xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 
25 #include <asm/stackprotector.h>
26 #include <asm/perf_event.h>
27 #include <asm/mmu_context.h>
28 #include <asm/doublefault.h>
29 #include <asm/archrandom.h>
30 #include <asm/hypervisor.h>
31 #include <asm/processor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/debugreg.h>
34 #include <asm/sections.h>
35 #include <asm/vsyscall.h>
36 #include <linux/topology.h>
37 #include <linux/cpumask.h>
38 #include <asm/pgtable.h>
39 #include <linux/atomic.h>
40 #include <asm/proto.h>
41 #include <asm/setup.h>
42 #include <asm/apic.h>
43 #include <asm/desc.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mtrr.h>
46 #include <asm/hwcap2.h>
47 #include <linux/numa.h>
48 #include <asm/asm.h>
49 #include <asm/bugs.h>
50 #include <asm/cpu.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 #include <asm/microcode.h>
55 #include <asm/microcode_intel.h>
56 #include <asm/intel-family.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/uv/uv.h>
59 
60 #include "cpu.h"
61 
62 u32 elf_hwcap2 __read_mostly;
63 
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68 
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71 
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75 
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78 
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87 
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91 	cpu_detect_cache_sizes(c);
92 #else
93 	/* Not much we can do here... */
94 	/* Check if at least it has cpuid */
95 	if (c->cpuid_level == -1) {
96 		/* No cpuid. It must be an ancient CPU */
97 		if (c->x86 == 4)
98 			strcpy(c->x86_model_id, "486");
99 		else if (c->x86 == 3)
100 			strcpy(c->x86_model_id, "386");
101 	}
102 #endif
103 }
104 
105 static const struct cpu_dev default_cpu = {
106 	.c_init		= default_init,
107 	.c_vendor	= "Unknown",
108 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
109 };
110 
111 static const struct cpu_dev *this_cpu = &default_cpu;
112 
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115 	/*
116 	 * We need valid kernel segments for data and code in long mode too
117 	 * IRET will check the segment types  kkeil 2000/10/28
118 	 * Also sysret mandates a special GDT layout
119 	 *
120 	 * TLS descriptors are currently at a different place compared to i386.
121 	 * Hopefully nobody expects them at a fixed place (Wine?)
122 	 */
123 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134 	/*
135 	 * Segments used for calling PnP BIOS have byte granularity.
136 	 * They code segments and data segments have fixed 64k limits,
137 	 * the transfer segment sizes are set at run time.
138 	 */
139 	/* 32-bit code */
140 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141 	/* 16-bit code */
142 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143 	/* 16-bit data */
144 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145 	/* 16-bit data */
146 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
147 	/* 16-bit data */
148 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
149 	/*
150 	 * The APM segments have byte granularity and their bases
151 	 * are set at run time.  All have 64k limits.
152 	 */
153 	/* 32-bit code */
154 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155 	/* 16-bit code */
156 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157 	/* data */
158 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159 
160 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 	GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166 
167 #ifdef CONFIG_X86_64
168 static int __init x86_nopcid_setup(char *s)
169 {
170 	/* nopcid doesn't accept parameters */
171 	if (s)
172 		return -EINVAL;
173 
174 	/* do not emit a message if the feature is not present */
175 	if (!boot_cpu_has(X86_FEATURE_PCID))
176 		return 0;
177 
178 	setup_clear_cpu_cap(X86_FEATURE_PCID);
179 	pr_info("nopcid: PCID feature disabled\n");
180 	return 0;
181 }
182 early_param("nopcid", x86_nopcid_setup);
183 #endif
184 
185 static int __init x86_noinvpcid_setup(char *s)
186 {
187 	/* noinvpcid doesn't accept parameters */
188 	if (s)
189 		return -EINVAL;
190 
191 	/* do not emit a message if the feature is not present */
192 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
193 		return 0;
194 
195 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
196 	pr_info("noinvpcid: INVPCID feature disabled\n");
197 	return 0;
198 }
199 early_param("noinvpcid", x86_noinvpcid_setup);
200 
201 #ifdef CONFIG_X86_32
202 static int cachesize_override = -1;
203 static int disable_x86_serial_nr = 1;
204 
205 static int __init cachesize_setup(char *str)
206 {
207 	get_option(&str, &cachesize_override);
208 	return 1;
209 }
210 __setup("cachesize=", cachesize_setup);
211 
212 static int __init x86_sep_setup(char *s)
213 {
214 	setup_clear_cpu_cap(X86_FEATURE_SEP);
215 	return 1;
216 }
217 __setup("nosep", x86_sep_setup);
218 
219 /* Standard macro to see if a specific flag is changeable */
220 static inline int flag_is_changeable_p(u32 flag)
221 {
222 	u32 f1, f2;
223 
224 	/*
225 	 * Cyrix and IDT cpus allow disabling of CPUID
226 	 * so the code below may return different results
227 	 * when it is executed before and after enabling
228 	 * the CPUID. Add "volatile" to not allow gcc to
229 	 * optimize the subsequent calls to this function.
230 	 */
231 	asm volatile ("pushfl		\n\t"
232 		      "pushfl		\n\t"
233 		      "popl %0		\n\t"
234 		      "movl %0, %1	\n\t"
235 		      "xorl %2, %0	\n\t"
236 		      "pushl %0		\n\t"
237 		      "popfl		\n\t"
238 		      "pushfl		\n\t"
239 		      "popl %0		\n\t"
240 		      "popfl		\n\t"
241 
242 		      : "=&r" (f1), "=&r" (f2)
243 		      : "ir" (flag));
244 
245 	return ((f1^f2) & flag) != 0;
246 }
247 
248 /* Probe for the CPUID instruction */
249 int have_cpuid_p(void)
250 {
251 	return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253 
254 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 	unsigned long lo, hi;
257 
258 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
259 		return;
260 
261 	/* Disable processor serial number: */
262 
263 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
264 	lo |= 0x200000;
265 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 
267 	pr_notice("CPU serial number disabled.\n");
268 	clear_cpu_cap(c, X86_FEATURE_PN);
269 
270 	/* Disabling the serial number may affect the cpuid level */
271 	c->cpuid_level = cpuid_eax(0);
272 }
273 
274 static int __init x86_serial_nr_setup(char *s)
275 {
276 	disable_x86_serial_nr = 0;
277 	return 1;
278 }
279 __setup("serialnumber", x86_serial_nr_setup);
280 #else
281 static inline int flag_is_changeable_p(u32 flag)
282 {
283 	return 1;
284 }
285 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
286 {
287 }
288 #endif
289 
290 static __init int setup_disable_smep(char *arg)
291 {
292 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
293 	return 1;
294 }
295 __setup("nosmep", setup_disable_smep);
296 
297 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
298 {
299 	if (cpu_has(c, X86_FEATURE_SMEP))
300 		cr4_set_bits(X86_CR4_SMEP);
301 }
302 
303 static __init int setup_disable_smap(char *arg)
304 {
305 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
306 	return 1;
307 }
308 __setup("nosmap", setup_disable_smap);
309 
310 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
311 {
312 	unsigned long eflags = native_save_fl();
313 
314 	/* This should have been cleared long ago */
315 	BUG_ON(eflags & X86_EFLAGS_AC);
316 
317 	if (cpu_has(c, X86_FEATURE_SMAP)) {
318 #ifdef CONFIG_X86_SMAP
319 		cr4_set_bits(X86_CR4_SMAP);
320 #else
321 		cr4_clear_bits(X86_CR4_SMAP);
322 #endif
323 	}
324 }
325 
326 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
327 {
328 	/* Check the boot processor, plus build option for UMIP. */
329 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
330 		goto out;
331 
332 	/* Check the current processor's cpuid bits. */
333 	if (!cpu_has(c, X86_FEATURE_UMIP))
334 		goto out;
335 
336 	cr4_set_bits(X86_CR4_UMIP);
337 
338 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
339 
340 	return;
341 
342 out:
343 	/*
344 	 * Make sure UMIP is disabled in case it was enabled in a
345 	 * previous boot (e.g., via kexec).
346 	 */
347 	cr4_clear_bits(X86_CR4_UMIP);
348 }
349 
350 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
351 static unsigned long cr4_pinned_bits __ro_after_init;
352 
353 void native_write_cr0(unsigned long val)
354 {
355 	unsigned long bits_missing = 0;
356 
357 set_register:
358 	asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
359 
360 	if (static_branch_likely(&cr_pinning)) {
361 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
362 			bits_missing = X86_CR0_WP;
363 			val |= bits_missing;
364 			goto set_register;
365 		}
366 		/* Warn after we've set the missing bits. */
367 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
368 	}
369 }
370 EXPORT_SYMBOL(native_write_cr0);
371 
372 void native_write_cr4(unsigned long val)
373 {
374 	unsigned long bits_missing = 0;
375 
376 set_register:
377 	asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
378 
379 	if (static_branch_likely(&cr_pinning)) {
380 		if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
381 			bits_missing = ~val & cr4_pinned_bits;
382 			val |= bits_missing;
383 			goto set_register;
384 		}
385 		/* Warn after we've set the missing bits. */
386 		WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
387 			  bits_missing);
388 	}
389 }
390 EXPORT_SYMBOL(native_write_cr4);
391 
392 void cr4_init(void)
393 {
394 	unsigned long cr4 = __read_cr4();
395 
396 	if (boot_cpu_has(X86_FEATURE_PCID))
397 		cr4 |= X86_CR4_PCIDE;
398 	if (static_branch_likely(&cr_pinning))
399 		cr4 |= cr4_pinned_bits;
400 
401 	__write_cr4(cr4);
402 
403 	/* Initialize cr4 shadow for this CPU. */
404 	this_cpu_write(cpu_tlbstate.cr4, cr4);
405 }
406 
407 /*
408  * Once CPU feature detection is finished (and boot params have been
409  * parsed), record any of the sensitive CR bits that are set, and
410  * enable CR pinning.
411  */
412 static void __init setup_cr_pinning(void)
413 {
414 	unsigned long mask;
415 
416 	mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
417 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
418 	static_key_enable(&cr_pinning.key);
419 }
420 
421 /*
422  * Protection Keys are not available in 32-bit mode.
423  */
424 static bool pku_disabled;
425 
426 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
427 {
428 	struct pkru_state *pk;
429 
430 	/* check the boot processor, plus compile options for PKU: */
431 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
432 		return;
433 	/* checks the actual processor's cpuid bits: */
434 	if (!cpu_has(c, X86_FEATURE_PKU))
435 		return;
436 	if (pku_disabled)
437 		return;
438 
439 	cr4_set_bits(X86_CR4_PKE);
440 	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
441 	if (pk)
442 		pk->pkru = init_pkru_value;
443 	/*
444 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
445 	 * cpuid bit to be set.  We need to ensure that we
446 	 * update that bit in this CPU's "cpu_info".
447 	 */
448 	set_cpu_cap(c, X86_FEATURE_OSPKE);
449 }
450 
451 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
452 static __init int setup_disable_pku(char *arg)
453 {
454 	/*
455 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
456 	 * runtime checks are against OSPKE so clearing the
457 	 * bit does nothing.
458 	 *
459 	 * This way, we will see "pku" in cpuinfo, but not
460 	 * "ospke", which is exactly what we want.  It shows
461 	 * that the CPU has PKU, but the OS has not enabled it.
462 	 * This happens to be exactly how a system would look
463 	 * if we disabled the config option.
464 	 */
465 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
466 	pku_disabled = true;
467 	return 1;
468 }
469 __setup("nopku", setup_disable_pku);
470 #endif /* CONFIG_X86_64 */
471 
472 /*
473  * Some CPU features depend on higher CPUID levels, which may not always
474  * be available due to CPUID level capping or broken virtualization
475  * software.  Add those features to this table to auto-disable them.
476  */
477 struct cpuid_dependent_feature {
478 	u32 feature;
479 	u32 level;
480 };
481 
482 static const struct cpuid_dependent_feature
483 cpuid_dependent_features[] = {
484 	{ X86_FEATURE_MWAIT,		0x00000005 },
485 	{ X86_FEATURE_DCA,		0x00000009 },
486 	{ X86_FEATURE_XSAVE,		0x0000000d },
487 	{ 0, 0 }
488 };
489 
490 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
491 {
492 	const struct cpuid_dependent_feature *df;
493 
494 	for (df = cpuid_dependent_features; df->feature; df++) {
495 
496 		if (!cpu_has(c, df->feature))
497 			continue;
498 		/*
499 		 * Note: cpuid_level is set to -1 if unavailable, but
500 		 * extended_extended_level is set to 0 if unavailable
501 		 * and the legitimate extended levels are all negative
502 		 * when signed; hence the weird messing around with
503 		 * signs here...
504 		 */
505 		if (!((s32)df->level < 0 ?
506 		     (u32)df->level > (u32)c->extended_cpuid_level :
507 		     (s32)df->level > (s32)c->cpuid_level))
508 			continue;
509 
510 		clear_cpu_cap(c, df->feature);
511 		if (!warn)
512 			continue;
513 
514 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
515 			x86_cap_flag(df->feature), df->level);
516 	}
517 }
518 
519 /*
520  * Naming convention should be: <Name> [(<Codename>)]
521  * This table only is used unless init_<vendor>() below doesn't set it;
522  * in particular, if CPUID levels 0x80000002..4 are supported, this
523  * isn't used
524  */
525 
526 /* Look up CPU names by table lookup. */
527 static const char *table_lookup_model(struct cpuinfo_x86 *c)
528 {
529 #ifdef CONFIG_X86_32
530 	const struct legacy_cpu_model_info *info;
531 
532 	if (c->x86_model >= 16)
533 		return NULL;	/* Range check */
534 
535 	if (!this_cpu)
536 		return NULL;
537 
538 	info = this_cpu->legacy_models;
539 
540 	while (info->family) {
541 		if (info->family == c->x86)
542 			return info->model_names[c->x86_model];
543 		info++;
544 	}
545 #endif
546 	return NULL;		/* Not found */
547 }
548 
549 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
550 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
551 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
552 
553 void load_percpu_segment(int cpu)
554 {
555 #ifdef CONFIG_X86_32
556 	loadsegment(fs, __KERNEL_PERCPU);
557 #else
558 	__loadsegment_simple(gs, 0);
559 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
560 #endif
561 	load_stack_canary_segment();
562 }
563 
564 #ifdef CONFIG_X86_32
565 /* The 32-bit entry code needs to find cpu_entry_area. */
566 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
567 #endif
568 
569 /* Load the original GDT from the per-cpu structure */
570 void load_direct_gdt(int cpu)
571 {
572 	struct desc_ptr gdt_descr;
573 
574 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
575 	gdt_descr.size = GDT_SIZE - 1;
576 	load_gdt(&gdt_descr);
577 }
578 EXPORT_SYMBOL_GPL(load_direct_gdt);
579 
580 /* Load a fixmap remapping of the per-cpu GDT */
581 void load_fixmap_gdt(int cpu)
582 {
583 	struct desc_ptr gdt_descr;
584 
585 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
586 	gdt_descr.size = GDT_SIZE - 1;
587 	load_gdt(&gdt_descr);
588 }
589 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
590 
591 /*
592  * Current gdt points %fs at the "master" per-cpu area: after this,
593  * it's on the real one.
594  */
595 void switch_to_new_gdt(int cpu)
596 {
597 	/* Load the original GDT */
598 	load_direct_gdt(cpu);
599 	/* Reload the per-cpu base */
600 	load_percpu_segment(cpu);
601 }
602 
603 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
604 
605 static void get_model_name(struct cpuinfo_x86 *c)
606 {
607 	unsigned int *v;
608 	char *p, *q, *s;
609 
610 	if (c->extended_cpuid_level < 0x80000004)
611 		return;
612 
613 	v = (unsigned int *)c->x86_model_id;
614 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
615 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
616 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
617 	c->x86_model_id[48] = 0;
618 
619 	/* Trim whitespace */
620 	p = q = s = &c->x86_model_id[0];
621 
622 	while (*p == ' ')
623 		p++;
624 
625 	while (*p) {
626 		/* Note the last non-whitespace index */
627 		if (!isspace(*p))
628 			s = q;
629 
630 		*q++ = *p++;
631 	}
632 
633 	*(s + 1) = '\0';
634 }
635 
636 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
637 {
638 	unsigned int eax, ebx, ecx, edx;
639 
640 	c->x86_max_cores = 1;
641 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
642 		return;
643 
644 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
645 	if (eax & 0x1f)
646 		c->x86_max_cores = (eax >> 26) + 1;
647 }
648 
649 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
650 {
651 	unsigned int n, dummy, ebx, ecx, edx, l2size;
652 
653 	n = c->extended_cpuid_level;
654 
655 	if (n >= 0x80000005) {
656 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
657 		c->x86_cache_size = (ecx>>24) + (edx>>24);
658 #ifdef CONFIG_X86_64
659 		/* On K8 L1 TLB is inclusive, so don't count it */
660 		c->x86_tlbsize = 0;
661 #endif
662 	}
663 
664 	if (n < 0x80000006)	/* Some chips just has a large L1. */
665 		return;
666 
667 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
668 	l2size = ecx >> 16;
669 
670 #ifdef CONFIG_X86_64
671 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
672 #else
673 	/* do processor-specific cache resizing */
674 	if (this_cpu->legacy_cache_size)
675 		l2size = this_cpu->legacy_cache_size(c, l2size);
676 
677 	/* Allow user to override all this if necessary. */
678 	if (cachesize_override != -1)
679 		l2size = cachesize_override;
680 
681 	if (l2size == 0)
682 		return;		/* Again, no L2 cache is possible */
683 #endif
684 
685 	c->x86_cache_size = l2size;
686 }
687 
688 u16 __read_mostly tlb_lli_4k[NR_INFO];
689 u16 __read_mostly tlb_lli_2m[NR_INFO];
690 u16 __read_mostly tlb_lli_4m[NR_INFO];
691 u16 __read_mostly tlb_lld_4k[NR_INFO];
692 u16 __read_mostly tlb_lld_2m[NR_INFO];
693 u16 __read_mostly tlb_lld_4m[NR_INFO];
694 u16 __read_mostly tlb_lld_1g[NR_INFO];
695 
696 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
697 {
698 	if (this_cpu->c_detect_tlb)
699 		this_cpu->c_detect_tlb(c);
700 
701 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
702 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
703 		tlb_lli_4m[ENTRIES]);
704 
705 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
706 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
707 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
708 }
709 
710 int detect_ht_early(struct cpuinfo_x86 *c)
711 {
712 #ifdef CONFIG_SMP
713 	u32 eax, ebx, ecx, edx;
714 
715 	if (!cpu_has(c, X86_FEATURE_HT))
716 		return -1;
717 
718 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
719 		return -1;
720 
721 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
722 		return -1;
723 
724 	cpuid(1, &eax, &ebx, &ecx, &edx);
725 
726 	smp_num_siblings = (ebx & 0xff0000) >> 16;
727 	if (smp_num_siblings == 1)
728 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
729 #endif
730 	return 0;
731 }
732 
733 void detect_ht(struct cpuinfo_x86 *c)
734 {
735 #ifdef CONFIG_SMP
736 	int index_msb, core_bits;
737 
738 	if (detect_ht_early(c) < 0)
739 		return;
740 
741 	index_msb = get_count_order(smp_num_siblings);
742 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
743 
744 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
745 
746 	index_msb = get_count_order(smp_num_siblings);
747 
748 	core_bits = get_count_order(c->x86_max_cores);
749 
750 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
751 				       ((1 << core_bits) - 1);
752 #endif
753 }
754 
755 static void get_cpu_vendor(struct cpuinfo_x86 *c)
756 {
757 	char *v = c->x86_vendor_id;
758 	int i;
759 
760 	for (i = 0; i < X86_VENDOR_NUM; i++) {
761 		if (!cpu_devs[i])
762 			break;
763 
764 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
765 		    (cpu_devs[i]->c_ident[1] &&
766 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
767 
768 			this_cpu = cpu_devs[i];
769 			c->x86_vendor = this_cpu->c_x86_vendor;
770 			return;
771 		}
772 	}
773 
774 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
775 		    "CPU: Your system may be unstable.\n", v);
776 
777 	c->x86_vendor = X86_VENDOR_UNKNOWN;
778 	this_cpu = &default_cpu;
779 }
780 
781 void cpu_detect(struct cpuinfo_x86 *c)
782 {
783 	/* Get vendor name */
784 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
785 	      (unsigned int *)&c->x86_vendor_id[0],
786 	      (unsigned int *)&c->x86_vendor_id[8],
787 	      (unsigned int *)&c->x86_vendor_id[4]);
788 
789 	c->x86 = 4;
790 	/* Intel-defined flags: level 0x00000001 */
791 	if (c->cpuid_level >= 0x00000001) {
792 		u32 junk, tfms, cap0, misc;
793 
794 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
795 		c->x86		= x86_family(tfms);
796 		c->x86_model	= x86_model(tfms);
797 		c->x86_stepping	= x86_stepping(tfms);
798 
799 		if (cap0 & (1<<19)) {
800 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
801 			c->x86_cache_alignment = c->x86_clflush_size;
802 		}
803 	}
804 }
805 
806 static void apply_forced_caps(struct cpuinfo_x86 *c)
807 {
808 	int i;
809 
810 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
811 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
812 		c->x86_capability[i] |= cpu_caps_set[i];
813 	}
814 }
815 
816 static void init_speculation_control(struct cpuinfo_x86 *c)
817 {
818 	/*
819 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
820 	 * and they also have a different bit for STIBP support. Also,
821 	 * a hypervisor might have set the individual AMD bits even on
822 	 * Intel CPUs, for finer-grained selection of what's available.
823 	 */
824 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
825 		set_cpu_cap(c, X86_FEATURE_IBRS);
826 		set_cpu_cap(c, X86_FEATURE_IBPB);
827 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
828 	}
829 
830 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
831 		set_cpu_cap(c, X86_FEATURE_STIBP);
832 
833 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
834 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
835 		set_cpu_cap(c, X86_FEATURE_SSBD);
836 
837 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
838 		set_cpu_cap(c, X86_FEATURE_IBRS);
839 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
840 	}
841 
842 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
843 		set_cpu_cap(c, X86_FEATURE_IBPB);
844 
845 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
846 		set_cpu_cap(c, X86_FEATURE_STIBP);
847 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
848 	}
849 
850 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
851 		set_cpu_cap(c, X86_FEATURE_SSBD);
852 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
853 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
854 	}
855 }
856 
857 void get_cpu_cap(struct cpuinfo_x86 *c)
858 {
859 	u32 eax, ebx, ecx, edx;
860 
861 	/* Intel-defined flags: level 0x00000001 */
862 	if (c->cpuid_level >= 0x00000001) {
863 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
864 
865 		c->x86_capability[CPUID_1_ECX] = ecx;
866 		c->x86_capability[CPUID_1_EDX] = edx;
867 	}
868 
869 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
870 	if (c->cpuid_level >= 0x00000006)
871 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
872 
873 	/* Additional Intel-defined flags: level 0x00000007 */
874 	if (c->cpuid_level >= 0x00000007) {
875 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
876 		c->x86_capability[CPUID_7_0_EBX] = ebx;
877 		c->x86_capability[CPUID_7_ECX] = ecx;
878 		c->x86_capability[CPUID_7_EDX] = edx;
879 
880 		/* Check valid sub-leaf index before accessing it */
881 		if (eax >= 1) {
882 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
883 			c->x86_capability[CPUID_7_1_EAX] = eax;
884 		}
885 	}
886 
887 	/* Extended state features: level 0x0000000d */
888 	if (c->cpuid_level >= 0x0000000d) {
889 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
890 
891 		c->x86_capability[CPUID_D_1_EAX] = eax;
892 	}
893 
894 	/* AMD-defined flags: level 0x80000001 */
895 	eax = cpuid_eax(0x80000000);
896 	c->extended_cpuid_level = eax;
897 
898 	if ((eax & 0xffff0000) == 0x80000000) {
899 		if (eax >= 0x80000001) {
900 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
901 
902 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
903 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
904 		}
905 	}
906 
907 	if (c->extended_cpuid_level >= 0x80000007) {
908 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
909 
910 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
911 		c->x86_power = edx;
912 	}
913 
914 	if (c->extended_cpuid_level >= 0x80000008) {
915 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
916 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
917 	}
918 
919 	if (c->extended_cpuid_level >= 0x8000000a)
920 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
921 
922 	init_scattered_cpuid_features(c);
923 	init_speculation_control(c);
924 
925 	/*
926 	 * Clear/Set all flags overridden by options, after probe.
927 	 * This needs to happen each time we re-probe, which may happen
928 	 * several times during CPU initialization.
929 	 */
930 	apply_forced_caps(c);
931 }
932 
933 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
934 {
935 	u32 eax, ebx, ecx, edx;
936 
937 	if (c->extended_cpuid_level >= 0x80000008) {
938 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
939 
940 		c->x86_virt_bits = (eax >> 8) & 0xff;
941 		c->x86_phys_bits = eax & 0xff;
942 	}
943 #ifdef CONFIG_X86_32
944 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
945 		c->x86_phys_bits = 36;
946 #endif
947 	c->x86_cache_bits = c->x86_phys_bits;
948 }
949 
950 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
951 {
952 #ifdef CONFIG_X86_32
953 	int i;
954 
955 	/*
956 	 * First of all, decide if this is a 486 or higher
957 	 * It's a 486 if we can modify the AC flag
958 	 */
959 	if (flag_is_changeable_p(X86_EFLAGS_AC))
960 		c->x86 = 4;
961 	else
962 		c->x86 = 3;
963 
964 	for (i = 0; i < X86_VENDOR_NUM; i++)
965 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
966 			c->x86_vendor_id[0] = 0;
967 			cpu_devs[i]->c_identify(c);
968 			if (c->x86_vendor_id[0]) {
969 				get_cpu_vendor(c);
970 				break;
971 			}
972 		}
973 #endif
974 }
975 
976 #define NO_SPECULATION		BIT(0)
977 #define NO_MELTDOWN		BIT(1)
978 #define NO_SSB			BIT(2)
979 #define NO_L1TF			BIT(3)
980 #define NO_MDS			BIT(4)
981 #define MSBDS_ONLY		BIT(5)
982 #define NO_SWAPGS		BIT(6)
983 #define NO_ITLB_MULTIHIT	BIT(7)
984 #define NO_SPECTRE_V2		BIT(8)
985 
986 #define VULNWL(vendor, family, model, whitelist)	\
987 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
988 
989 #define VULNWL_INTEL(model, whitelist)		\
990 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
991 
992 #define VULNWL_AMD(family, whitelist)		\
993 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
994 
995 #define VULNWL_HYGON(family, whitelist)		\
996 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
997 
998 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
999 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1000 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1001 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1002 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1003 
1004 	/* Intel Family 6 */
1005 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1006 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1007 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1008 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1009 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1010 
1011 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1012 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1013 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1014 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1015 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1016 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1017 
1018 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1019 
1020 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1021 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1022 
1023 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1024 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1025 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1026 
1027 	/*
1028 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1029 	 * being documented as such in the APM).  But according to AMD, %gs is
1030 	 * updated non-speculatively, and the issuing of %gs-relative memory
1031 	 * operands will be blocked until the %gs update completes, which is
1032 	 * good enough for our purposes.
1033 	 */
1034 
1035 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1036 
1037 	/* AMD Family 0xf - 0x12 */
1038 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1039 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1040 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1041 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1042 
1043 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1044 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1045 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1046 
1047 	/* Zhaoxin Family 7 */
1048 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1049 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1050 	{}
1051 };
1052 
1053 static bool __init cpu_matches(unsigned long which)
1054 {
1055 	const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1056 
1057 	return m && !!(m->driver_data & which);
1058 }
1059 
1060 u64 x86_read_arch_cap_msr(void)
1061 {
1062 	u64 ia32_cap = 0;
1063 
1064 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1065 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1066 
1067 	return ia32_cap;
1068 }
1069 
1070 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1071 {
1072 	u64 ia32_cap = x86_read_arch_cap_msr();
1073 
1074 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1075 	if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1076 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1077 
1078 	if (cpu_matches(NO_SPECULATION))
1079 		return;
1080 
1081 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1082 
1083 	if (!cpu_matches(NO_SPECTRE_V2))
1084 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1085 
1086 	if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1087 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1088 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1089 
1090 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1091 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1092 
1093 	if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1094 		setup_force_cpu_bug(X86_BUG_MDS);
1095 		if (cpu_matches(MSBDS_ONLY))
1096 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1097 	}
1098 
1099 	if (!cpu_matches(NO_SWAPGS))
1100 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1101 
1102 	/*
1103 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1104 	 *	- TSX is supported or
1105 	 *	- TSX_CTRL is present
1106 	 *
1107 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1108 	 * the kernel boot e.g. kexec.
1109 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1110 	 * update is not present or running as guest that don't get TSX_CTRL.
1111 	 */
1112 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1113 	    (cpu_has(c, X86_FEATURE_RTM) ||
1114 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1115 		setup_force_cpu_bug(X86_BUG_TAA);
1116 
1117 	if (cpu_matches(NO_MELTDOWN))
1118 		return;
1119 
1120 	/* Rogue Data Cache Load? No! */
1121 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1122 		return;
1123 
1124 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1125 
1126 	if (cpu_matches(NO_L1TF))
1127 		return;
1128 
1129 	setup_force_cpu_bug(X86_BUG_L1TF);
1130 }
1131 
1132 /*
1133  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1134  * unfortunately, that's not true in practice because of early VIA
1135  * chips and (more importantly) broken virtualizers that are not easy
1136  * to detect. In the latter case it doesn't even *fail* reliably, so
1137  * probing for it doesn't even work. Disable it completely on 32-bit
1138  * unless we can find a reliable way to detect all the broken cases.
1139  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1140  */
1141 static void detect_nopl(void)
1142 {
1143 #ifdef CONFIG_X86_32
1144 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1145 #else
1146 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1147 #endif
1148 }
1149 
1150 /*
1151  * Do minimum CPU detection early.
1152  * Fields really needed: vendor, cpuid_level, family, model, mask,
1153  * cache alignment.
1154  * The others are not touched to avoid unwanted side effects.
1155  *
1156  * WARNING: this function is only called on the boot CPU.  Don't add code
1157  * here that is supposed to run on all CPUs.
1158  */
1159 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1160 {
1161 #ifdef CONFIG_X86_64
1162 	c->x86_clflush_size = 64;
1163 	c->x86_phys_bits = 36;
1164 	c->x86_virt_bits = 48;
1165 #else
1166 	c->x86_clflush_size = 32;
1167 	c->x86_phys_bits = 32;
1168 	c->x86_virt_bits = 32;
1169 #endif
1170 	c->x86_cache_alignment = c->x86_clflush_size;
1171 
1172 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1173 	c->extended_cpuid_level = 0;
1174 
1175 	if (!have_cpuid_p())
1176 		identify_cpu_without_cpuid(c);
1177 
1178 	/* cyrix could have cpuid enabled via c_identify()*/
1179 	if (have_cpuid_p()) {
1180 		cpu_detect(c);
1181 		get_cpu_vendor(c);
1182 		get_cpu_cap(c);
1183 		get_cpu_address_sizes(c);
1184 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1185 
1186 		if (this_cpu->c_early_init)
1187 			this_cpu->c_early_init(c);
1188 
1189 		c->cpu_index = 0;
1190 		filter_cpuid_features(c, false);
1191 
1192 		if (this_cpu->c_bsp_init)
1193 			this_cpu->c_bsp_init(c);
1194 	} else {
1195 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1196 	}
1197 
1198 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1199 
1200 	cpu_set_bug_bits(c);
1201 
1202 	cpu_set_core_cap_bits(c);
1203 
1204 	fpu__init_system(c);
1205 
1206 #ifdef CONFIG_X86_32
1207 	/*
1208 	 * Regardless of whether PCID is enumerated, the SDM says
1209 	 * that it can't be enabled in 32-bit mode.
1210 	 */
1211 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1212 #endif
1213 
1214 	/*
1215 	 * Later in the boot process pgtable_l5_enabled() relies on
1216 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1217 	 * enabled by this point we need to clear the feature bit to avoid
1218 	 * false-positives at the later stage.
1219 	 *
1220 	 * pgtable_l5_enabled() can be false here for several reasons:
1221 	 *  - 5-level paging is disabled compile-time;
1222 	 *  - it's 32-bit kernel;
1223 	 *  - machine doesn't support 5-level paging;
1224 	 *  - user specified 'no5lvl' in kernel command line.
1225 	 */
1226 	if (!pgtable_l5_enabled())
1227 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1228 
1229 	detect_nopl();
1230 }
1231 
1232 void __init early_cpu_init(void)
1233 {
1234 	const struct cpu_dev *const *cdev;
1235 	int count = 0;
1236 
1237 #ifdef CONFIG_PROCESSOR_SELECT
1238 	pr_info("KERNEL supported cpus:\n");
1239 #endif
1240 
1241 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1242 		const struct cpu_dev *cpudev = *cdev;
1243 
1244 		if (count >= X86_VENDOR_NUM)
1245 			break;
1246 		cpu_devs[count] = cpudev;
1247 		count++;
1248 
1249 #ifdef CONFIG_PROCESSOR_SELECT
1250 		{
1251 			unsigned int j;
1252 
1253 			for (j = 0; j < 2; j++) {
1254 				if (!cpudev->c_ident[j])
1255 					continue;
1256 				pr_info("  %s %s\n", cpudev->c_vendor,
1257 					cpudev->c_ident[j]);
1258 			}
1259 		}
1260 #endif
1261 	}
1262 	early_identify_cpu(&boot_cpu_data);
1263 }
1264 
1265 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1266 {
1267 #ifdef CONFIG_X86_64
1268 	/*
1269 	 * Empirically, writing zero to a segment selector on AMD does
1270 	 * not clear the base, whereas writing zero to a segment
1271 	 * selector on Intel does clear the base.  Intel's behavior
1272 	 * allows slightly faster context switches in the common case
1273 	 * where GS is unused by the prev and next threads.
1274 	 *
1275 	 * Since neither vendor documents this anywhere that I can see,
1276 	 * detect it directly instead of hardcoding the choice by
1277 	 * vendor.
1278 	 *
1279 	 * I've designated AMD's behavior as the "bug" because it's
1280 	 * counterintuitive and less friendly.
1281 	 */
1282 
1283 	unsigned long old_base, tmp;
1284 	rdmsrl(MSR_FS_BASE, old_base);
1285 	wrmsrl(MSR_FS_BASE, 1);
1286 	loadsegment(fs, 0);
1287 	rdmsrl(MSR_FS_BASE, tmp);
1288 	if (tmp != 0)
1289 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1290 	wrmsrl(MSR_FS_BASE, old_base);
1291 #endif
1292 }
1293 
1294 static void generic_identify(struct cpuinfo_x86 *c)
1295 {
1296 	c->extended_cpuid_level = 0;
1297 
1298 	if (!have_cpuid_p())
1299 		identify_cpu_without_cpuid(c);
1300 
1301 	/* cyrix could have cpuid enabled via c_identify()*/
1302 	if (!have_cpuid_p())
1303 		return;
1304 
1305 	cpu_detect(c);
1306 
1307 	get_cpu_vendor(c);
1308 
1309 	get_cpu_cap(c);
1310 
1311 	get_cpu_address_sizes(c);
1312 
1313 	if (c->cpuid_level >= 0x00000001) {
1314 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1315 #ifdef CONFIG_X86_32
1316 # ifdef CONFIG_SMP
1317 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1318 # else
1319 		c->apicid = c->initial_apicid;
1320 # endif
1321 #endif
1322 		c->phys_proc_id = c->initial_apicid;
1323 	}
1324 
1325 	get_model_name(c); /* Default name */
1326 
1327 	detect_null_seg_behavior(c);
1328 
1329 	/*
1330 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1331 	 * systems that run Linux at CPL > 0 may or may not have the
1332 	 * issue, but, even if they have the issue, there's absolutely
1333 	 * nothing we can do about it because we can't use the real IRET
1334 	 * instruction.
1335 	 *
1336 	 * NB: For the time being, only 32-bit kernels support
1337 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1338 	 * whether to apply espfix using paravirt hooks.  If any
1339 	 * non-paravirt system ever shows up that does *not* have the
1340 	 * ESPFIX issue, we can change this.
1341 	 */
1342 #ifdef CONFIG_X86_32
1343 # ifdef CONFIG_PARAVIRT_XXL
1344 	do {
1345 		extern void native_iret(void);
1346 		if (pv_ops.cpu.iret == native_iret)
1347 			set_cpu_bug(c, X86_BUG_ESPFIX);
1348 	} while (0);
1349 # else
1350 	set_cpu_bug(c, X86_BUG_ESPFIX);
1351 # endif
1352 #endif
1353 }
1354 
1355 /*
1356  * Validate that ACPI/mptables have the same information about the
1357  * effective APIC id and update the package map.
1358  */
1359 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1360 {
1361 #ifdef CONFIG_SMP
1362 	unsigned int apicid, cpu = smp_processor_id();
1363 
1364 	apicid = apic->cpu_present_to_apicid(cpu);
1365 
1366 	if (apicid != c->apicid) {
1367 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1368 		       cpu, apicid, c->initial_apicid);
1369 	}
1370 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1371 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1372 #else
1373 	c->logical_proc_id = 0;
1374 #endif
1375 }
1376 
1377 /*
1378  * This does the hard work of actually picking apart the CPU stuff...
1379  */
1380 static void identify_cpu(struct cpuinfo_x86 *c)
1381 {
1382 	int i;
1383 
1384 	c->loops_per_jiffy = loops_per_jiffy;
1385 	c->x86_cache_size = 0;
1386 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1387 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1388 	c->x86_vendor_id[0] = '\0'; /* Unset */
1389 	c->x86_model_id[0] = '\0';  /* Unset */
1390 	c->x86_max_cores = 1;
1391 	c->x86_coreid_bits = 0;
1392 	c->cu_id = 0xff;
1393 #ifdef CONFIG_X86_64
1394 	c->x86_clflush_size = 64;
1395 	c->x86_phys_bits = 36;
1396 	c->x86_virt_bits = 48;
1397 #else
1398 	c->cpuid_level = -1;	/* CPUID not detected */
1399 	c->x86_clflush_size = 32;
1400 	c->x86_phys_bits = 32;
1401 	c->x86_virt_bits = 32;
1402 #endif
1403 	c->x86_cache_alignment = c->x86_clflush_size;
1404 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1405 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1406 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1407 #endif
1408 
1409 	generic_identify(c);
1410 
1411 	if (this_cpu->c_identify)
1412 		this_cpu->c_identify(c);
1413 
1414 	/* Clear/Set all flags overridden by options, after probe */
1415 	apply_forced_caps(c);
1416 
1417 #ifdef CONFIG_X86_64
1418 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1419 #endif
1420 
1421 	/*
1422 	 * Vendor-specific initialization.  In this section we
1423 	 * canonicalize the feature flags, meaning if there are
1424 	 * features a certain CPU supports which CPUID doesn't
1425 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1426 	 * we handle them here.
1427 	 *
1428 	 * At the end of this section, c->x86_capability better
1429 	 * indicate the features this CPU genuinely supports!
1430 	 */
1431 	if (this_cpu->c_init)
1432 		this_cpu->c_init(c);
1433 
1434 	/* Disable the PN if appropriate */
1435 	squash_the_stupid_serial_number(c);
1436 
1437 	/* Set up SMEP/SMAP/UMIP */
1438 	setup_smep(c);
1439 	setup_smap(c);
1440 	setup_umip(c);
1441 
1442 	/*
1443 	 * The vendor-specific functions might have changed features.
1444 	 * Now we do "generic changes."
1445 	 */
1446 
1447 	/* Filter out anything that depends on CPUID levels we don't have */
1448 	filter_cpuid_features(c, true);
1449 
1450 	/* If the model name is still unset, do table lookup. */
1451 	if (!c->x86_model_id[0]) {
1452 		const char *p;
1453 		p = table_lookup_model(c);
1454 		if (p)
1455 			strcpy(c->x86_model_id, p);
1456 		else
1457 			/* Last resort... */
1458 			sprintf(c->x86_model_id, "%02x/%02x",
1459 				c->x86, c->x86_model);
1460 	}
1461 
1462 #ifdef CONFIG_X86_64
1463 	detect_ht(c);
1464 #endif
1465 
1466 	x86_init_rdrand(c);
1467 	setup_pku(c);
1468 
1469 	/*
1470 	 * Clear/Set all flags overridden by options, need do it
1471 	 * before following smp all cpus cap AND.
1472 	 */
1473 	apply_forced_caps(c);
1474 
1475 	/*
1476 	 * On SMP, boot_cpu_data holds the common feature set between
1477 	 * all CPUs; so make sure that we indicate which features are
1478 	 * common between the CPUs.  The first time this routine gets
1479 	 * executed, c == &boot_cpu_data.
1480 	 */
1481 	if (c != &boot_cpu_data) {
1482 		/* AND the already accumulated flags with these */
1483 		for (i = 0; i < NCAPINTS; i++)
1484 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1485 
1486 		/* OR, i.e. replicate the bug flags */
1487 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1488 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1489 	}
1490 
1491 	/* Init Machine Check Exception if available. */
1492 	mcheck_cpu_init(c);
1493 
1494 	select_idle_routine(c);
1495 
1496 #ifdef CONFIG_NUMA
1497 	numa_add_cpu(smp_processor_id());
1498 #endif
1499 }
1500 
1501 /*
1502  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1503  * on 32-bit kernels:
1504  */
1505 #ifdef CONFIG_X86_32
1506 void enable_sep_cpu(void)
1507 {
1508 	struct tss_struct *tss;
1509 	int cpu;
1510 
1511 	if (!boot_cpu_has(X86_FEATURE_SEP))
1512 		return;
1513 
1514 	cpu = get_cpu();
1515 	tss = &per_cpu(cpu_tss_rw, cpu);
1516 
1517 	/*
1518 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1519 	 * see the big comment in struct x86_hw_tss's definition.
1520 	 */
1521 
1522 	tss->x86_tss.ss1 = __KERNEL_CS;
1523 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1524 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1525 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1526 
1527 	put_cpu();
1528 }
1529 #endif
1530 
1531 void __init identify_boot_cpu(void)
1532 {
1533 	identify_cpu(&boot_cpu_data);
1534 #ifdef CONFIG_X86_32
1535 	sysenter_setup();
1536 	enable_sep_cpu();
1537 #endif
1538 	cpu_detect_tlb(&boot_cpu_data);
1539 	setup_cr_pinning();
1540 
1541 	tsx_init();
1542 }
1543 
1544 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1545 {
1546 	BUG_ON(c == &boot_cpu_data);
1547 	identify_cpu(c);
1548 #ifdef CONFIG_X86_32
1549 	enable_sep_cpu();
1550 #endif
1551 	mtrr_ap_init();
1552 	validate_apic_and_package_id(c);
1553 	x86_spec_ctrl_setup_ap();
1554 }
1555 
1556 static __init int setup_noclflush(char *arg)
1557 {
1558 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1559 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1560 	return 1;
1561 }
1562 __setup("noclflush", setup_noclflush);
1563 
1564 void print_cpu_info(struct cpuinfo_x86 *c)
1565 {
1566 	const char *vendor = NULL;
1567 
1568 	if (c->x86_vendor < X86_VENDOR_NUM) {
1569 		vendor = this_cpu->c_vendor;
1570 	} else {
1571 		if (c->cpuid_level >= 0)
1572 			vendor = c->x86_vendor_id;
1573 	}
1574 
1575 	if (vendor && !strstr(c->x86_model_id, vendor))
1576 		pr_cont("%s ", vendor);
1577 
1578 	if (c->x86_model_id[0])
1579 		pr_cont("%s", c->x86_model_id);
1580 	else
1581 		pr_cont("%d86", c->x86);
1582 
1583 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1584 
1585 	if (c->x86_stepping || c->cpuid_level >= 0)
1586 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1587 	else
1588 		pr_cont(")\n");
1589 }
1590 
1591 /*
1592  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1593  * But we need to keep a dummy __setup around otherwise it would
1594  * show up as an environment variable for init.
1595  */
1596 static __init int setup_clearcpuid(char *arg)
1597 {
1598 	return 1;
1599 }
1600 __setup("clearcpuid=", setup_clearcpuid);
1601 
1602 #ifdef CONFIG_X86_64
1603 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1604 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1605 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1606 
1607 /*
1608  * The following percpu variables are hot.  Align current_task to
1609  * cacheline size such that they fall in the same cacheline.
1610  */
1611 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1612 	&init_task;
1613 EXPORT_PER_CPU_SYMBOL(current_task);
1614 
1615 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1616 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1617 
1618 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1619 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1620 
1621 /* May not be marked __init: used by software suspend */
1622 void syscall_init(void)
1623 {
1624 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1625 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1626 
1627 #ifdef CONFIG_IA32_EMULATION
1628 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1629 	/*
1630 	 * This only works on Intel CPUs.
1631 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1632 	 * This does not cause SYSENTER to jump to the wrong location, because
1633 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1634 	 */
1635 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1636 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1637 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1638 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1639 #else
1640 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1641 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1642 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1643 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1644 #endif
1645 
1646 	/* Flags to clear on syscall */
1647 	wrmsrl(MSR_SYSCALL_MASK,
1648 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1649 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1650 }
1651 
1652 DEFINE_PER_CPU(int, debug_stack_usage);
1653 DEFINE_PER_CPU(u32, debug_idt_ctr);
1654 
1655 void debug_stack_set_zero(void)
1656 {
1657 	this_cpu_inc(debug_idt_ctr);
1658 	load_current_idt();
1659 }
1660 NOKPROBE_SYMBOL(debug_stack_set_zero);
1661 
1662 void debug_stack_reset(void)
1663 {
1664 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1665 		return;
1666 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1667 		load_current_idt();
1668 }
1669 NOKPROBE_SYMBOL(debug_stack_reset);
1670 
1671 #else	/* CONFIG_X86_64 */
1672 
1673 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1674 EXPORT_PER_CPU_SYMBOL(current_task);
1675 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1676 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1677 
1678 /*
1679  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1680  * the top of the kernel stack.  Use an extra percpu variable to track the
1681  * top of the kernel stack directly.
1682  */
1683 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1684 	(unsigned long)&init_thread_union + THREAD_SIZE;
1685 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1686 
1687 #ifdef CONFIG_STACKPROTECTOR
1688 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1689 #endif
1690 
1691 #endif	/* CONFIG_X86_64 */
1692 
1693 /*
1694  * Clear all 6 debug registers:
1695  */
1696 static void clear_all_debug_regs(void)
1697 {
1698 	int i;
1699 
1700 	for (i = 0; i < 8; i++) {
1701 		/* Ignore db4, db5 */
1702 		if ((i == 4) || (i == 5))
1703 			continue;
1704 
1705 		set_debugreg(0, i);
1706 	}
1707 }
1708 
1709 #ifdef CONFIG_KGDB
1710 /*
1711  * Restore debug regs if using kgdbwait and you have a kernel debugger
1712  * connection established.
1713  */
1714 static void dbg_restore_debug_regs(void)
1715 {
1716 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1717 		arch_kgdb_ops.correct_hw_break();
1718 }
1719 #else /* ! CONFIG_KGDB */
1720 #define dbg_restore_debug_regs()
1721 #endif /* ! CONFIG_KGDB */
1722 
1723 static void wait_for_master_cpu(int cpu)
1724 {
1725 #ifdef CONFIG_SMP
1726 	/*
1727 	 * wait for ACK from master CPU before continuing
1728 	 * with AP initialization
1729 	 */
1730 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1731 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1732 		cpu_relax();
1733 #endif
1734 }
1735 
1736 #ifdef CONFIG_X86_64
1737 static inline void setup_getcpu(int cpu)
1738 {
1739 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1740 	struct desc_struct d = { };
1741 
1742 	if (boot_cpu_has(X86_FEATURE_RDTSCP))
1743 		write_rdtscp_aux(cpudata);
1744 
1745 	/* Store CPU and node number in limit. */
1746 	d.limit0 = cpudata;
1747 	d.limit1 = cpudata >> 16;
1748 
1749 	d.type = 5;		/* RO data, expand down, accessed */
1750 	d.dpl = 3;		/* Visible to user code */
1751 	d.s = 1;		/* Not a system segment */
1752 	d.p = 1;		/* Present */
1753 	d.d = 1;		/* 32-bit */
1754 
1755 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1756 }
1757 
1758 static inline void ucode_cpu_init(int cpu)
1759 {
1760 	if (cpu)
1761 		load_ucode_ap();
1762 }
1763 
1764 static inline void tss_setup_ist(struct tss_struct *tss)
1765 {
1766 	/* Set up the per-CPU TSS IST stacks */
1767 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1768 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1769 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1770 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1771 }
1772 
1773 #else /* CONFIG_X86_64 */
1774 
1775 static inline void setup_getcpu(int cpu) { }
1776 
1777 static inline void ucode_cpu_init(int cpu)
1778 {
1779 	show_ucode_info_early();
1780 }
1781 
1782 static inline void tss_setup_ist(struct tss_struct *tss) { }
1783 
1784 #endif /* !CONFIG_X86_64 */
1785 
1786 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1787 {
1788 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1789 
1790 #ifdef CONFIG_X86_IOPL_IOPERM
1791 	tss->io_bitmap.prev_max = 0;
1792 	tss->io_bitmap.prev_sequence = 0;
1793 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1794 	/*
1795 	 * Invalidate the extra array entry past the end of the all
1796 	 * permission bitmap as required by the hardware.
1797 	 */
1798 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1799 #endif
1800 }
1801 
1802 /*
1803  * cpu_init() initializes state that is per-CPU. Some data is already
1804  * initialized (naturally) in the bootstrap process, such as the GDT
1805  * and IDT. We reload them nevertheless, this function acts as a
1806  * 'CPU state barrier', nothing should get across.
1807  */
1808 void cpu_init(void)
1809 {
1810 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1811 	struct task_struct *cur = current;
1812 	int cpu = raw_smp_processor_id();
1813 
1814 	wait_for_master_cpu(cpu);
1815 
1816 	ucode_cpu_init(cpu);
1817 
1818 #ifdef CONFIG_NUMA
1819 	if (this_cpu_read(numa_node) == 0 &&
1820 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1821 		set_numa_node(early_cpu_to_node(cpu));
1822 #endif
1823 	setup_getcpu(cpu);
1824 
1825 	pr_debug("Initializing CPU#%d\n", cpu);
1826 
1827 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1828 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1829 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1830 
1831 	/*
1832 	 * Initialize the per-CPU GDT with the boot GDT,
1833 	 * and set up the GDT descriptor:
1834 	 */
1835 	switch_to_new_gdt(cpu);
1836 	load_current_idt();
1837 
1838 	if (IS_ENABLED(CONFIG_X86_64)) {
1839 		loadsegment(fs, 0);
1840 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1841 		syscall_init();
1842 
1843 		wrmsrl(MSR_FS_BASE, 0);
1844 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
1845 		barrier();
1846 
1847 		x2apic_setup();
1848 	}
1849 
1850 	mmgrab(&init_mm);
1851 	cur->active_mm = &init_mm;
1852 	BUG_ON(cur->mm);
1853 	initialize_tlbstate_and_flush();
1854 	enter_lazy_tlb(&init_mm, cur);
1855 
1856 	/* Initialize the TSS. */
1857 	tss_setup_ist(tss);
1858 	tss_setup_io_bitmap(tss);
1859 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1860 
1861 	load_TR_desc();
1862 	/*
1863 	 * sp0 points to the entry trampoline stack regardless of what task
1864 	 * is running.
1865 	 */
1866 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1867 
1868 	load_mm_ldt(&init_mm);
1869 
1870 	clear_all_debug_regs();
1871 	dbg_restore_debug_regs();
1872 
1873 	doublefault_init_cpu_tss();
1874 
1875 	fpu__init_cpu();
1876 
1877 	if (is_uv_system())
1878 		uv_cpu_init();
1879 
1880 	load_fixmap_gdt(cpu);
1881 }
1882 
1883 /*
1884  * The microcode loader calls this upon late microcode load to recheck features,
1885  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1886  * hotplug lock.
1887  */
1888 void microcode_check(void)
1889 {
1890 	struct cpuinfo_x86 info;
1891 
1892 	perf_check_microcode();
1893 
1894 	/* Reload CPUID max function as it might've changed. */
1895 	info.cpuid_level = cpuid_eax(0);
1896 
1897 	/*
1898 	 * Copy all capability leafs to pick up the synthetic ones so that
1899 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1900 	 * get overwritten in get_cpu_cap().
1901 	 */
1902 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1903 
1904 	get_cpu_cap(&info);
1905 
1906 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1907 		return;
1908 
1909 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1910 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1911 }
1912 
1913 /*
1914  * Invoked from core CPU hotplug code after hotplug operations
1915  */
1916 void arch_smt_update(void)
1917 {
1918 	/* Handle the speculative execution misfeatures */
1919 	cpu_bugs_smt_update();
1920 	/* Check whether IPI broadcasting can be enabled */
1921 	apic_smt_update();
1922 }
1923