1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/export.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/clock.h> 12 #include <linux/sched/task.h> 13 #include <linux/init.h> 14 #include <linux/kprobes.h> 15 #include <linux/kgdb.h> 16 #include <linux/smp.h> 17 #include <linux/io.h> 18 #include <linux/syscore_ops.h> 19 20 #include <asm/stackprotector.h> 21 #include <asm/perf_event.h> 22 #include <asm/mmu_context.h> 23 #include <asm/archrandom.h> 24 #include <asm/hypervisor.h> 25 #include <asm/processor.h> 26 #include <asm/tlbflush.h> 27 #include <asm/debugreg.h> 28 #include <asm/sections.h> 29 #include <asm/vsyscall.h> 30 #include <linux/topology.h> 31 #include <linux/cpumask.h> 32 #include <asm/pgtable.h> 33 #include <linux/atomic.h> 34 #include <asm/proto.h> 35 #include <asm/setup.h> 36 #include <asm/apic.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/mtrr.h> 40 #include <asm/hwcap2.h> 41 #include <linux/numa.h> 42 #include <asm/asm.h> 43 #include <asm/bugs.h> 44 #include <asm/cpu.h> 45 #include <asm/mce.h> 46 #include <asm/msr.h> 47 #include <asm/pat.h> 48 #include <asm/microcode.h> 49 #include <asm/microcode_intel.h> 50 51 #ifdef CONFIG_X86_LOCAL_APIC 52 #include <asm/uv/uv.h> 53 #endif 54 55 #include "cpu.h" 56 57 u32 elf_hwcap2 __read_mostly; 58 59 /* all of these masks are initialized in setup_cpu_local_masks() */ 60 cpumask_var_t cpu_initialized_mask; 61 cpumask_var_t cpu_callout_mask; 62 cpumask_var_t cpu_callin_mask; 63 64 /* representing cpus for which sibling maps can be computed */ 65 cpumask_var_t cpu_sibling_setup_mask; 66 67 /* correctly size the local cpu masks */ 68 void __init setup_cpu_local_masks(void) 69 { 70 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 71 alloc_bootmem_cpumask_var(&cpu_callin_mask); 72 alloc_bootmem_cpumask_var(&cpu_callout_mask); 73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 74 } 75 76 static void default_init(struct cpuinfo_x86 *c) 77 { 78 #ifdef CONFIG_X86_64 79 cpu_detect_cache_sizes(c); 80 #else 81 /* Not much we can do here... */ 82 /* Check if at least it has cpuid */ 83 if (c->cpuid_level == -1) { 84 /* No cpuid. It must be an ancient CPU */ 85 if (c->x86 == 4) 86 strcpy(c->x86_model_id, "486"); 87 else if (c->x86 == 3) 88 strcpy(c->x86_model_id, "386"); 89 } 90 #endif 91 } 92 93 static const struct cpu_dev default_cpu = { 94 .c_init = default_init, 95 .c_vendor = "Unknown", 96 .c_x86_vendor = X86_VENDOR_UNKNOWN, 97 }; 98 99 static const struct cpu_dev *this_cpu = &default_cpu; 100 101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 102 #ifdef CONFIG_X86_64 103 /* 104 * We need valid kernel segments for data and code in long mode too 105 * IRET will check the segment types kkeil 2000/10/28 106 * Also sysret mandates a special GDT layout 107 * 108 * TLS descriptors are currently at a different place compared to i386. 109 * Hopefully nobody expects them at a fixed place (Wine?) 110 */ 111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 117 #else 118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 122 /* 123 * Segments used for calling PnP BIOS have byte granularity. 124 * They code segments and data segments have fixed 64k limits, 125 * the transfer segment sizes are set at run time. 126 */ 127 /* 32-bit code */ 128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 129 /* 16-bit code */ 130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 131 /* 16-bit data */ 132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 133 /* 16-bit data */ 134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 135 /* 16-bit data */ 136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 137 /* 138 * The APM segments have byte granularity and their bases 139 * are set at run time. All have 64k limits. 140 */ 141 /* 32-bit code */ 142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 143 /* 16-bit code */ 144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 145 /* data */ 146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 147 148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 150 GDT_STACK_CANARY_INIT 151 #endif 152 } }; 153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 154 155 static int __init x86_mpx_setup(char *s) 156 { 157 /* require an exact match without trailing characters */ 158 if (strlen(s)) 159 return 0; 160 161 /* do not emit a message if the feature is not present */ 162 if (!boot_cpu_has(X86_FEATURE_MPX)) 163 return 1; 164 165 setup_clear_cpu_cap(X86_FEATURE_MPX); 166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 167 return 1; 168 } 169 __setup("nompx", x86_mpx_setup); 170 171 #ifdef CONFIG_X86_64 172 static int __init x86_nopcid_setup(char *s) 173 { 174 /* nopcid doesn't accept parameters */ 175 if (s) 176 return -EINVAL; 177 178 /* do not emit a message if the feature is not present */ 179 if (!boot_cpu_has(X86_FEATURE_PCID)) 180 return 0; 181 182 setup_clear_cpu_cap(X86_FEATURE_PCID); 183 pr_info("nopcid: PCID feature disabled\n"); 184 return 0; 185 } 186 early_param("nopcid", x86_nopcid_setup); 187 #endif 188 189 static int __init x86_noinvpcid_setup(char *s) 190 { 191 /* noinvpcid doesn't accept parameters */ 192 if (s) 193 return -EINVAL; 194 195 /* do not emit a message if the feature is not present */ 196 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 197 return 0; 198 199 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 200 pr_info("noinvpcid: INVPCID feature disabled\n"); 201 return 0; 202 } 203 early_param("noinvpcid", x86_noinvpcid_setup); 204 205 #ifdef CONFIG_X86_32 206 static int cachesize_override = -1; 207 static int disable_x86_serial_nr = 1; 208 209 static int __init cachesize_setup(char *str) 210 { 211 get_option(&str, &cachesize_override); 212 return 1; 213 } 214 __setup("cachesize=", cachesize_setup); 215 216 static int __init x86_sep_setup(char *s) 217 { 218 setup_clear_cpu_cap(X86_FEATURE_SEP); 219 return 1; 220 } 221 __setup("nosep", x86_sep_setup); 222 223 /* Standard macro to see if a specific flag is changeable */ 224 static inline int flag_is_changeable_p(u32 flag) 225 { 226 u32 f1, f2; 227 228 /* 229 * Cyrix and IDT cpus allow disabling of CPUID 230 * so the code below may return different results 231 * when it is executed before and after enabling 232 * the CPUID. Add "volatile" to not allow gcc to 233 * optimize the subsequent calls to this function. 234 */ 235 asm volatile ("pushfl \n\t" 236 "pushfl \n\t" 237 "popl %0 \n\t" 238 "movl %0, %1 \n\t" 239 "xorl %2, %0 \n\t" 240 "pushl %0 \n\t" 241 "popfl \n\t" 242 "pushfl \n\t" 243 "popl %0 \n\t" 244 "popfl \n\t" 245 246 : "=&r" (f1), "=&r" (f2) 247 : "ir" (flag)); 248 249 return ((f1^f2) & flag) != 0; 250 } 251 252 /* Probe for the CPUID instruction */ 253 int have_cpuid_p(void) 254 { 255 return flag_is_changeable_p(X86_EFLAGS_ID); 256 } 257 258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 259 { 260 unsigned long lo, hi; 261 262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 263 return; 264 265 /* Disable processor serial number: */ 266 267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 268 lo |= 0x200000; 269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 270 271 pr_notice("CPU serial number disabled.\n"); 272 clear_cpu_cap(c, X86_FEATURE_PN); 273 274 /* Disabling the serial number may affect the cpuid level */ 275 c->cpuid_level = cpuid_eax(0); 276 } 277 278 static int __init x86_serial_nr_setup(char *s) 279 { 280 disable_x86_serial_nr = 0; 281 return 1; 282 } 283 __setup("serialnumber", x86_serial_nr_setup); 284 #else 285 static inline int flag_is_changeable_p(u32 flag) 286 { 287 return 1; 288 } 289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 290 { 291 } 292 #endif 293 294 static __init int setup_disable_smep(char *arg) 295 { 296 setup_clear_cpu_cap(X86_FEATURE_SMEP); 297 /* Check for things that depend on SMEP being enabled: */ 298 check_mpx_erratum(&boot_cpu_data); 299 return 1; 300 } 301 __setup("nosmep", setup_disable_smep); 302 303 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 304 { 305 if (cpu_has(c, X86_FEATURE_SMEP)) 306 cr4_set_bits(X86_CR4_SMEP); 307 } 308 309 static __init int setup_disable_smap(char *arg) 310 { 311 setup_clear_cpu_cap(X86_FEATURE_SMAP); 312 return 1; 313 } 314 __setup("nosmap", setup_disable_smap); 315 316 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 317 { 318 unsigned long eflags = native_save_fl(); 319 320 /* This should have been cleared long ago */ 321 BUG_ON(eflags & X86_EFLAGS_AC); 322 323 if (cpu_has(c, X86_FEATURE_SMAP)) { 324 #ifdef CONFIG_X86_SMAP 325 cr4_set_bits(X86_CR4_SMAP); 326 #else 327 cr4_clear_bits(X86_CR4_SMAP); 328 #endif 329 } 330 } 331 332 static __always_inline void setup_umip(struct cpuinfo_x86 *c) 333 { 334 /* Check the boot processor, plus build option for UMIP. */ 335 if (!cpu_feature_enabled(X86_FEATURE_UMIP)) 336 goto out; 337 338 /* Check the current processor's cpuid bits. */ 339 if (!cpu_has(c, X86_FEATURE_UMIP)) 340 goto out; 341 342 cr4_set_bits(X86_CR4_UMIP); 343 344 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n"); 345 346 return; 347 348 out: 349 /* 350 * Make sure UMIP is disabled in case it was enabled in a 351 * previous boot (e.g., via kexec). 352 */ 353 cr4_clear_bits(X86_CR4_UMIP); 354 } 355 356 /* 357 * Protection Keys are not available in 32-bit mode. 358 */ 359 static bool pku_disabled; 360 361 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 362 { 363 /* check the boot processor, plus compile options for PKU: */ 364 if (!cpu_feature_enabled(X86_FEATURE_PKU)) 365 return; 366 /* checks the actual processor's cpuid bits: */ 367 if (!cpu_has(c, X86_FEATURE_PKU)) 368 return; 369 if (pku_disabled) 370 return; 371 372 cr4_set_bits(X86_CR4_PKE); 373 /* 374 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE 375 * cpuid bit to be set. We need to ensure that we 376 * update that bit in this CPU's "cpu_info". 377 */ 378 get_cpu_cap(c); 379 } 380 381 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 382 static __init int setup_disable_pku(char *arg) 383 { 384 /* 385 * Do not clear the X86_FEATURE_PKU bit. All of the 386 * runtime checks are against OSPKE so clearing the 387 * bit does nothing. 388 * 389 * This way, we will see "pku" in cpuinfo, but not 390 * "ospke", which is exactly what we want. It shows 391 * that the CPU has PKU, but the OS has not enabled it. 392 * This happens to be exactly how a system would look 393 * if we disabled the config option. 394 */ 395 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 396 pku_disabled = true; 397 return 1; 398 } 399 __setup("nopku", setup_disable_pku); 400 #endif /* CONFIG_X86_64 */ 401 402 /* 403 * Some CPU features depend on higher CPUID levels, which may not always 404 * be available due to CPUID level capping or broken virtualization 405 * software. Add those features to this table to auto-disable them. 406 */ 407 struct cpuid_dependent_feature { 408 u32 feature; 409 u32 level; 410 }; 411 412 static const struct cpuid_dependent_feature 413 cpuid_dependent_features[] = { 414 { X86_FEATURE_MWAIT, 0x00000005 }, 415 { X86_FEATURE_DCA, 0x00000009 }, 416 { X86_FEATURE_XSAVE, 0x0000000d }, 417 { 0, 0 } 418 }; 419 420 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 421 { 422 const struct cpuid_dependent_feature *df; 423 424 for (df = cpuid_dependent_features; df->feature; df++) { 425 426 if (!cpu_has(c, df->feature)) 427 continue; 428 /* 429 * Note: cpuid_level is set to -1 if unavailable, but 430 * extended_extended_level is set to 0 if unavailable 431 * and the legitimate extended levels are all negative 432 * when signed; hence the weird messing around with 433 * signs here... 434 */ 435 if (!((s32)df->level < 0 ? 436 (u32)df->level > (u32)c->extended_cpuid_level : 437 (s32)df->level > (s32)c->cpuid_level)) 438 continue; 439 440 clear_cpu_cap(c, df->feature); 441 if (!warn) 442 continue; 443 444 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 445 x86_cap_flag(df->feature), df->level); 446 } 447 } 448 449 /* 450 * Naming convention should be: <Name> [(<Codename>)] 451 * This table only is used unless init_<vendor>() below doesn't set it; 452 * in particular, if CPUID levels 0x80000002..4 are supported, this 453 * isn't used 454 */ 455 456 /* Look up CPU names by table lookup. */ 457 static const char *table_lookup_model(struct cpuinfo_x86 *c) 458 { 459 #ifdef CONFIG_X86_32 460 const struct legacy_cpu_model_info *info; 461 462 if (c->x86_model >= 16) 463 return NULL; /* Range check */ 464 465 if (!this_cpu) 466 return NULL; 467 468 info = this_cpu->legacy_models; 469 470 while (info->family) { 471 if (info->family == c->x86) 472 return info->model_names[c->x86_model]; 473 info++; 474 } 475 #endif 476 return NULL; /* Not found */ 477 } 478 479 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 480 __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 481 482 void load_percpu_segment(int cpu) 483 { 484 #ifdef CONFIG_X86_32 485 loadsegment(fs, __KERNEL_PERCPU); 486 #else 487 __loadsegment_simple(gs, 0); 488 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 489 #endif 490 load_stack_canary_segment(); 491 } 492 493 #ifdef CONFIG_X86_32 494 /* The 32-bit entry code needs to find cpu_entry_area. */ 495 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); 496 #endif 497 498 #ifdef CONFIG_X86_64 499 /* 500 * Special IST stacks which the CPU switches to when it calls 501 * an IST-marked descriptor entry. Up to 7 stacks (hardware 502 * limit), all of them are 4K, except the debug stack which 503 * is 8K. 504 */ 505 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 506 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 507 [DEBUG_STACK - 1] = DEBUG_STKSZ 508 }; 509 #endif 510 511 /* Load the original GDT from the per-cpu structure */ 512 void load_direct_gdt(int cpu) 513 { 514 struct desc_ptr gdt_descr; 515 516 gdt_descr.address = (long)get_cpu_gdt_rw(cpu); 517 gdt_descr.size = GDT_SIZE - 1; 518 load_gdt(&gdt_descr); 519 } 520 EXPORT_SYMBOL_GPL(load_direct_gdt); 521 522 /* Load a fixmap remapping of the per-cpu GDT */ 523 void load_fixmap_gdt(int cpu) 524 { 525 struct desc_ptr gdt_descr; 526 527 gdt_descr.address = (long)get_cpu_gdt_ro(cpu); 528 gdt_descr.size = GDT_SIZE - 1; 529 load_gdt(&gdt_descr); 530 } 531 EXPORT_SYMBOL_GPL(load_fixmap_gdt); 532 533 /* 534 * Current gdt points %fs at the "master" per-cpu area: after this, 535 * it's on the real one. 536 */ 537 void switch_to_new_gdt(int cpu) 538 { 539 /* Load the original GDT */ 540 load_direct_gdt(cpu); 541 /* Reload the per-cpu base */ 542 load_percpu_segment(cpu); 543 } 544 545 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 546 547 static void get_model_name(struct cpuinfo_x86 *c) 548 { 549 unsigned int *v; 550 char *p, *q, *s; 551 552 if (c->extended_cpuid_level < 0x80000004) 553 return; 554 555 v = (unsigned int *)c->x86_model_id; 556 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 557 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 558 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 559 c->x86_model_id[48] = 0; 560 561 /* Trim whitespace */ 562 p = q = s = &c->x86_model_id[0]; 563 564 while (*p == ' ') 565 p++; 566 567 while (*p) { 568 /* Note the last non-whitespace index */ 569 if (!isspace(*p)) 570 s = q; 571 572 *q++ = *p++; 573 } 574 575 *(s + 1) = '\0'; 576 } 577 578 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 579 { 580 unsigned int n, dummy, ebx, ecx, edx, l2size; 581 582 n = c->extended_cpuid_level; 583 584 if (n >= 0x80000005) { 585 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 586 c->x86_cache_size = (ecx>>24) + (edx>>24); 587 #ifdef CONFIG_X86_64 588 /* On K8 L1 TLB is inclusive, so don't count it */ 589 c->x86_tlbsize = 0; 590 #endif 591 } 592 593 if (n < 0x80000006) /* Some chips just has a large L1. */ 594 return; 595 596 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 597 l2size = ecx >> 16; 598 599 #ifdef CONFIG_X86_64 600 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 601 #else 602 /* do processor-specific cache resizing */ 603 if (this_cpu->legacy_cache_size) 604 l2size = this_cpu->legacy_cache_size(c, l2size); 605 606 /* Allow user to override all this if necessary. */ 607 if (cachesize_override != -1) 608 l2size = cachesize_override; 609 610 if (l2size == 0) 611 return; /* Again, no L2 cache is possible */ 612 #endif 613 614 c->x86_cache_size = l2size; 615 } 616 617 u16 __read_mostly tlb_lli_4k[NR_INFO]; 618 u16 __read_mostly tlb_lli_2m[NR_INFO]; 619 u16 __read_mostly tlb_lli_4m[NR_INFO]; 620 u16 __read_mostly tlb_lld_4k[NR_INFO]; 621 u16 __read_mostly tlb_lld_2m[NR_INFO]; 622 u16 __read_mostly tlb_lld_4m[NR_INFO]; 623 u16 __read_mostly tlb_lld_1g[NR_INFO]; 624 625 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 626 { 627 if (this_cpu->c_detect_tlb) 628 this_cpu->c_detect_tlb(c); 629 630 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 631 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 632 tlb_lli_4m[ENTRIES]); 633 634 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 635 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 636 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 637 } 638 639 void detect_ht(struct cpuinfo_x86 *c) 640 { 641 #ifdef CONFIG_SMP 642 u32 eax, ebx, ecx, edx; 643 int index_msb, core_bits; 644 static bool printed; 645 646 if (!cpu_has(c, X86_FEATURE_HT)) 647 return; 648 649 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 650 goto out; 651 652 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 653 return; 654 655 cpuid(1, &eax, &ebx, &ecx, &edx); 656 657 smp_num_siblings = (ebx & 0xff0000) >> 16; 658 659 if (smp_num_siblings == 1) { 660 pr_info_once("CPU0: Hyper-Threading is disabled\n"); 661 goto out; 662 } 663 664 if (smp_num_siblings <= 1) 665 goto out; 666 667 index_msb = get_count_order(smp_num_siblings); 668 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 669 670 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 671 672 index_msb = get_count_order(smp_num_siblings); 673 674 core_bits = get_count_order(c->x86_max_cores); 675 676 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 677 ((1 << core_bits) - 1); 678 679 out: 680 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 681 pr_info("CPU: Physical Processor ID: %d\n", 682 c->phys_proc_id); 683 pr_info("CPU: Processor Core ID: %d\n", 684 c->cpu_core_id); 685 printed = 1; 686 } 687 #endif 688 } 689 690 static void get_cpu_vendor(struct cpuinfo_x86 *c) 691 { 692 char *v = c->x86_vendor_id; 693 int i; 694 695 for (i = 0; i < X86_VENDOR_NUM; i++) { 696 if (!cpu_devs[i]) 697 break; 698 699 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 700 (cpu_devs[i]->c_ident[1] && 701 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 702 703 this_cpu = cpu_devs[i]; 704 c->x86_vendor = this_cpu->c_x86_vendor; 705 return; 706 } 707 } 708 709 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 710 "CPU: Your system may be unstable.\n", v); 711 712 c->x86_vendor = X86_VENDOR_UNKNOWN; 713 this_cpu = &default_cpu; 714 } 715 716 void cpu_detect(struct cpuinfo_x86 *c) 717 { 718 /* Get vendor name */ 719 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 720 (unsigned int *)&c->x86_vendor_id[0], 721 (unsigned int *)&c->x86_vendor_id[8], 722 (unsigned int *)&c->x86_vendor_id[4]); 723 724 c->x86 = 4; 725 /* Intel-defined flags: level 0x00000001 */ 726 if (c->cpuid_level >= 0x00000001) { 727 u32 junk, tfms, cap0, misc; 728 729 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 730 c->x86 = x86_family(tfms); 731 c->x86_model = x86_model(tfms); 732 c->x86_mask = x86_stepping(tfms); 733 734 if (cap0 & (1<<19)) { 735 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 736 c->x86_cache_alignment = c->x86_clflush_size; 737 } 738 } 739 } 740 741 static void apply_forced_caps(struct cpuinfo_x86 *c) 742 { 743 int i; 744 745 for (i = 0; i < NCAPINTS + NBUGINTS; i++) { 746 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 747 c->x86_capability[i] |= cpu_caps_set[i]; 748 } 749 } 750 751 void get_cpu_cap(struct cpuinfo_x86 *c) 752 { 753 u32 eax, ebx, ecx, edx; 754 755 /* Intel-defined flags: level 0x00000001 */ 756 if (c->cpuid_level >= 0x00000001) { 757 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 758 759 c->x86_capability[CPUID_1_ECX] = ecx; 760 c->x86_capability[CPUID_1_EDX] = edx; 761 } 762 763 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ 764 if (c->cpuid_level >= 0x00000006) 765 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 766 767 /* Additional Intel-defined flags: level 0x00000007 */ 768 if (c->cpuid_level >= 0x00000007) { 769 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 770 c->x86_capability[CPUID_7_0_EBX] = ebx; 771 c->x86_capability[CPUID_7_ECX] = ecx; 772 } 773 774 /* Extended state features: level 0x0000000d */ 775 if (c->cpuid_level >= 0x0000000d) { 776 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 777 778 c->x86_capability[CPUID_D_1_EAX] = eax; 779 } 780 781 /* Additional Intel-defined flags: level 0x0000000F */ 782 if (c->cpuid_level >= 0x0000000F) { 783 784 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 785 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 786 c->x86_capability[CPUID_F_0_EDX] = edx; 787 788 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 789 /* will be overridden if occupancy monitoring exists */ 790 c->x86_cache_max_rmid = ebx; 791 792 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 793 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 794 c->x86_capability[CPUID_F_1_EDX] = edx; 795 796 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || 797 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || 798 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { 799 c->x86_cache_max_rmid = ecx; 800 c->x86_cache_occ_scale = ebx; 801 } 802 } else { 803 c->x86_cache_max_rmid = -1; 804 c->x86_cache_occ_scale = -1; 805 } 806 } 807 808 /* AMD-defined flags: level 0x80000001 */ 809 eax = cpuid_eax(0x80000000); 810 c->extended_cpuid_level = eax; 811 812 if ((eax & 0xffff0000) == 0x80000000) { 813 if (eax >= 0x80000001) { 814 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 815 816 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 817 c->x86_capability[CPUID_8000_0001_EDX] = edx; 818 } 819 } 820 821 if (c->extended_cpuid_level >= 0x80000007) { 822 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 823 824 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 825 c->x86_power = edx; 826 } 827 828 if (c->extended_cpuid_level >= 0x80000008) { 829 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 830 831 c->x86_virt_bits = (eax >> 8) & 0xff; 832 c->x86_phys_bits = eax & 0xff; 833 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 834 } 835 #ifdef CONFIG_X86_32 836 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 837 c->x86_phys_bits = 36; 838 #endif 839 840 if (c->extended_cpuid_level >= 0x8000000a) 841 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 842 843 init_scattered_cpuid_features(c); 844 845 /* 846 * Clear/Set all flags overridden by options, after probe. 847 * This needs to happen each time we re-probe, which may happen 848 * several times during CPU initialization. 849 */ 850 apply_forced_caps(c); 851 } 852 853 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 854 { 855 #ifdef CONFIG_X86_32 856 int i; 857 858 /* 859 * First of all, decide if this is a 486 or higher 860 * It's a 486 if we can modify the AC flag 861 */ 862 if (flag_is_changeable_p(X86_EFLAGS_AC)) 863 c->x86 = 4; 864 else 865 c->x86 = 3; 866 867 for (i = 0; i < X86_VENDOR_NUM; i++) 868 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 869 c->x86_vendor_id[0] = 0; 870 cpu_devs[i]->c_identify(c); 871 if (c->x86_vendor_id[0]) { 872 get_cpu_vendor(c); 873 break; 874 } 875 } 876 #endif 877 } 878 879 /* 880 * Do minimum CPU detection early. 881 * Fields really needed: vendor, cpuid_level, family, model, mask, 882 * cache alignment. 883 * The others are not touched to avoid unwanted side effects. 884 * 885 * WARNING: this function is only called on the boot CPU. Don't add code 886 * here that is supposed to run on all CPUs. 887 */ 888 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 889 { 890 #ifdef CONFIG_X86_64 891 c->x86_clflush_size = 64; 892 c->x86_phys_bits = 36; 893 c->x86_virt_bits = 48; 894 #else 895 c->x86_clflush_size = 32; 896 c->x86_phys_bits = 32; 897 c->x86_virt_bits = 32; 898 #endif 899 c->x86_cache_alignment = c->x86_clflush_size; 900 901 memset(&c->x86_capability, 0, sizeof c->x86_capability); 902 c->extended_cpuid_level = 0; 903 904 /* cyrix could have cpuid enabled via c_identify()*/ 905 if (have_cpuid_p()) { 906 cpu_detect(c); 907 get_cpu_vendor(c); 908 get_cpu_cap(c); 909 setup_force_cpu_cap(X86_FEATURE_CPUID); 910 911 if (this_cpu->c_early_init) 912 this_cpu->c_early_init(c); 913 914 c->cpu_index = 0; 915 filter_cpuid_features(c, false); 916 917 if (this_cpu->c_bsp_init) 918 this_cpu->c_bsp_init(c); 919 } else { 920 identify_cpu_without_cpuid(c); 921 setup_clear_cpu_cap(X86_FEATURE_CPUID); 922 } 923 924 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 925 926 /* Assume for now that ALL x86 CPUs are insecure */ 927 setup_force_cpu_bug(X86_BUG_CPU_INSECURE); 928 929 fpu__init_system(c); 930 931 #ifdef CONFIG_X86_32 932 /* 933 * Regardless of whether PCID is enumerated, the SDM says 934 * that it can't be enabled in 32-bit mode. 935 */ 936 setup_clear_cpu_cap(X86_FEATURE_PCID); 937 #endif 938 } 939 940 void __init early_cpu_init(void) 941 { 942 const struct cpu_dev *const *cdev; 943 int count = 0; 944 945 #ifdef CONFIG_PROCESSOR_SELECT 946 pr_info("KERNEL supported cpus:\n"); 947 #endif 948 949 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 950 const struct cpu_dev *cpudev = *cdev; 951 952 if (count >= X86_VENDOR_NUM) 953 break; 954 cpu_devs[count] = cpudev; 955 count++; 956 957 #ifdef CONFIG_PROCESSOR_SELECT 958 { 959 unsigned int j; 960 961 for (j = 0; j < 2; j++) { 962 if (!cpudev->c_ident[j]) 963 continue; 964 pr_info(" %s %s\n", cpudev->c_vendor, 965 cpudev->c_ident[j]); 966 } 967 } 968 #endif 969 } 970 early_identify_cpu(&boot_cpu_data); 971 } 972 973 /* 974 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 975 * unfortunately, that's not true in practice because of early VIA 976 * chips and (more importantly) broken virtualizers that are not easy 977 * to detect. In the latter case it doesn't even *fail* reliably, so 978 * probing for it doesn't even work. Disable it completely on 32-bit 979 * unless we can find a reliable way to detect all the broken cases. 980 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 981 */ 982 static void detect_nopl(struct cpuinfo_x86 *c) 983 { 984 #ifdef CONFIG_X86_32 985 clear_cpu_cap(c, X86_FEATURE_NOPL); 986 #else 987 set_cpu_cap(c, X86_FEATURE_NOPL); 988 #endif 989 } 990 991 static void detect_null_seg_behavior(struct cpuinfo_x86 *c) 992 { 993 #ifdef CONFIG_X86_64 994 /* 995 * Empirically, writing zero to a segment selector on AMD does 996 * not clear the base, whereas writing zero to a segment 997 * selector on Intel does clear the base. Intel's behavior 998 * allows slightly faster context switches in the common case 999 * where GS is unused by the prev and next threads. 1000 * 1001 * Since neither vendor documents this anywhere that I can see, 1002 * detect it directly instead of hardcoding the choice by 1003 * vendor. 1004 * 1005 * I've designated AMD's behavior as the "bug" because it's 1006 * counterintuitive and less friendly. 1007 */ 1008 1009 unsigned long old_base, tmp; 1010 rdmsrl(MSR_FS_BASE, old_base); 1011 wrmsrl(MSR_FS_BASE, 1); 1012 loadsegment(fs, 0); 1013 rdmsrl(MSR_FS_BASE, tmp); 1014 if (tmp != 0) 1015 set_cpu_bug(c, X86_BUG_NULL_SEG); 1016 wrmsrl(MSR_FS_BASE, old_base); 1017 #endif 1018 } 1019 1020 static void generic_identify(struct cpuinfo_x86 *c) 1021 { 1022 c->extended_cpuid_level = 0; 1023 1024 if (!have_cpuid_p()) 1025 identify_cpu_without_cpuid(c); 1026 1027 /* cyrix could have cpuid enabled via c_identify()*/ 1028 if (!have_cpuid_p()) 1029 return; 1030 1031 cpu_detect(c); 1032 1033 get_cpu_vendor(c); 1034 1035 get_cpu_cap(c); 1036 1037 if (c->cpuid_level >= 0x00000001) { 1038 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 1039 #ifdef CONFIG_X86_32 1040 # ifdef CONFIG_SMP 1041 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1042 # else 1043 c->apicid = c->initial_apicid; 1044 # endif 1045 #endif 1046 c->phys_proc_id = c->initial_apicid; 1047 } 1048 1049 get_model_name(c); /* Default name */ 1050 1051 detect_nopl(c); 1052 1053 detect_null_seg_behavior(c); 1054 1055 /* 1056 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 1057 * systems that run Linux at CPL > 0 may or may not have the 1058 * issue, but, even if they have the issue, there's absolutely 1059 * nothing we can do about it because we can't use the real IRET 1060 * instruction. 1061 * 1062 * NB: For the time being, only 32-bit kernels support 1063 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 1064 * whether to apply espfix using paravirt hooks. If any 1065 * non-paravirt system ever shows up that does *not* have the 1066 * ESPFIX issue, we can change this. 1067 */ 1068 #ifdef CONFIG_X86_32 1069 # ifdef CONFIG_PARAVIRT 1070 do { 1071 extern void native_iret(void); 1072 if (pv_cpu_ops.iret == native_iret) 1073 set_cpu_bug(c, X86_BUG_ESPFIX); 1074 } while (0); 1075 # else 1076 set_cpu_bug(c, X86_BUG_ESPFIX); 1077 # endif 1078 #endif 1079 } 1080 1081 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 1082 { 1083 /* 1084 * The heavy lifting of max_rmid and cache_occ_scale are handled 1085 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 1086 * in case CQM bits really aren't there in this CPU. 1087 */ 1088 if (c != &boot_cpu_data) { 1089 boot_cpu_data.x86_cache_max_rmid = 1090 min(boot_cpu_data.x86_cache_max_rmid, 1091 c->x86_cache_max_rmid); 1092 } 1093 } 1094 1095 /* 1096 * Validate that ACPI/mptables have the same information about the 1097 * effective APIC id and update the package map. 1098 */ 1099 static void validate_apic_and_package_id(struct cpuinfo_x86 *c) 1100 { 1101 #ifdef CONFIG_SMP 1102 unsigned int apicid, cpu = smp_processor_id(); 1103 1104 apicid = apic->cpu_present_to_apicid(cpu); 1105 1106 if (apicid != c->apicid) { 1107 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", 1108 cpu, apicid, c->initial_apicid); 1109 } 1110 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); 1111 #else 1112 c->logical_proc_id = 0; 1113 #endif 1114 } 1115 1116 /* 1117 * This does the hard work of actually picking apart the CPU stuff... 1118 */ 1119 static void identify_cpu(struct cpuinfo_x86 *c) 1120 { 1121 int i; 1122 1123 c->loops_per_jiffy = loops_per_jiffy; 1124 c->x86_cache_size = -1; 1125 c->x86_vendor = X86_VENDOR_UNKNOWN; 1126 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 1127 c->x86_vendor_id[0] = '\0'; /* Unset */ 1128 c->x86_model_id[0] = '\0'; /* Unset */ 1129 c->x86_max_cores = 1; 1130 c->x86_coreid_bits = 0; 1131 c->cu_id = 0xff; 1132 #ifdef CONFIG_X86_64 1133 c->x86_clflush_size = 64; 1134 c->x86_phys_bits = 36; 1135 c->x86_virt_bits = 48; 1136 #else 1137 c->cpuid_level = -1; /* CPUID not detected */ 1138 c->x86_clflush_size = 32; 1139 c->x86_phys_bits = 32; 1140 c->x86_virt_bits = 32; 1141 #endif 1142 c->x86_cache_alignment = c->x86_clflush_size; 1143 memset(&c->x86_capability, 0, sizeof c->x86_capability); 1144 1145 generic_identify(c); 1146 1147 if (this_cpu->c_identify) 1148 this_cpu->c_identify(c); 1149 1150 /* Clear/Set all flags overridden by options, after probe */ 1151 apply_forced_caps(c); 1152 1153 #ifdef CONFIG_X86_64 1154 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1155 #endif 1156 1157 /* 1158 * Vendor-specific initialization. In this section we 1159 * canonicalize the feature flags, meaning if there are 1160 * features a certain CPU supports which CPUID doesn't 1161 * tell us, CPUID claiming incorrect flags, or other bugs, 1162 * we handle them here. 1163 * 1164 * At the end of this section, c->x86_capability better 1165 * indicate the features this CPU genuinely supports! 1166 */ 1167 if (this_cpu->c_init) 1168 this_cpu->c_init(c); 1169 1170 /* Disable the PN if appropriate */ 1171 squash_the_stupid_serial_number(c); 1172 1173 /* Set up SMEP/SMAP/UMIP */ 1174 setup_smep(c); 1175 setup_smap(c); 1176 setup_umip(c); 1177 1178 /* 1179 * The vendor-specific functions might have changed features. 1180 * Now we do "generic changes." 1181 */ 1182 1183 /* Filter out anything that depends on CPUID levels we don't have */ 1184 filter_cpuid_features(c, true); 1185 1186 /* If the model name is still unset, do table lookup. */ 1187 if (!c->x86_model_id[0]) { 1188 const char *p; 1189 p = table_lookup_model(c); 1190 if (p) 1191 strcpy(c->x86_model_id, p); 1192 else 1193 /* Last resort... */ 1194 sprintf(c->x86_model_id, "%02x/%02x", 1195 c->x86, c->x86_model); 1196 } 1197 1198 #ifdef CONFIG_X86_64 1199 detect_ht(c); 1200 #endif 1201 1202 x86_init_rdrand(c); 1203 x86_init_cache_qos(c); 1204 setup_pku(c); 1205 1206 /* 1207 * Clear/Set all flags overridden by options, need do it 1208 * before following smp all cpus cap AND. 1209 */ 1210 apply_forced_caps(c); 1211 1212 /* 1213 * On SMP, boot_cpu_data holds the common feature set between 1214 * all CPUs; so make sure that we indicate which features are 1215 * common between the CPUs. The first time this routine gets 1216 * executed, c == &boot_cpu_data. 1217 */ 1218 if (c != &boot_cpu_data) { 1219 /* AND the already accumulated flags with these */ 1220 for (i = 0; i < NCAPINTS; i++) 1221 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1222 1223 /* OR, i.e. replicate the bug flags */ 1224 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1225 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1226 } 1227 1228 /* Init Machine Check Exception if available. */ 1229 mcheck_cpu_init(c); 1230 1231 select_idle_routine(c); 1232 1233 #ifdef CONFIG_NUMA 1234 numa_add_cpu(smp_processor_id()); 1235 #endif 1236 } 1237 1238 /* 1239 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1240 * on 32-bit kernels: 1241 */ 1242 #ifdef CONFIG_X86_32 1243 void enable_sep_cpu(void) 1244 { 1245 struct tss_struct *tss; 1246 int cpu; 1247 1248 if (!boot_cpu_has(X86_FEATURE_SEP)) 1249 return; 1250 1251 cpu = get_cpu(); 1252 tss = &per_cpu(cpu_tss_rw, cpu); 1253 1254 /* 1255 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1256 * see the big comment in struct x86_hw_tss's definition. 1257 */ 1258 1259 tss->x86_tss.ss1 = __KERNEL_CS; 1260 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1261 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); 1262 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1263 1264 put_cpu(); 1265 } 1266 #endif 1267 1268 void __init identify_boot_cpu(void) 1269 { 1270 identify_cpu(&boot_cpu_data); 1271 #ifdef CONFIG_X86_32 1272 sysenter_setup(); 1273 enable_sep_cpu(); 1274 #endif 1275 cpu_detect_tlb(&boot_cpu_data); 1276 } 1277 1278 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1279 { 1280 BUG_ON(c == &boot_cpu_data); 1281 identify_cpu(c); 1282 #ifdef CONFIG_X86_32 1283 enable_sep_cpu(); 1284 #endif 1285 mtrr_ap_init(); 1286 validate_apic_and_package_id(c); 1287 } 1288 1289 static __init int setup_noclflush(char *arg) 1290 { 1291 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1292 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1293 return 1; 1294 } 1295 __setup("noclflush", setup_noclflush); 1296 1297 void print_cpu_info(struct cpuinfo_x86 *c) 1298 { 1299 const char *vendor = NULL; 1300 1301 if (c->x86_vendor < X86_VENDOR_NUM) { 1302 vendor = this_cpu->c_vendor; 1303 } else { 1304 if (c->cpuid_level >= 0) 1305 vendor = c->x86_vendor_id; 1306 } 1307 1308 if (vendor && !strstr(c->x86_model_id, vendor)) 1309 pr_cont("%s ", vendor); 1310 1311 if (c->x86_model_id[0]) 1312 pr_cont("%s", c->x86_model_id); 1313 else 1314 pr_cont("%d86", c->x86); 1315 1316 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1317 1318 if (c->x86_mask || c->cpuid_level >= 0) 1319 pr_cont(", stepping: 0x%x)\n", c->x86_mask); 1320 else 1321 pr_cont(")\n"); 1322 } 1323 1324 /* 1325 * clearcpuid= was already parsed in fpu__init_parse_early_param. 1326 * But we need to keep a dummy __setup around otherwise it would 1327 * show up as an environment variable for init. 1328 */ 1329 static __init int setup_clearcpuid(char *arg) 1330 { 1331 return 1; 1332 } 1333 __setup("clearcpuid=", setup_clearcpuid); 1334 1335 #ifdef CONFIG_X86_64 1336 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1337 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1338 1339 /* 1340 * The following percpu variables are hot. Align current_task to 1341 * cacheline size such that they fall in the same cacheline. 1342 */ 1343 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1344 &init_task; 1345 EXPORT_PER_CPU_SYMBOL(current_task); 1346 1347 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1348 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE; 1349 1350 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1351 1352 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1353 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1354 1355 /* May not be marked __init: used by software suspend */ 1356 void syscall_init(void) 1357 { 1358 extern char _entry_trampoline[]; 1359 extern char entry_SYSCALL_64_trampoline[]; 1360 1361 int cpu = smp_processor_id(); 1362 unsigned long SYSCALL64_entry_trampoline = 1363 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline + 1364 (entry_SYSCALL_64_trampoline - _entry_trampoline); 1365 1366 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 1367 if (static_cpu_has(X86_FEATURE_PTI)) 1368 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline); 1369 else 1370 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1371 1372 #ifdef CONFIG_IA32_EMULATION 1373 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1374 /* 1375 * This only works on Intel CPUs. 1376 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1377 * This does not cause SYSENTER to jump to the wrong location, because 1378 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1379 */ 1380 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1381 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); 1382 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1383 #else 1384 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1385 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1386 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1387 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1388 #endif 1389 1390 /* Flags to clear on syscall */ 1391 wrmsrl(MSR_SYSCALL_MASK, 1392 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1393 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1394 } 1395 1396 /* 1397 * Copies of the original ist values from the tss are only accessed during 1398 * debugging, no special alignment required. 1399 */ 1400 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1401 1402 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1403 DEFINE_PER_CPU(int, debug_stack_usage); 1404 1405 int is_debug_stack(unsigned long addr) 1406 { 1407 return __this_cpu_read(debug_stack_usage) || 1408 (addr <= __this_cpu_read(debug_stack_addr) && 1409 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1410 } 1411 NOKPROBE_SYMBOL(is_debug_stack); 1412 1413 DEFINE_PER_CPU(u32, debug_idt_ctr); 1414 1415 void debug_stack_set_zero(void) 1416 { 1417 this_cpu_inc(debug_idt_ctr); 1418 load_current_idt(); 1419 } 1420 NOKPROBE_SYMBOL(debug_stack_set_zero); 1421 1422 void debug_stack_reset(void) 1423 { 1424 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1425 return; 1426 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1427 load_current_idt(); 1428 } 1429 NOKPROBE_SYMBOL(debug_stack_reset); 1430 1431 #else /* CONFIG_X86_64 */ 1432 1433 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1434 EXPORT_PER_CPU_SYMBOL(current_task); 1435 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1436 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1437 1438 /* 1439 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1440 * the top of the kernel stack. Use an extra percpu variable to track the 1441 * top of the kernel stack directly. 1442 */ 1443 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1444 (unsigned long)&init_thread_union + THREAD_SIZE; 1445 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1446 1447 #ifdef CONFIG_CC_STACKPROTECTOR 1448 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1449 #endif 1450 1451 #endif /* CONFIG_X86_64 */ 1452 1453 /* 1454 * Clear all 6 debug registers: 1455 */ 1456 static void clear_all_debug_regs(void) 1457 { 1458 int i; 1459 1460 for (i = 0; i < 8; i++) { 1461 /* Ignore db4, db5 */ 1462 if ((i == 4) || (i == 5)) 1463 continue; 1464 1465 set_debugreg(0, i); 1466 } 1467 } 1468 1469 #ifdef CONFIG_KGDB 1470 /* 1471 * Restore debug regs if using kgdbwait and you have a kernel debugger 1472 * connection established. 1473 */ 1474 static void dbg_restore_debug_regs(void) 1475 { 1476 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1477 arch_kgdb_ops.correct_hw_break(); 1478 } 1479 #else /* ! CONFIG_KGDB */ 1480 #define dbg_restore_debug_regs() 1481 #endif /* ! CONFIG_KGDB */ 1482 1483 static void wait_for_master_cpu(int cpu) 1484 { 1485 #ifdef CONFIG_SMP 1486 /* 1487 * wait for ACK from master CPU before continuing 1488 * with AP initialization 1489 */ 1490 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1491 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1492 cpu_relax(); 1493 #endif 1494 } 1495 1496 /* 1497 * cpu_init() initializes state that is per-CPU. Some data is already 1498 * initialized (naturally) in the bootstrap process, such as the GDT 1499 * and IDT. We reload them nevertheless, this function acts as a 1500 * 'CPU state barrier', nothing should get across. 1501 * A lot of state is already set up in PDA init for 64 bit 1502 */ 1503 #ifdef CONFIG_X86_64 1504 1505 void cpu_init(void) 1506 { 1507 struct orig_ist *oist; 1508 struct task_struct *me; 1509 struct tss_struct *t; 1510 unsigned long v; 1511 int cpu = raw_smp_processor_id(); 1512 int i; 1513 1514 wait_for_master_cpu(cpu); 1515 1516 /* 1517 * Initialize the CR4 shadow before doing anything that could 1518 * try to read it. 1519 */ 1520 cr4_init_shadow(); 1521 1522 if (cpu) 1523 load_ucode_ap(); 1524 1525 t = &per_cpu(cpu_tss_rw, cpu); 1526 oist = &per_cpu(orig_ist, cpu); 1527 1528 #ifdef CONFIG_NUMA 1529 if (this_cpu_read(numa_node) == 0 && 1530 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1531 set_numa_node(early_cpu_to_node(cpu)); 1532 #endif 1533 1534 me = current; 1535 1536 pr_debug("Initializing CPU#%d\n", cpu); 1537 1538 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1539 1540 /* 1541 * Initialize the per-CPU GDT with the boot GDT, 1542 * and set up the GDT descriptor: 1543 */ 1544 1545 switch_to_new_gdt(cpu); 1546 loadsegment(fs, 0); 1547 1548 load_current_idt(); 1549 1550 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1551 syscall_init(); 1552 1553 wrmsrl(MSR_FS_BASE, 0); 1554 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1555 barrier(); 1556 1557 x86_configure_nx(); 1558 x2apic_setup(); 1559 1560 /* 1561 * set up and load the per-CPU TSS 1562 */ 1563 if (!oist->ist[0]) { 1564 char *estacks = get_cpu_entry_area(cpu)->exception_stacks; 1565 1566 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1567 estacks += exception_stack_sizes[v]; 1568 oist->ist[v] = t->x86_tss.ist[v] = 1569 (unsigned long)estacks; 1570 if (v == DEBUG_STACK-1) 1571 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1572 } 1573 } 1574 1575 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 1576 1577 /* 1578 * <= is required because the CPU will access up to 1579 * 8 bits beyond the end of the IO permission bitmap. 1580 */ 1581 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1582 t->io_bitmap[i] = ~0UL; 1583 1584 mmgrab(&init_mm); 1585 me->active_mm = &init_mm; 1586 BUG_ON(me->mm); 1587 initialize_tlbstate_and_flush(); 1588 enter_lazy_tlb(&init_mm, me); 1589 1590 /* 1591 * Initialize the TSS. sp0 points to the entry trampoline stack 1592 * regardless of what task is running. 1593 */ 1594 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 1595 load_TR_desc(); 1596 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); 1597 1598 load_mm_ldt(&init_mm); 1599 1600 clear_all_debug_regs(); 1601 dbg_restore_debug_regs(); 1602 1603 fpu__init_cpu(); 1604 1605 if (is_uv_system()) 1606 uv_cpu_init(); 1607 1608 load_fixmap_gdt(cpu); 1609 } 1610 1611 #else 1612 1613 void cpu_init(void) 1614 { 1615 int cpu = smp_processor_id(); 1616 struct task_struct *curr = current; 1617 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu); 1618 1619 wait_for_master_cpu(cpu); 1620 1621 /* 1622 * Initialize the CR4 shadow before doing anything that could 1623 * try to read it. 1624 */ 1625 cr4_init_shadow(); 1626 1627 show_ucode_info_early(); 1628 1629 pr_info("Initializing CPU#%d\n", cpu); 1630 1631 if (cpu_feature_enabled(X86_FEATURE_VME) || 1632 boot_cpu_has(X86_FEATURE_TSC) || 1633 boot_cpu_has(X86_FEATURE_DE)) 1634 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1635 1636 load_current_idt(); 1637 switch_to_new_gdt(cpu); 1638 1639 /* 1640 * Set up and load the per-CPU TSS and LDT 1641 */ 1642 mmgrab(&init_mm); 1643 curr->active_mm = &init_mm; 1644 BUG_ON(curr->mm); 1645 initialize_tlbstate_and_flush(); 1646 enter_lazy_tlb(&init_mm, curr); 1647 1648 /* 1649 * Initialize the TSS. Don't bother initializing sp0, as the initial 1650 * task never enters user mode. 1651 */ 1652 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 1653 load_TR_desc(); 1654 1655 load_mm_ldt(&init_mm); 1656 1657 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 1658 1659 #ifdef CONFIG_DOUBLEFAULT 1660 /* Set up doublefault TSS pointer in the GDT */ 1661 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1662 #endif 1663 1664 clear_all_debug_regs(); 1665 dbg_restore_debug_regs(); 1666 1667 fpu__init_cpu(); 1668 1669 load_fixmap_gdt(cpu); 1670 } 1671 #endif 1672 1673 static void bsp_resume(void) 1674 { 1675 if (this_cpu->c_bsp_resume) 1676 this_cpu->c_bsp_resume(&boot_cpu_data); 1677 } 1678 1679 static struct syscore_ops cpu_syscore_ops = { 1680 .resume = bsp_resume, 1681 }; 1682 1683 static int __init init_cpu_syscore(void) 1684 { 1685 register_syscore_ops(&cpu_syscore_ops); 1686 return 0; 1687 } 1688 core_initcall(init_cpu_syscore); 1689