1024 
1025 /*
1026  * This does the hard work of actually picking apart the CPU stuff...
1027  */
1028 static void identify_cpu(struct cpuinfo_x86 *c)
1029 {
1030 	int i;
1031 
1032 	c->loops_per_jiffy = loops_per_jiffy;
1033 	c->x86_cache_size = -1;
1034 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1035 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1036 	c->x86_vendor_id[0] = '\0'; /* Unset */
1037 	c->x86_model_id[0] = '\0';  /* Unset */
1038 	c->x86_max_cores = 1;
1039 	c->x86_coreid_bits = 0;
1040 	c->cu_id = 0xff;
1041 #ifdef CONFIG_X86_64
1042 	c->x86_clflush_size = 64;
1043 	c->x86_phys_bits = 36;
1044 	c->x86_virt_bits = 48;
1045 #else
1046 	c->cpuid_level = -1;	/* CPUID not detected */
1047 	c->x86_clflush_size = 32;
1048 	c->x86_phys_bits = 32;
1049 	c->x86_virt_bits = 32;
1050 #endif
1051 	c->x86_cache_alignment = c->x86_clflush_size;
1052 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1053 
1054 	generic_identify(c);
1055 
1056 	if (this_cpu->c_identify)
1057 		this_cpu->c_identify(c);
1058 
1059 	/* Clear/Set all flags overridden by options, after probe */
1060 	apply_forced_caps(c);
1061 
1062 #ifdef CONFIG_X86_64
1063 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1064 #endif
1065 
1066 	/*
1067 	 * Vendor-specific initialization.  In this section we
1068 	 * canonicalize the feature flags, meaning if there are
1069 	 * features a certain CPU supports which CPUID doesn't
1070 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1071 	 * we handle them here.
1072 	 *
1073 	 * At the end of this section, c->x86_capability better
1074 	 * indicate the features this CPU genuinely supports!
1075 	 */
1076 	if (this_cpu->c_init)
1077 		this_cpu->c_init(c);
1078 	else
1079 		clear_sched_clock_stable();
1080 
1081 	/* Disable the PN if appropriate */
1082 	squash_the_stupid_serial_number(c);
1083 
1084 	/* Set up SMEP/SMAP */
1085 	setup_smep(c);
1086 	setup_smap(c);
1087 
1088 	/*
1089 	 * The vendor-specific functions might have changed features.
1090 	 * Now we do "generic changes."
1091 	 */
1092 
1093 	/* Filter out anything that depends on CPUID levels we don't have */
1094 	filter_cpuid_features(c, true);
1095 
1096 	/* If the model name is still unset, do table lookup. */
1097 	if (!c->x86_model_id[0]) {
1098 		const char *p;
1099 		p = table_lookup_model(c);
1100 		if (p)
1101 			strcpy(c->x86_model_id, p);
1102 		else
1103 			/* Last resort... */
1104 			sprintf(c->x86_model_id, "%02x/%02x",
1105 				c->x86, c->x86_model);
1106 	}
1107 
1108 #ifdef CONFIG_X86_64
1109 	detect_ht(c);
1110 #endif
1111 
1112 	init_hypervisor(c);
1113 	x86_init_rdrand(c);
1114 	x86_init_cache_qos(c);
1115 	setup_pku(c);
1116 
1117 	/*
1118 	 * Clear/Set all flags overridden by options, need do it
1119 	 * before following smp all cpus cap AND.
1120 	 */
1121 	apply_forced_caps(c);
1122 
1123 	/*
1124 	 * On SMP, boot_cpu_data holds the common feature set between
1125 	 * all CPUs; so make sure that we indicate which features are
1126 	 * common between the CPUs.  The first time this routine gets
1127 	 * executed, c == &boot_cpu_data.
1128 	 */
1129 	if (c != &boot_cpu_data) {
1130 		/* AND the already accumulated flags with these */
1131 		for (i = 0; i < NCAPINTS; i++)
1132 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1133 
1134 		/* OR, i.e. replicate the bug flags */
1135 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1136 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1137 	}
1138 
1139 	/* Init Machine Check Exception if available. */
1140 	mcheck_cpu_init(c);
1141 
1142 	select_idle_routine(c);
1143 
1144 #ifdef CONFIG_NUMA
1145 	numa_add_cpu(smp_processor_id());
1146 #endif
1147 }
1148 
1149 /*
1150  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1151  * on 32-bit kernels:
1152  */
1153 #ifdef CONFIG_X86_32
1154 void enable_sep_cpu(void)
1155 {
1156 	struct tss_struct *tss;
1157 	int cpu;
1158 
1159 	if (!boot_cpu_has(X86_FEATURE_SEP))
1160 		return;
1161 
1162 	cpu = get_cpu();
1163 	tss = &per_cpu(cpu_tss, cpu);
1164 
1165 	/*
1166 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1167 	 * see the big comment in struct x86_hw_tss's definition.
1168 	 */
1169 
1170 	tss->x86_tss.ss1 = __KERNEL_CS;
1171 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1172 
1173 	wrmsr(MSR_IA32_SYSENTER_ESP,
1174 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1175 	      0);
1176 
1177 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1178 
1179 	put_cpu();
1180 }
1181 #endif
1182 
1183 void __init identify_boot_cpu(void)
1184 {
1185 	identify_cpu(&boot_cpu_data);
1186 #ifdef CONFIG_X86_32
1187 	sysenter_setup();
1188 	enable_sep_cpu();
1189 #endif
1190 	cpu_detect_tlb(&boot_cpu_data);
1191 }
1192 
1193 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1194 {
1195 	BUG_ON(c == &boot_cpu_data);
1196 	identify_cpu(c);
1197 #ifdef CONFIG_X86_32
1198 	enable_sep_cpu();
1199 #endif
1200 	mtrr_ap_init();
1201 	validate_apic_and_package_id(c);
1202 }
1203 
1204 static __init int setup_noclflush(char *arg)
1205 {
1206 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1207 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1208 	return 1;
1209 }
1210 __setup("noclflush", setup_noclflush);
1211 
1212 void print_cpu_info(struct cpuinfo_x86 *c)
1213 {
1214 	const char *vendor = NULL;
1215 
1216 	if (c->x86_vendor < X86_VENDOR_NUM) {
1217 		vendor = this_cpu->c_vendor;
1218 	} else {
1219 		if (c->cpuid_level >= 0)
1220 			vendor = c->x86_vendor_id;
1221 	}
1222 
1223 	if (vendor && !strstr(c->x86_model_id, vendor))
1224 		pr_cont("%s ", vendor);
1225 
1226 	if (c->x86_model_id[0])
1227 		pr_cont("%s", c->x86_model_id);
1228 	else
1229 		pr_cont("%d86", c->x86);
1230 
1231 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1232 
1233 	if (c->x86_mask || c->cpuid_level >= 0)
1234 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1235 	else
1236 		pr_cont(")\n");
1237 }
1238 
1239 static __init int setup_disablecpuid(char *arg)
1240 {
1241 	int bit;
1242 
1243 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1244 		setup_clear_cpu_cap(bit);
1245 	else
1246 		return 0;
1247 
1248 	return 1;
1249 }
1250 __setup("clearcpuid=", setup_disablecpuid);
1251 
1252 #ifdef CONFIG_X86_64
1253 struct desc_ptr idt_descr __ro_after_init = {
1254 	.size = NR_VECTORS * 16 - 1,
1255 	.address = (unsigned long) idt_table,
1256 };
1257 const struct desc_ptr debug_idt_descr = {
1258 	.size = NR_VECTORS * 16 - 1,
1259 	.address = (unsigned long) debug_idt_table,
1260 };
1261 
1262 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1263 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1264 
1265 /*
1266  * The following percpu variables are hot.  Align current_task to
1267  * cacheline size such that they fall in the same cacheline.
1268  */
1269 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1270 	&init_task;
1271 EXPORT_PER_CPU_SYMBOL(current_task);
1272 
1273 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1274 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1275 
1276 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1277 
1278 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1279 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1280 
1281 /*
1282  * Special IST stacks which the CPU switches to when it calls
1283  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1284  * limit), all of them are 4K, except the debug stack which
1285  * is 8K.
1286  */
1287 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1288 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1289 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1290 };
1291 
1292 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1293 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1294 
1295 /* May not be marked __init: used by software suspend */
1296 void syscall_init(void)
1297 {
1298 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1299 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1300 
1301 #ifdef CONFIG_IA32_EMULATION
1302 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1303 	/*
1304 	 * This only works on Intel CPUs.
1305 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1306 	 * This does not cause SYSENTER to jump to the wrong location, because
1307 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1308 	 */
1309 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1310 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1311 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1312 #else
1313 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1314 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1315 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1316 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1317 #endif
1318 
1319 	/* Flags to clear on syscall */
1320 	wrmsrl(MSR_SYSCALL_MASK,
1321 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1322 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1323 }
1324 
1325 /*
1326  * Copies of the original ist values from the tss are only accessed during
1327  * debugging, no special alignment required.
1328  */
1329 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1330 
1331 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1332 DEFINE_PER_CPU(int, debug_stack_usage);
1333 
1334 int is_debug_stack(unsigned long addr)
1335 {
1336 	return __this_cpu_read(debug_stack_usage) ||
1337 		(addr <= __this_cpu_read(debug_stack_addr) &&
1338 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1339 }
1340 NOKPROBE_SYMBOL(is_debug_stack);
1341 
1342 DEFINE_PER_CPU(u32, debug_idt_ctr);
1343 
1344 void debug_stack_set_zero(void)
1345 {
1346 	this_cpu_inc(debug_idt_ctr);
1347 	load_current_idt();
1348 }
1349 NOKPROBE_SYMBOL(debug_stack_set_zero);
1350 
1351 void debug_stack_reset(void)
1352 {
1353 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1354 		return;
1355 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1356 		load_current_idt();
1357 }
1358 NOKPROBE_SYMBOL(debug_stack_reset);
1359 
1360 #else	/* CONFIG_X86_64 */
1361 
1362 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1363 EXPORT_PER_CPU_SYMBOL(current_task);
1364 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1365 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1366 
1367 /*
1368  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1369  * the top of the kernel stack.  Use an extra percpu variable to track the
1370  * top of the kernel stack directly.
1371  */
1372 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1373 	(unsigned long)&init_thread_union + THREAD_SIZE;
1374 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1375 
1376 #ifdef CONFIG_CC_STACKPROTECTOR
1377 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1378 #endif
1379 
1380 #endif	/* CONFIG_X86_64 */
1381 
1382 /*
1383  * Clear all 6 debug registers:
1384  */
1385 static void clear_all_debug_regs(void)
1386 {
1387 	int i;
1388 
1389 	for (i = 0; i < 8; i++) {
1390 		/* Ignore db4, db5 */
1391 		if ((i == 4) || (i == 5))
1392 			continue;
1393 
1394 		set_debugreg(0, i);
1395 	}
1396 }
1397 
1398 #ifdef CONFIG_KGDB
1399 /*
1400  * Restore debug regs if using kgdbwait and you have a kernel debugger
1401  * connection established.
1402  */
1403 static void dbg_restore_debug_regs(void)
1404 {
1405 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1406 		arch_kgdb_ops.correct_hw_break();
1407 }
1408 #else /* ! CONFIG_KGDB */
1409 #define dbg_restore_debug_regs()
1410 #endif /* ! CONFIG_KGDB */
1411 
1412 static void wait_for_master_cpu(int cpu)
1413 {
1414 #ifdef CONFIG_SMP
1415 	/*
1416 	 * wait for ACK from master CPU before continuing
1417 	 * with AP initialization
1418 	 */
1419 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1420 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1421 		cpu_relax();
1422 #endif
1423 }
1424 
1425 /*
1426  * cpu_init() initializes state that is per-CPU. Some data is already
1427  * initialized (naturally) in the bootstrap process, such as the GDT
1428  * and IDT. We reload them nevertheless, this function acts as a
1429  * 'CPU state barrier', nothing should get across.
1430  * A lot of state is already set up in PDA init for 64 bit
1431  */
1432 #ifdef CONFIG_X86_64
1433 
1434 void cpu_init(void)
1435 {
1436 	struct orig_ist *oist;
1437 	struct task_struct *me;
1438 	struct tss_struct *t;
1439 	unsigned long v;
1440 	int cpu = raw_smp_processor_id();
1441 	int i;
1442 
1443 	wait_for_master_cpu(cpu);
1444 
1445 	/*
1446 	 * Initialize the CR4 shadow before doing anything that could
1447 	 * try to read it.
1448 	 */
1449 	cr4_init_shadow();
1450 
1451 	if (cpu)
1452 		load_ucode_ap();
1453 
1454 	t = &per_cpu(cpu_tss, cpu);
1455 	oist = &per_cpu(orig_ist, cpu);
1456 
1457 #ifdef CONFIG_NUMA
1458 	if (this_cpu_read(numa_node) == 0 &&
1459 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1460 		set_numa_node(early_cpu_to_node(cpu));
1461 #endif
1462 
1463 	me = current;
1464 
1465 	pr_debug("Initializing CPU#%d\n", cpu);
1466 
1467 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1468 
1469 	/*
1470 	 * Initialize the per-CPU GDT with the boot GDT,
1471 	 * and set up the GDT descriptor:
1472 	 */
1473 
1474 	switch_to_new_gdt(cpu);
1475 	loadsegment(fs, 0);
1476 
1477 	load_current_idt();
1478 
1479 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1480 	syscall_init();
1481 
1482 	wrmsrl(MSR_FS_BASE, 0);
1483 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1484 	barrier();
1485 
1486 	x86_configure_nx();
1487 	x2apic_setup();
1488 
1489 	/*
1490 	 * set up and load the per-CPU TSS
1491 	 */
1492 	if (!oist->ist[0]) {
1493 		char *estacks = per_cpu(exception_stacks, cpu);
1494 
1495 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1496 			estacks += exception_stack_sizes[v];
1497 			oist->ist[v] = t->x86_tss.ist[v] =
1498 					(unsigned long)estacks;
1499 			if (v == DEBUG_STACK-1)
1500 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1501 		}
1502 	}
1503 
1504 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1505 
1506 	/*
1507 	 * <= is required because the CPU will access up to
1508 	 * 8 bits beyond the end of the IO permission bitmap.
1509 	 */
1510 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1511 		t->io_bitmap[i] = ~0UL;
1512 
1513 	atomic_inc(&init_mm.mm_count);
1514 	me->active_mm = &init_mm;
1515 	BUG_ON(me->mm);
1516 	enter_lazy_tlb(&init_mm, me);
1517 
1518 	load_sp0(t, &current->thread);
1519 	set_tss_desc(cpu, t);
1520 	load_TR_desc();
1521 	load_mm_ldt(&init_mm);
1522 
1523 	clear_all_debug_regs();
1524 	dbg_restore_debug_regs();
1525 
1526 	fpu__init_cpu();
1527 
1528 	if (is_uv_system())
1529 		uv_cpu_init();
1530 }
1531 
1532 #else
1533 
1534 void cpu_init(void)
1535 {
1536 	int cpu = smp_processor_id();
1537 	struct task_struct *curr = current;
1538 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1539 	struct thread_struct *thread = &curr->thread;
1540 
1541 	wait_for_master_cpu(cpu);
1542 
1543 	/*
1544 	 * Initialize the CR4 shadow before doing anything that could
1545 	 * try to read it.
1546 	 */
1547 	cr4_init_shadow();
1548 
1549 	show_ucode_info_early();
1550 
1551 	pr_info("Initializing CPU#%d\n", cpu);
1552 
1553 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1554 	    boot_cpu_has(X86_FEATURE_TSC) ||
1555 	    boot_cpu_has(X86_FEATURE_DE))
1556 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1557 
1558 	load_current_idt();
1559 	switch_to_new_gdt(cpu);
1560 
1561 	/*
1562 	 * Set up and load the per-CPU TSS and LDT
1563 	 */
1564 	atomic_inc(&init_mm.mm_count);
1565 	curr->active_mm = &init_mm;
1566 	BUG_ON(curr->mm);
1567 	enter_lazy_tlb(&init_mm, curr);
1568 
1569 	load_sp0(t, thread);
1570 	set_tss_desc(cpu, t);
1571 	load_TR_desc();
1572 	load_mm_ldt(&init_mm);
1573 
1574 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1575 
1576 #ifdef CONFIG_DOUBLEFAULT
1577 	/* Set up doublefault TSS pointer in the GDT */
1578 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1579 #endif
1580 
1581 	clear_all_debug_regs();
1582 	dbg_restore_debug_regs();
1583 
1584 	fpu__init_cpu();
1585 }
1586 #endif
1587 
1588 static void bsp_resume(void)
1589 {
1590 	if (this_cpu->c_bsp_resume)
1591 		this_cpu->c_bsp_resume(&boot_cpu_data);
1592 }
1593 
1594 static struct syscore_ops cpu_syscore_ops = {
1595 	.resume		= bsp_resume,
1596 };
1597 
1598 static int __init init_cpu_syscore(void)
1599 {
1600 	register_syscore_ops(&cpu_syscore_ops);
1601 	return 0;
1602 }
1603 core_initcall(init_cpu_syscore);
1604