xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 643d1f7f)
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
10 #include <asm/i387.h>
11 #include <asm/msr.h>
12 #include <asm/io.h>
13 #include <asm/mmu_context.h>
14 #include <asm/mtrr.h>
15 #include <asm/mce.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
18 #include <asm/apic.h>
19 #include <mach_apic.h>
20 #endif
21 
22 #include "cpu.h"
23 
24 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
25 	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
26 	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
27 	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
28 	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
29 	/*
30 	 * Segments used for calling PnP BIOS have byte granularity.
31 	 * They code segments and data segments have fixed 64k limits,
32 	 * the transfer segment sizes are set at run time.
33 	 */
34 	/* 32-bit code */
35 	[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
36 	/* 16-bit code */
37 	[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
38 	/* 16-bit data */
39 	[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
40 	/* 16-bit data */
41 	[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
42 	/* 16-bit data */
43 	[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
44 	/*
45 	 * The APM segments have byte granularity and their bases
46 	 * are set at run time.  All have 64k limits.
47 	 */
48 	/* 32-bit code */
49 	[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
50 	/* 16-bit code */
51 	[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
52 	/* data */
53 	[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
54 
55 	[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
56 	[GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
57 } };
58 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
59 
60 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
61 
62 static int cachesize_override __cpuinitdata = -1;
63 static int disable_x86_serial_nr __cpuinitdata = 1;
64 
65 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
66 
67 static void __cpuinit default_init(struct cpuinfo_x86 * c)
68 {
69 	/* Not much we can do here... */
70 	/* Check if at least it has cpuid */
71 	if (c->cpuid_level == -1) {
72 		/* No cpuid. It must be an ancient CPU */
73 		if (c->x86 == 4)
74 			strcpy(c->x86_model_id, "486");
75 		else if (c->x86 == 3)
76 			strcpy(c->x86_model_id, "386");
77 	}
78 }
79 
80 static struct cpu_dev __cpuinitdata default_cpu = {
81 	.c_init	= default_init,
82 	.c_vendor = "Unknown",
83 };
84 static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu;
85 
86 static int __init cachesize_setup(char *str)
87 {
88 	get_option (&str, &cachesize_override);
89 	return 1;
90 }
91 __setup("cachesize=", cachesize_setup);
92 
93 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
94 {
95 	unsigned int *v;
96 	char *p, *q;
97 
98 	if (cpuid_eax(0x80000000) < 0x80000004)
99 		return 0;
100 
101 	v = (unsigned int *) c->x86_model_id;
102 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
103 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
104 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
105 	c->x86_model_id[48] = 0;
106 
107 	/* Intel chips right-justify this string for some dumb reason;
108 	   undo that brain damage */
109 	p = q = &c->x86_model_id[0];
110 	while ( *p == ' ' )
111 	     p++;
112 	if ( p != q ) {
113 	     while ( *p )
114 		  *q++ = *p++;
115 	     while ( q <= &c->x86_model_id[48] )
116 		  *q++ = '\0';	/* Zero-pad the rest */
117 	}
118 
119 	return 1;
120 }
121 
122 
123 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
124 {
125 	unsigned int n, dummy, ecx, edx, l2size;
126 
127 	n = cpuid_eax(0x80000000);
128 
129 	if (n >= 0x80000005) {
130 		cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
131 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
132 			edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
133 		c->x86_cache_size=(ecx>>24)+(edx>>24);
134 	}
135 
136 	if (n < 0x80000006)	/* Some chips just has a large L1. */
137 		return;
138 
139 	ecx = cpuid_ecx(0x80000006);
140 	l2size = ecx >> 16;
141 
142 	/* do processor-specific cache resizing */
143 	if (this_cpu->c_size_cache)
144 		l2size = this_cpu->c_size_cache(c,l2size);
145 
146 	/* Allow user to override all this if necessary. */
147 	if (cachesize_override != -1)
148 		l2size = cachesize_override;
149 
150 	if ( l2size == 0 )
151 		return;		/* Again, no L2 cache is possible */
152 
153 	c->x86_cache_size = l2size;
154 
155 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
156 	       l2size, ecx & 0xFF);
157 }
158 
159 /* Naming convention should be: <Name> [(<Codename>)] */
160 /* This table only is used unless init_<vendor>() below doesn't set it; */
161 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
162 
163 /* Look up CPU names by table lookup. */
164 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
165 {
166 	struct cpu_model_info *info;
167 
168 	if ( c->x86_model >= 16 )
169 		return NULL;	/* Range check */
170 
171 	if (!this_cpu)
172 		return NULL;
173 
174 	info = this_cpu->c_models;
175 
176 	while (info && info->family) {
177 		if (info->family == c->x86)
178 			return info->model_names[c->x86_model];
179 		info++;
180 	}
181 	return NULL;		/* Not found */
182 }
183 
184 
185 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
186 {
187 	char *v = c->x86_vendor_id;
188 	int i;
189 	static int printed;
190 
191 	for (i = 0; i < X86_VENDOR_NUM; i++) {
192 		if (cpu_devs[i]) {
193 			if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
194 			    (cpu_devs[i]->c_ident[1] &&
195 			     !strcmp(v,cpu_devs[i]->c_ident[1]))) {
196 				c->x86_vendor = i;
197 				if (!early)
198 					this_cpu = cpu_devs[i];
199 				return;
200 			}
201 		}
202 	}
203 	if (!printed) {
204 		printed++;
205 		printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
206 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
207 	}
208 	c->x86_vendor = X86_VENDOR_UNKNOWN;
209 	this_cpu = &default_cpu;
210 }
211 
212 
213 static int __init x86_fxsr_setup(char * s)
214 {
215 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
216 	setup_clear_cpu_cap(X86_FEATURE_XMM);
217 	return 1;
218 }
219 __setup("nofxsr", x86_fxsr_setup);
220 
221 
222 static int __init x86_sep_setup(char * s)
223 {
224 	setup_clear_cpu_cap(X86_FEATURE_SEP);
225 	return 1;
226 }
227 __setup("nosep", x86_sep_setup);
228 
229 
230 /* Standard macro to see if a specific flag is changeable */
231 static inline int flag_is_changeable_p(u32 flag)
232 {
233 	u32 f1, f2;
234 
235 	asm("pushfl\n\t"
236 	    "pushfl\n\t"
237 	    "popl %0\n\t"
238 	    "movl %0,%1\n\t"
239 	    "xorl %2,%0\n\t"
240 	    "pushl %0\n\t"
241 	    "popfl\n\t"
242 	    "pushfl\n\t"
243 	    "popl %0\n\t"
244 	    "popfl\n\t"
245 	    : "=&r" (f1), "=&r" (f2)
246 	    : "ir" (flag));
247 
248 	return ((f1^f2) & flag) != 0;
249 }
250 
251 
252 /* Probe for the CPUID instruction */
253 static int __cpuinit have_cpuid_p(void)
254 {
255 	return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257 
258 void __init cpu_detect(struct cpuinfo_x86 *c)
259 {
260 	/* Get vendor name */
261 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
262 	      (unsigned int *)&c->x86_vendor_id[0],
263 	      (unsigned int *)&c->x86_vendor_id[8],
264 	      (unsigned int *)&c->x86_vendor_id[4]);
265 
266 	c->x86 = 4;
267 	if (c->cpuid_level >= 0x00000001) {
268 		u32 junk, tfms, cap0, misc;
269 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
270 		c->x86 = (tfms >> 8) & 15;
271 		c->x86_model = (tfms >> 4) & 15;
272 		if (c->x86 == 0xf)
273 			c->x86 += (tfms >> 20) & 0xff;
274 		if (c->x86 >= 0x6)
275 			c->x86_model += ((tfms >> 16) & 0xF) << 4;
276 		c->x86_mask = tfms & 15;
277 		if (cap0 & (1<<19)) {
278 			c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
279 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
280 		}
281 	}
282 }
283 static void __cpuinit early_get_cap(struct cpuinfo_x86 *c)
284 {
285 	u32 tfms, xlvl;
286 	unsigned int ebx;
287 
288 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
289 	if (have_cpuid_p()) {
290 		/* Intel-defined flags: level 0x00000001 */
291 		if (c->cpuid_level >= 0x00000001) {
292 			u32 capability, excap;
293 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
294 			c->x86_capability[0] = capability;
295 			c->x86_capability[4] = excap;
296 		}
297 
298 		/* AMD-defined flags: level 0x80000001 */
299 		xlvl = cpuid_eax(0x80000000);
300 		if ((xlvl & 0xffff0000) == 0x80000000) {
301 			if (xlvl >= 0x80000001) {
302 				c->x86_capability[1] = cpuid_edx(0x80000001);
303 				c->x86_capability[6] = cpuid_ecx(0x80000001);
304 			}
305 		}
306 
307 	}
308 
309 }
310 
311 /* Do minimum CPU detection early.
312    Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
313    The others are not touched to avoid unwanted side effects.
314 
315    WARNING: this function is only called on the BP.  Don't add code here
316    that is supposed to run on all CPUs. */
317 static void __init early_cpu_detect(void)
318 {
319 	struct cpuinfo_x86 *c = &boot_cpu_data;
320 
321 	c->x86_cache_alignment = 32;
322 	c->x86_clflush_size = 32;
323 
324 	if (!have_cpuid_p())
325 		return;
326 
327 	cpu_detect(c);
328 
329 	get_cpu_vendor(c, 1);
330 
331 	switch (c->x86_vendor) {
332 	case X86_VENDOR_AMD:
333 		early_init_amd(c);
334 		break;
335 	case X86_VENDOR_INTEL:
336 		early_init_intel(c);
337 		break;
338 	}
339 
340 	early_get_cap(c);
341 }
342 
343 static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
344 {
345 	u32 tfms, xlvl;
346 	unsigned int ebx;
347 
348 	if (have_cpuid_p()) {
349 		/* Get vendor name */
350 		cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
351 		      (unsigned int *)&c->x86_vendor_id[0],
352 		      (unsigned int *)&c->x86_vendor_id[8],
353 		      (unsigned int *)&c->x86_vendor_id[4]);
354 
355 		get_cpu_vendor(c, 0);
356 		/* Initialize the standard set of capabilities */
357 		/* Note that the vendor-specific code below might override */
358 
359 		/* Intel-defined flags: level 0x00000001 */
360 		if ( c->cpuid_level >= 0x00000001 ) {
361 			u32 capability, excap;
362 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
363 			c->x86_capability[0] = capability;
364 			c->x86_capability[4] = excap;
365 			c->x86 = (tfms >> 8) & 15;
366 			c->x86_model = (tfms >> 4) & 15;
367 			if (c->x86 == 0xf)
368 				c->x86 += (tfms >> 20) & 0xff;
369 			if (c->x86 >= 0x6)
370 				c->x86_model += ((tfms >> 16) & 0xF) << 4;
371 			c->x86_mask = tfms & 15;
372 #ifdef CONFIG_X86_HT
373 			c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
374 #else
375 			c->apicid = (ebx >> 24) & 0xFF;
376 #endif
377 			if (c->x86_capability[0] & (1<<19))
378 				c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
379 		} else {
380 			/* Have CPUID level 0 only - unheard of */
381 			c->x86 = 4;
382 		}
383 
384 		/* AMD-defined flags: level 0x80000001 */
385 		xlvl = cpuid_eax(0x80000000);
386 		if ( (xlvl & 0xffff0000) == 0x80000000 ) {
387 			if ( xlvl >= 0x80000001 ) {
388 				c->x86_capability[1] = cpuid_edx(0x80000001);
389 				c->x86_capability[6] = cpuid_ecx(0x80000001);
390 			}
391 			if ( xlvl >= 0x80000004 )
392 				get_model_name(c); /* Default name */
393 		}
394 
395 		init_scattered_cpuid_features(c);
396 	}
397 
398 #ifdef CONFIG_X86_HT
399 	c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
400 #endif
401 }
402 
403 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
404 {
405 	if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
406 		/* Disable processor serial number */
407 		unsigned long lo,hi;
408 		rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
409 		lo |= 0x200000;
410 		wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
411 		printk(KERN_NOTICE "CPU serial number disabled.\n");
412 		clear_bit(X86_FEATURE_PN, c->x86_capability);
413 
414 		/* Disabling the serial number may affect the cpuid level */
415 		c->cpuid_level = cpuid_eax(0);
416 	}
417 }
418 
419 static int __init x86_serial_nr_setup(char *s)
420 {
421 	disable_x86_serial_nr = 0;
422 	return 1;
423 }
424 __setup("serialnumber", x86_serial_nr_setup);
425 
426 
427 
428 /*
429  * This does the hard work of actually picking apart the CPU stuff...
430  */
431 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
432 {
433 	int i;
434 
435 	c->loops_per_jiffy = loops_per_jiffy;
436 	c->x86_cache_size = -1;
437 	c->x86_vendor = X86_VENDOR_UNKNOWN;
438 	c->cpuid_level = -1;	/* CPUID not detected */
439 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
440 	c->x86_vendor_id[0] = '\0'; /* Unset */
441 	c->x86_model_id[0] = '\0';  /* Unset */
442 	c->x86_max_cores = 1;
443 	c->x86_clflush_size = 32;
444 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
445 
446 	if (!have_cpuid_p()) {
447 		/* First of all, decide if this is a 486 or higher */
448 		/* It's a 486 if we can modify the AC flag */
449 		if ( flag_is_changeable_p(X86_EFLAGS_AC) )
450 			c->x86 = 4;
451 		else
452 			c->x86 = 3;
453 	}
454 
455 	generic_identify(c);
456 
457 	if (this_cpu->c_identify)
458 		this_cpu->c_identify(c);
459 
460 	/*
461 	 * Vendor-specific initialization.  In this section we
462 	 * canonicalize the feature flags, meaning if there are
463 	 * features a certain CPU supports which CPUID doesn't
464 	 * tell us, CPUID claiming incorrect flags, or other bugs,
465 	 * we handle them here.
466 	 *
467 	 * At the end of this section, c->x86_capability better
468 	 * indicate the features this CPU genuinely supports!
469 	 */
470 	if (this_cpu->c_init)
471 		this_cpu->c_init(c);
472 
473 	/* Disable the PN if appropriate */
474 	squash_the_stupid_serial_number(c);
475 
476 	/*
477 	 * The vendor-specific functions might have changed features.  Now
478 	 * we do "generic changes."
479 	 */
480 
481 	/* If the model name is still unset, do table lookup. */
482 	if ( !c->x86_model_id[0] ) {
483 		char *p;
484 		p = table_lookup_model(c);
485 		if ( p )
486 			strcpy(c->x86_model_id, p);
487 		else
488 			/* Last resort... */
489 			sprintf(c->x86_model_id, "%02x/%02x",
490 				c->x86, c->x86_model);
491 	}
492 
493 	/*
494 	 * On SMP, boot_cpu_data holds the common feature set between
495 	 * all CPUs; so make sure that we indicate which features are
496 	 * common between the CPUs.  The first time this routine gets
497 	 * executed, c == &boot_cpu_data.
498 	 */
499 	if ( c != &boot_cpu_data ) {
500 		/* AND the already accumulated flags with these */
501 		for ( i = 0 ; i < NCAPINTS ; i++ )
502 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
503 	}
504 
505 	/* Clear all flags overriden by options */
506 	for (i = 0; i < NCAPINTS; i++)
507 		c->x86_capability[i] ^= cleared_cpu_caps[i];
508 
509 	/* Init Machine Check Exception if available. */
510 	mcheck_init(c);
511 
512 	select_idle_routine(c);
513 }
514 
515 void __init identify_boot_cpu(void)
516 {
517 	identify_cpu(&boot_cpu_data);
518 	sysenter_setup();
519 	enable_sep_cpu();
520 }
521 
522 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
523 {
524 	BUG_ON(c == &boot_cpu_data);
525 	identify_cpu(c);
526 	enable_sep_cpu();
527 	mtrr_ap_init();
528 }
529 
530 #ifdef CONFIG_X86_HT
531 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
532 {
533 	u32 	eax, ebx, ecx, edx;
534 	int 	index_msb, core_bits;
535 
536 	cpuid(1, &eax, &ebx, &ecx, &edx);
537 
538 	if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
539 		return;
540 
541 	smp_num_siblings = (ebx & 0xff0000) >> 16;
542 
543 	if (smp_num_siblings == 1) {
544 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
545 	} else if (smp_num_siblings > 1 ) {
546 
547 		if (smp_num_siblings > NR_CPUS) {
548 			printk(KERN_WARNING "CPU: Unsupported number of the "
549 					"siblings %d", smp_num_siblings);
550 			smp_num_siblings = 1;
551 			return;
552 		}
553 
554 		index_msb = get_count_order(smp_num_siblings);
555 		c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
556 
557 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
558 		       c->phys_proc_id);
559 
560 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
561 
562 		index_msb = get_count_order(smp_num_siblings) ;
563 
564 		core_bits = get_count_order(c->x86_max_cores);
565 
566 		c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
567 					       ((1 << core_bits) - 1);
568 
569 		if (c->x86_max_cores > 1)
570 			printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
571 			       c->cpu_core_id);
572 	}
573 }
574 #endif
575 
576 static __init int setup_noclflush(char *arg)
577 {
578 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
579 	return 1;
580 }
581 __setup("noclflush", setup_noclflush);
582 
583 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
584 {
585 	char *vendor = NULL;
586 
587 	if (c->x86_vendor < X86_VENDOR_NUM)
588 		vendor = this_cpu->c_vendor;
589 	else if (c->cpuid_level >= 0)
590 		vendor = c->x86_vendor_id;
591 
592 	if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
593 		printk("%s ", vendor);
594 
595 	if (!c->x86_model_id[0])
596 		printk("%d86", c->x86);
597 	else
598 		printk("%s", c->x86_model_id);
599 
600 	if (c->x86_mask || c->cpuid_level >= 0)
601 		printk(" stepping %02x\n", c->x86_mask);
602 	else
603 		printk("\n");
604 }
605 
606 static __init int setup_disablecpuid(char *arg)
607 {
608 	int bit;
609 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
610 		setup_clear_cpu_cap(bit);
611 	else
612 		return 0;
613 	return 1;
614 }
615 __setup("clearcpuid=", setup_disablecpuid);
616 
617 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
618 
619 /* This is hacky. :)
620  * We're emulating future behavior.
621  * In the future, the cpu-specific init functions will be called implicitly
622  * via the magic of initcalls.
623  * They will insert themselves into the cpu_devs structure.
624  * Then, when cpu_init() is called, we can just iterate over that array.
625  */
626 
627 extern int intel_cpu_init(void);
628 extern int cyrix_init_cpu(void);
629 extern int nsc_init_cpu(void);
630 extern int amd_init_cpu(void);
631 extern int centaur_init_cpu(void);
632 extern int transmeta_init_cpu(void);
633 extern int nexgen_init_cpu(void);
634 extern int umc_init_cpu(void);
635 
636 void __init early_cpu_init(void)
637 {
638 	intel_cpu_init();
639 	cyrix_init_cpu();
640 	nsc_init_cpu();
641 	amd_init_cpu();
642 	centaur_init_cpu();
643 	transmeta_init_cpu();
644 	nexgen_init_cpu();
645 	umc_init_cpu();
646 	early_cpu_detect();
647 }
648 
649 /* Make sure %fs is initialized properly in idle threads */
650 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
651 {
652 	memset(regs, 0, sizeof(struct pt_regs));
653 	regs->fs = __KERNEL_PERCPU;
654 	return regs;
655 }
656 
657 /* Current gdt points %fs at the "master" per-cpu area: after this,
658  * it's on the real one. */
659 void switch_to_new_gdt(void)
660 {
661 	struct desc_ptr gdt_descr;
662 
663 	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
664 	gdt_descr.size = GDT_SIZE - 1;
665 	load_gdt(&gdt_descr);
666 	asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
667 }
668 
669 /*
670  * cpu_init() initializes state that is per-CPU. Some data is already
671  * initialized (naturally) in the bootstrap process, such as the GDT
672  * and IDT. We reload them nevertheless, this function acts as a
673  * 'CPU state barrier', nothing should get across.
674  */
675 void __cpuinit cpu_init(void)
676 {
677 	int cpu = smp_processor_id();
678 	struct task_struct *curr = current;
679 	struct tss_struct * t = &per_cpu(init_tss, cpu);
680 	struct thread_struct *thread = &curr->thread;
681 
682 	if (cpu_test_and_set(cpu, cpu_initialized)) {
683 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
684 		for (;;) local_irq_enable();
685 	}
686 
687 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
688 
689 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
690 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
691 
692 	load_idt(&idt_descr);
693 	switch_to_new_gdt();
694 
695 	/*
696 	 * Set up and load the per-CPU TSS and LDT
697 	 */
698 	atomic_inc(&init_mm.mm_count);
699 	curr->active_mm = &init_mm;
700 	if (curr->mm)
701 		BUG();
702 	enter_lazy_tlb(&init_mm, curr);
703 
704 	load_sp0(t, thread);
705 	set_tss_desc(cpu,t);
706 	load_TR_desc();
707 	load_LDT(&init_mm.context);
708 
709 #ifdef CONFIG_DOUBLEFAULT
710 	/* Set up doublefault TSS pointer in the GDT */
711 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
712 #endif
713 
714 	/* Clear %gs. */
715 	asm volatile ("mov %0, %%gs" : : "r" (0));
716 
717 	/* Clear all 6 debug registers: */
718 	set_debugreg(0, 0);
719 	set_debugreg(0, 1);
720 	set_debugreg(0, 2);
721 	set_debugreg(0, 3);
722 	set_debugreg(0, 6);
723 	set_debugreg(0, 7);
724 
725 	/*
726 	 * Force FPU initialization:
727 	 */
728 	current_thread_info()->status = 0;
729 	clear_used_math();
730 	mxcsr_feature_mask_init();
731 }
732 
733 #ifdef CONFIG_HOTPLUG_CPU
734 void __cpuinit cpu_uninit(void)
735 {
736 	int cpu = raw_smp_processor_id();
737 	cpu_clear(cpu, cpu_initialized);
738 
739 	/* lazy TLB state */
740 	per_cpu(cpu_tlbstate, cpu).state = 0;
741 	per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
742 }
743 #endif
744