xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52 
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56 
57 #include "cpu.h"
58 
59 u32 elf_hwcap2 __read_mostly;
60 
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65 
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68 
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72 
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75 
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84 
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 	cpu_detect_cache_sizes(c);
89 #else
90 	/* Not much we can do here... */
91 	/* Check if at least it has cpuid */
92 	if (c->cpuid_level == -1) {
93 		/* No cpuid. It must be an ancient CPU */
94 		if (c->x86 == 4)
95 			strcpy(c->x86_model_id, "486");
96 		else if (c->x86 == 3)
97 			strcpy(c->x86_model_id, "386");
98 	}
99 #endif
100 }
101 
102 static const struct cpu_dev default_cpu = {
103 	.c_init		= default_init,
104 	.c_vendor	= "Unknown",
105 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
106 };
107 
108 static const struct cpu_dev *this_cpu = &default_cpu;
109 
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 	/*
113 	 * We need valid kernel segments for data and code in long mode too
114 	 * IRET will check the segment types  kkeil 2000/10/28
115 	 * Also sysret mandates a special GDT layout
116 	 *
117 	 * TLS descriptors are currently at a different place compared to i386.
118 	 * Hopefully nobody expects them at a fixed place (Wine?)
119 	 */
120 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 	/*
132 	 * Segments used for calling PnP BIOS have byte granularity.
133 	 * They code segments and data segments have fixed 64k limits,
134 	 * the transfer segment sizes are set at run time.
135 	 */
136 	/* 32-bit code */
137 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 	/* 16-bit code */
139 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 	/* 16-bit data */
141 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 	/* 16-bit data */
143 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
144 	/* 16-bit data */
145 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
146 	/*
147 	 * The APM segments have byte granularity and their bases
148 	 * are set at run time.  All have 64k limits.
149 	 */
150 	/* 32-bit code */
151 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 	/* 16-bit code */
153 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 	/* data */
155 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156 
157 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 	GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163 
164 static int __init x86_mpx_setup(char *s)
165 {
166 	/* require an exact match without trailing characters */
167 	if (strlen(s))
168 		return 0;
169 
170 	/* do not emit a message if the feature is not present */
171 	if (!boot_cpu_has(X86_FEATURE_MPX))
172 		return 1;
173 
174 	setup_clear_cpu_cap(X86_FEATURE_MPX);
175 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 	return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179 
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183 	/* nopcid doesn't accept parameters */
184 	if (s)
185 		return -EINVAL;
186 
187 	/* do not emit a message if the feature is not present */
188 	if (!boot_cpu_has(X86_FEATURE_PCID))
189 		return 0;
190 
191 	setup_clear_cpu_cap(X86_FEATURE_PCID);
192 	pr_info("nopcid: PCID feature disabled\n");
193 	return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197 
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 	/* noinvpcid doesn't accept parameters */
201 	if (s)
202 		return -EINVAL;
203 
204 	/* do not emit a message if the feature is not present */
205 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 		return 0;
207 
208 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 	pr_info("noinvpcid: INVPCID feature disabled\n");
210 	return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213 
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217 
218 static int __init cachesize_setup(char *str)
219 {
220 	get_option(&str, &cachesize_override);
221 	return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224 
225 static int __init x86_sep_setup(char *s)
226 {
227 	setup_clear_cpu_cap(X86_FEATURE_SEP);
228 	return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231 
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 	u32 f1, f2;
236 
237 	/*
238 	 * Cyrix and IDT cpus allow disabling of CPUID
239 	 * so the code below may return different results
240 	 * when it is executed before and after enabling
241 	 * the CPUID. Add "volatile" to not allow gcc to
242 	 * optimize the subsequent calls to this function.
243 	 */
244 	asm volatile ("pushfl		\n\t"
245 		      "pushfl		\n\t"
246 		      "popl %0		\n\t"
247 		      "movl %0, %1	\n\t"
248 		      "xorl %2, %0	\n\t"
249 		      "pushl %0		\n\t"
250 		      "popfl		\n\t"
251 		      "pushfl		\n\t"
252 		      "popl %0		\n\t"
253 		      "popfl		\n\t"
254 
255 		      : "=&r" (f1), "=&r" (f2)
256 		      : "ir" (flag));
257 
258 	return ((f1^f2) & flag) != 0;
259 }
260 
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264 	return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266 
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 	unsigned long lo, hi;
270 
271 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 		return;
273 
274 	/* Disable processor serial number: */
275 
276 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 	lo |= 0x200000;
278 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279 
280 	pr_notice("CPU serial number disabled.\n");
281 	clear_cpu_cap(c, X86_FEATURE_PN);
282 
283 	/* Disabling the serial number may affect the cpuid level */
284 	c->cpuid_level = cpuid_eax(0);
285 }
286 
287 static int __init x86_serial_nr_setup(char *s)
288 {
289 	disable_x86_serial_nr = 0;
290 	return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 	return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302 
303 static __init int setup_disable_smep(char *arg)
304 {
305 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 	/* Check for things that depend on SMEP being enabled: */
307 	check_mpx_erratum(&boot_cpu_data);
308 	return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311 
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 	if (cpu_has(c, X86_FEATURE_SMEP))
315 		cr4_set_bits(X86_CR4_SMEP);
316 }
317 
318 static __init int setup_disable_smap(char *arg)
319 {
320 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 	return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324 
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 	unsigned long eflags = native_save_fl();
328 
329 	/* This should have been cleared long ago */
330 	BUG_ON(eflags & X86_EFLAGS_AC);
331 
332 	if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 		cr4_set_bits(X86_CR4_SMAP);
335 #else
336 		cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 	}
339 }
340 
341 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
342 {
343 	/* Check the boot processor, plus build option for UMIP. */
344 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
345 		goto out;
346 
347 	/* Check the current processor's cpuid bits. */
348 	if (!cpu_has(c, X86_FEATURE_UMIP))
349 		goto out;
350 
351 	cr4_set_bits(X86_CR4_UMIP);
352 
353 	pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
354 
355 	return;
356 
357 out:
358 	/*
359 	 * Make sure UMIP is disabled in case it was enabled in a
360 	 * previous boot (e.g., via kexec).
361 	 */
362 	cr4_clear_bits(X86_CR4_UMIP);
363 }
364 
365 /*
366  * Protection Keys are not available in 32-bit mode.
367  */
368 static bool pku_disabled;
369 
370 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
371 {
372 	/* check the boot processor, plus compile options for PKU: */
373 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
374 		return;
375 	/* checks the actual processor's cpuid bits: */
376 	if (!cpu_has(c, X86_FEATURE_PKU))
377 		return;
378 	if (pku_disabled)
379 		return;
380 
381 	cr4_set_bits(X86_CR4_PKE);
382 	/*
383 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
384 	 * cpuid bit to be set.  We need to ensure that we
385 	 * update that bit in this CPU's "cpu_info".
386 	 */
387 	get_cpu_cap(c);
388 }
389 
390 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
391 static __init int setup_disable_pku(char *arg)
392 {
393 	/*
394 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
395 	 * runtime checks are against OSPKE so clearing the
396 	 * bit does nothing.
397 	 *
398 	 * This way, we will see "pku" in cpuinfo, but not
399 	 * "ospke", which is exactly what we want.  It shows
400 	 * that the CPU has PKU, but the OS has not enabled it.
401 	 * This happens to be exactly how a system would look
402 	 * if we disabled the config option.
403 	 */
404 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
405 	pku_disabled = true;
406 	return 1;
407 }
408 __setup("nopku", setup_disable_pku);
409 #endif /* CONFIG_X86_64 */
410 
411 /*
412  * Some CPU features depend on higher CPUID levels, which may not always
413  * be available due to CPUID level capping or broken virtualization
414  * software.  Add those features to this table to auto-disable them.
415  */
416 struct cpuid_dependent_feature {
417 	u32 feature;
418 	u32 level;
419 };
420 
421 static const struct cpuid_dependent_feature
422 cpuid_dependent_features[] = {
423 	{ X86_FEATURE_MWAIT,		0x00000005 },
424 	{ X86_FEATURE_DCA,		0x00000009 },
425 	{ X86_FEATURE_XSAVE,		0x0000000d },
426 	{ 0, 0 }
427 };
428 
429 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
430 {
431 	const struct cpuid_dependent_feature *df;
432 
433 	for (df = cpuid_dependent_features; df->feature; df++) {
434 
435 		if (!cpu_has(c, df->feature))
436 			continue;
437 		/*
438 		 * Note: cpuid_level is set to -1 if unavailable, but
439 		 * extended_extended_level is set to 0 if unavailable
440 		 * and the legitimate extended levels are all negative
441 		 * when signed; hence the weird messing around with
442 		 * signs here...
443 		 */
444 		if (!((s32)df->level < 0 ?
445 		     (u32)df->level > (u32)c->extended_cpuid_level :
446 		     (s32)df->level > (s32)c->cpuid_level))
447 			continue;
448 
449 		clear_cpu_cap(c, df->feature);
450 		if (!warn)
451 			continue;
452 
453 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
454 			x86_cap_flag(df->feature), df->level);
455 	}
456 }
457 
458 /*
459  * Naming convention should be: <Name> [(<Codename>)]
460  * This table only is used unless init_<vendor>() below doesn't set it;
461  * in particular, if CPUID levels 0x80000002..4 are supported, this
462  * isn't used
463  */
464 
465 /* Look up CPU names by table lookup. */
466 static const char *table_lookup_model(struct cpuinfo_x86 *c)
467 {
468 #ifdef CONFIG_X86_32
469 	const struct legacy_cpu_model_info *info;
470 
471 	if (c->x86_model >= 16)
472 		return NULL;	/* Range check */
473 
474 	if (!this_cpu)
475 		return NULL;
476 
477 	info = this_cpu->legacy_models;
478 
479 	while (info->family) {
480 		if (info->family == c->x86)
481 			return info->model_names[c->x86_model];
482 		info++;
483 	}
484 #endif
485 	return NULL;		/* Not found */
486 }
487 
488 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
489 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
490 
491 void load_percpu_segment(int cpu)
492 {
493 #ifdef CONFIG_X86_32
494 	loadsegment(fs, __KERNEL_PERCPU);
495 #else
496 	__loadsegment_simple(gs, 0);
497 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
498 #endif
499 	load_stack_canary_segment();
500 }
501 
502 #ifdef CONFIG_X86_32
503 /* The 32-bit entry code needs to find cpu_entry_area. */
504 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
505 #endif
506 
507 #ifdef CONFIG_X86_64
508 /*
509  * Special IST stacks which the CPU switches to when it calls
510  * an IST-marked descriptor entry. Up to 7 stacks (hardware
511  * limit), all of them are 4K, except the debug stack which
512  * is 8K.
513  */
514 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
515 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
516 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
517 };
518 #endif
519 
520 /* Load the original GDT from the per-cpu structure */
521 void load_direct_gdt(int cpu)
522 {
523 	struct desc_ptr gdt_descr;
524 
525 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
526 	gdt_descr.size = GDT_SIZE - 1;
527 	load_gdt(&gdt_descr);
528 }
529 EXPORT_SYMBOL_GPL(load_direct_gdt);
530 
531 /* Load a fixmap remapping of the per-cpu GDT */
532 void load_fixmap_gdt(int cpu)
533 {
534 	struct desc_ptr gdt_descr;
535 
536 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
537 	gdt_descr.size = GDT_SIZE - 1;
538 	load_gdt(&gdt_descr);
539 }
540 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
541 
542 /*
543  * Current gdt points %fs at the "master" per-cpu area: after this,
544  * it's on the real one.
545  */
546 void switch_to_new_gdt(int cpu)
547 {
548 	/* Load the original GDT */
549 	load_direct_gdt(cpu);
550 	/* Reload the per-cpu base */
551 	load_percpu_segment(cpu);
552 }
553 
554 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
555 
556 static void get_model_name(struct cpuinfo_x86 *c)
557 {
558 	unsigned int *v;
559 	char *p, *q, *s;
560 
561 	if (c->extended_cpuid_level < 0x80000004)
562 		return;
563 
564 	v = (unsigned int *)c->x86_model_id;
565 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
566 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
567 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
568 	c->x86_model_id[48] = 0;
569 
570 	/* Trim whitespace */
571 	p = q = s = &c->x86_model_id[0];
572 
573 	while (*p == ' ')
574 		p++;
575 
576 	while (*p) {
577 		/* Note the last non-whitespace index */
578 		if (!isspace(*p))
579 			s = q;
580 
581 		*q++ = *p++;
582 	}
583 
584 	*(s + 1) = '\0';
585 }
586 
587 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
588 {
589 	unsigned int eax, ebx, ecx, edx;
590 
591 	c->x86_max_cores = 1;
592 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
593 		return;
594 
595 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
596 	if (eax & 0x1f)
597 		c->x86_max_cores = (eax >> 26) + 1;
598 }
599 
600 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
601 {
602 	unsigned int n, dummy, ebx, ecx, edx, l2size;
603 
604 	n = c->extended_cpuid_level;
605 
606 	if (n >= 0x80000005) {
607 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
608 		c->x86_cache_size = (ecx>>24) + (edx>>24);
609 #ifdef CONFIG_X86_64
610 		/* On K8 L1 TLB is inclusive, so don't count it */
611 		c->x86_tlbsize = 0;
612 #endif
613 	}
614 
615 	if (n < 0x80000006)	/* Some chips just has a large L1. */
616 		return;
617 
618 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
619 	l2size = ecx >> 16;
620 
621 #ifdef CONFIG_X86_64
622 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
623 #else
624 	/* do processor-specific cache resizing */
625 	if (this_cpu->legacy_cache_size)
626 		l2size = this_cpu->legacy_cache_size(c, l2size);
627 
628 	/* Allow user to override all this if necessary. */
629 	if (cachesize_override != -1)
630 		l2size = cachesize_override;
631 
632 	if (l2size == 0)
633 		return;		/* Again, no L2 cache is possible */
634 #endif
635 
636 	c->x86_cache_size = l2size;
637 }
638 
639 u16 __read_mostly tlb_lli_4k[NR_INFO];
640 u16 __read_mostly tlb_lli_2m[NR_INFO];
641 u16 __read_mostly tlb_lli_4m[NR_INFO];
642 u16 __read_mostly tlb_lld_4k[NR_INFO];
643 u16 __read_mostly tlb_lld_2m[NR_INFO];
644 u16 __read_mostly tlb_lld_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_1g[NR_INFO];
646 
647 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
648 {
649 	if (this_cpu->c_detect_tlb)
650 		this_cpu->c_detect_tlb(c);
651 
652 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
653 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
654 		tlb_lli_4m[ENTRIES]);
655 
656 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
657 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
658 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
659 }
660 
661 void detect_ht(struct cpuinfo_x86 *c)
662 {
663 #ifdef CONFIG_SMP
664 	u32 eax, ebx, ecx, edx;
665 	int index_msb, core_bits;
666 	static bool printed;
667 
668 	if (!cpu_has(c, X86_FEATURE_HT))
669 		return;
670 
671 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
672 		goto out;
673 
674 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
675 		return;
676 
677 	cpuid(1, &eax, &ebx, &ecx, &edx);
678 
679 	smp_num_siblings = (ebx & 0xff0000) >> 16;
680 
681 	if (smp_num_siblings == 1) {
682 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
683 		goto out;
684 	}
685 
686 	if (smp_num_siblings <= 1)
687 		goto out;
688 
689 	index_msb = get_count_order(smp_num_siblings);
690 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
691 
692 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
693 
694 	index_msb = get_count_order(smp_num_siblings);
695 
696 	core_bits = get_count_order(c->x86_max_cores);
697 
698 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
699 				       ((1 << core_bits) - 1);
700 
701 out:
702 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
703 		pr_info("CPU: Physical Processor ID: %d\n",
704 			c->phys_proc_id);
705 		pr_info("CPU: Processor Core ID: %d\n",
706 			c->cpu_core_id);
707 		printed = 1;
708 	}
709 #endif
710 }
711 
712 static void get_cpu_vendor(struct cpuinfo_x86 *c)
713 {
714 	char *v = c->x86_vendor_id;
715 	int i;
716 
717 	for (i = 0; i < X86_VENDOR_NUM; i++) {
718 		if (!cpu_devs[i])
719 			break;
720 
721 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
722 		    (cpu_devs[i]->c_ident[1] &&
723 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
724 
725 			this_cpu = cpu_devs[i];
726 			c->x86_vendor = this_cpu->c_x86_vendor;
727 			return;
728 		}
729 	}
730 
731 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
732 		    "CPU: Your system may be unstable.\n", v);
733 
734 	c->x86_vendor = X86_VENDOR_UNKNOWN;
735 	this_cpu = &default_cpu;
736 }
737 
738 void cpu_detect(struct cpuinfo_x86 *c)
739 {
740 	/* Get vendor name */
741 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
742 	      (unsigned int *)&c->x86_vendor_id[0],
743 	      (unsigned int *)&c->x86_vendor_id[8],
744 	      (unsigned int *)&c->x86_vendor_id[4]);
745 
746 	c->x86 = 4;
747 	/* Intel-defined flags: level 0x00000001 */
748 	if (c->cpuid_level >= 0x00000001) {
749 		u32 junk, tfms, cap0, misc;
750 
751 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
752 		c->x86		= x86_family(tfms);
753 		c->x86_model	= x86_model(tfms);
754 		c->x86_stepping	= x86_stepping(tfms);
755 
756 		if (cap0 & (1<<19)) {
757 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
758 			c->x86_cache_alignment = c->x86_clflush_size;
759 		}
760 	}
761 }
762 
763 static void apply_forced_caps(struct cpuinfo_x86 *c)
764 {
765 	int i;
766 
767 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
768 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
769 		c->x86_capability[i] |= cpu_caps_set[i];
770 	}
771 }
772 
773 static void init_speculation_control(struct cpuinfo_x86 *c)
774 {
775 	/*
776 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
777 	 * and they also have a different bit for STIBP support. Also,
778 	 * a hypervisor might have set the individual AMD bits even on
779 	 * Intel CPUs, for finer-grained selection of what's available.
780 	 */
781 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
782 		set_cpu_cap(c, X86_FEATURE_IBRS);
783 		set_cpu_cap(c, X86_FEATURE_IBPB);
784 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
785 	}
786 
787 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
788 		set_cpu_cap(c, X86_FEATURE_STIBP);
789 
790 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
791 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
792 		set_cpu_cap(c, X86_FEATURE_SSBD);
793 
794 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
795 		set_cpu_cap(c, X86_FEATURE_IBRS);
796 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
797 	}
798 
799 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
800 		set_cpu_cap(c, X86_FEATURE_IBPB);
801 
802 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
803 		set_cpu_cap(c, X86_FEATURE_STIBP);
804 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
805 	}
806 
807 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
808 		set_cpu_cap(c, X86_FEATURE_SSBD);
809 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
810 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
811 	}
812 }
813 
814 void get_cpu_cap(struct cpuinfo_x86 *c)
815 {
816 	u32 eax, ebx, ecx, edx;
817 
818 	/* Intel-defined flags: level 0x00000001 */
819 	if (c->cpuid_level >= 0x00000001) {
820 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
821 
822 		c->x86_capability[CPUID_1_ECX] = ecx;
823 		c->x86_capability[CPUID_1_EDX] = edx;
824 	}
825 
826 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
827 	if (c->cpuid_level >= 0x00000006)
828 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
829 
830 	/* Additional Intel-defined flags: level 0x00000007 */
831 	if (c->cpuid_level >= 0x00000007) {
832 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
833 		c->x86_capability[CPUID_7_0_EBX] = ebx;
834 		c->x86_capability[CPUID_7_ECX] = ecx;
835 		c->x86_capability[CPUID_7_EDX] = edx;
836 	}
837 
838 	/* Extended state features: level 0x0000000d */
839 	if (c->cpuid_level >= 0x0000000d) {
840 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
841 
842 		c->x86_capability[CPUID_D_1_EAX] = eax;
843 	}
844 
845 	/* Additional Intel-defined flags: level 0x0000000F */
846 	if (c->cpuid_level >= 0x0000000F) {
847 
848 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
849 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
850 		c->x86_capability[CPUID_F_0_EDX] = edx;
851 
852 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
853 			/* will be overridden if occupancy monitoring exists */
854 			c->x86_cache_max_rmid = ebx;
855 
856 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
857 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
858 			c->x86_capability[CPUID_F_1_EDX] = edx;
859 
860 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
861 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
862 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
863 				c->x86_cache_max_rmid = ecx;
864 				c->x86_cache_occ_scale = ebx;
865 			}
866 		} else {
867 			c->x86_cache_max_rmid = -1;
868 			c->x86_cache_occ_scale = -1;
869 		}
870 	}
871 
872 	/* AMD-defined flags: level 0x80000001 */
873 	eax = cpuid_eax(0x80000000);
874 	c->extended_cpuid_level = eax;
875 
876 	if ((eax & 0xffff0000) == 0x80000000) {
877 		if (eax >= 0x80000001) {
878 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
879 
880 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
881 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
882 		}
883 	}
884 
885 	if (c->extended_cpuid_level >= 0x80000007) {
886 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
887 
888 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
889 		c->x86_power = edx;
890 	}
891 
892 	if (c->extended_cpuid_level >= 0x80000008) {
893 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
894 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
895 	}
896 
897 	if (c->extended_cpuid_level >= 0x8000000a)
898 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
899 
900 	init_scattered_cpuid_features(c);
901 	init_speculation_control(c);
902 
903 	/*
904 	 * Clear/Set all flags overridden by options, after probe.
905 	 * This needs to happen each time we re-probe, which may happen
906 	 * several times during CPU initialization.
907 	 */
908 	apply_forced_caps(c);
909 }
910 
911 static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
912 {
913 	u32 eax, ebx, ecx, edx;
914 
915 	if (c->extended_cpuid_level >= 0x80000008) {
916 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
917 
918 		c->x86_virt_bits = (eax >> 8) & 0xff;
919 		c->x86_phys_bits = eax & 0xff;
920 	}
921 #ifdef CONFIG_X86_32
922 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
923 		c->x86_phys_bits = 36;
924 #endif
925 }
926 
927 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
928 {
929 #ifdef CONFIG_X86_32
930 	int i;
931 
932 	/*
933 	 * First of all, decide if this is a 486 or higher
934 	 * It's a 486 if we can modify the AC flag
935 	 */
936 	if (flag_is_changeable_p(X86_EFLAGS_AC))
937 		c->x86 = 4;
938 	else
939 		c->x86 = 3;
940 
941 	for (i = 0; i < X86_VENDOR_NUM; i++)
942 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
943 			c->x86_vendor_id[0] = 0;
944 			cpu_devs[i]->c_identify(c);
945 			if (c->x86_vendor_id[0]) {
946 				get_cpu_vendor(c);
947 				break;
948 			}
949 		}
950 #endif
951 }
952 
953 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
954 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CEDARVIEW,	X86_FEATURE_ANY },
955 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CLOVERVIEW,	X86_FEATURE_ANY },
956 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_LINCROFT,	X86_FEATURE_ANY },
957 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PENWELL,	X86_FEATURE_ANY },
958 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PINEVIEW,	X86_FEATURE_ANY },
959 	{ X86_VENDOR_CENTAUR,	5 },
960 	{ X86_VENDOR_INTEL,	5 },
961 	{ X86_VENDOR_NSC,	5 },
962 	{ X86_VENDOR_ANY,	4 },
963 	{}
964 };
965 
966 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
967 	{ X86_VENDOR_AMD },
968 	{}
969 };
970 
971 /* Only list CPUs which speculate but are non susceptible to SSB */
972 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
973 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT1	},
974 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_AIRMONT		},
975 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT2	},
976 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_MERRIFIELD	},
977 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_CORE_YONAH		},
978 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNL		},
979 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNM		},
980 	{ X86_VENDOR_AMD,	0x12,					},
981 	{ X86_VENDOR_AMD,	0x11,					},
982 	{ X86_VENDOR_AMD,	0x10,					},
983 	{ X86_VENDOR_AMD,	0xf,					},
984 	{}
985 };
986 
987 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
988 {
989 	u64 ia32_cap = 0;
990 
991 	if (x86_match_cpu(cpu_no_speculation))
992 		return;
993 
994 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
995 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
996 
997 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
998 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
999 
1000 	if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
1001 	   !(ia32_cap & ARCH_CAP_SSB_NO) &&
1002 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1003 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1004 
1005 	if (x86_match_cpu(cpu_no_meltdown))
1006 		return;
1007 
1008 	/* Rogue Data Cache Load? No! */
1009 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1010 		return;
1011 
1012 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1013 }
1014 
1015 /*
1016  * Do minimum CPU detection early.
1017  * Fields really needed: vendor, cpuid_level, family, model, mask,
1018  * cache alignment.
1019  * The others are not touched to avoid unwanted side effects.
1020  *
1021  * WARNING: this function is only called on the boot CPU.  Don't add code
1022  * here that is supposed to run on all CPUs.
1023  */
1024 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1025 {
1026 #ifdef CONFIG_X86_64
1027 	c->x86_clflush_size = 64;
1028 	c->x86_phys_bits = 36;
1029 	c->x86_virt_bits = 48;
1030 #else
1031 	c->x86_clflush_size = 32;
1032 	c->x86_phys_bits = 32;
1033 	c->x86_virt_bits = 32;
1034 #endif
1035 	c->x86_cache_alignment = c->x86_clflush_size;
1036 
1037 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1038 	c->extended_cpuid_level = 0;
1039 
1040 	/* cyrix could have cpuid enabled via c_identify()*/
1041 	if (have_cpuid_p()) {
1042 		cpu_detect(c);
1043 		get_cpu_vendor(c);
1044 		get_cpu_cap(c);
1045 		get_cpu_address_sizes(c);
1046 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1047 
1048 		if (this_cpu->c_early_init)
1049 			this_cpu->c_early_init(c);
1050 
1051 		c->cpu_index = 0;
1052 		filter_cpuid_features(c, false);
1053 
1054 		if (this_cpu->c_bsp_init)
1055 			this_cpu->c_bsp_init(c);
1056 	} else {
1057 		identify_cpu_without_cpuid(c);
1058 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1059 	}
1060 
1061 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1062 
1063 	cpu_set_bug_bits(c);
1064 
1065 	fpu__init_system(c);
1066 
1067 #ifdef CONFIG_X86_32
1068 	/*
1069 	 * Regardless of whether PCID is enumerated, the SDM says
1070 	 * that it can't be enabled in 32-bit mode.
1071 	 */
1072 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1073 #endif
1074 
1075 	/*
1076 	 * Later in the boot process pgtable_l5_enabled() relies on
1077 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1078 	 * enabled by this point we need to clear the feature bit to avoid
1079 	 * false-positives at the later stage.
1080 	 *
1081 	 * pgtable_l5_enabled() can be false here for several reasons:
1082 	 *  - 5-level paging is disabled compile-time;
1083 	 *  - it's 32-bit kernel;
1084 	 *  - machine doesn't support 5-level paging;
1085 	 *  - user specified 'no5lvl' in kernel command line.
1086 	 */
1087 	if (!pgtable_l5_enabled())
1088 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1089 }
1090 
1091 void __init early_cpu_init(void)
1092 {
1093 	const struct cpu_dev *const *cdev;
1094 	int count = 0;
1095 
1096 #ifdef CONFIG_PROCESSOR_SELECT
1097 	pr_info("KERNEL supported cpus:\n");
1098 #endif
1099 
1100 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1101 		const struct cpu_dev *cpudev = *cdev;
1102 
1103 		if (count >= X86_VENDOR_NUM)
1104 			break;
1105 		cpu_devs[count] = cpudev;
1106 		count++;
1107 
1108 #ifdef CONFIG_PROCESSOR_SELECT
1109 		{
1110 			unsigned int j;
1111 
1112 			for (j = 0; j < 2; j++) {
1113 				if (!cpudev->c_ident[j])
1114 					continue;
1115 				pr_info("  %s %s\n", cpudev->c_vendor,
1116 					cpudev->c_ident[j]);
1117 			}
1118 		}
1119 #endif
1120 	}
1121 	early_identify_cpu(&boot_cpu_data);
1122 }
1123 
1124 /*
1125  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1126  * unfortunately, that's not true in practice because of early VIA
1127  * chips and (more importantly) broken virtualizers that are not easy
1128  * to detect. In the latter case it doesn't even *fail* reliably, so
1129  * probing for it doesn't even work. Disable it completely on 32-bit
1130  * unless we can find a reliable way to detect all the broken cases.
1131  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1132  */
1133 static void detect_nopl(struct cpuinfo_x86 *c)
1134 {
1135 #ifdef CONFIG_X86_32
1136 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1137 #else
1138 	set_cpu_cap(c, X86_FEATURE_NOPL);
1139 #endif
1140 }
1141 
1142 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1143 {
1144 #ifdef CONFIG_X86_64
1145 	/*
1146 	 * Empirically, writing zero to a segment selector on AMD does
1147 	 * not clear the base, whereas writing zero to a segment
1148 	 * selector on Intel does clear the base.  Intel's behavior
1149 	 * allows slightly faster context switches in the common case
1150 	 * where GS is unused by the prev and next threads.
1151 	 *
1152 	 * Since neither vendor documents this anywhere that I can see,
1153 	 * detect it directly instead of hardcoding the choice by
1154 	 * vendor.
1155 	 *
1156 	 * I've designated AMD's behavior as the "bug" because it's
1157 	 * counterintuitive and less friendly.
1158 	 */
1159 
1160 	unsigned long old_base, tmp;
1161 	rdmsrl(MSR_FS_BASE, old_base);
1162 	wrmsrl(MSR_FS_BASE, 1);
1163 	loadsegment(fs, 0);
1164 	rdmsrl(MSR_FS_BASE, tmp);
1165 	if (tmp != 0)
1166 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1167 	wrmsrl(MSR_FS_BASE, old_base);
1168 #endif
1169 }
1170 
1171 static void generic_identify(struct cpuinfo_x86 *c)
1172 {
1173 	c->extended_cpuid_level = 0;
1174 
1175 	if (!have_cpuid_p())
1176 		identify_cpu_without_cpuid(c);
1177 
1178 	/* cyrix could have cpuid enabled via c_identify()*/
1179 	if (!have_cpuid_p())
1180 		return;
1181 
1182 	cpu_detect(c);
1183 
1184 	get_cpu_vendor(c);
1185 
1186 	get_cpu_cap(c);
1187 
1188 	get_cpu_address_sizes(c);
1189 
1190 	if (c->cpuid_level >= 0x00000001) {
1191 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1192 #ifdef CONFIG_X86_32
1193 # ifdef CONFIG_SMP
1194 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1195 # else
1196 		c->apicid = c->initial_apicid;
1197 # endif
1198 #endif
1199 		c->phys_proc_id = c->initial_apicid;
1200 	}
1201 
1202 	get_model_name(c); /* Default name */
1203 
1204 	detect_nopl(c);
1205 
1206 	detect_null_seg_behavior(c);
1207 
1208 	/*
1209 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1210 	 * systems that run Linux at CPL > 0 may or may not have the
1211 	 * issue, but, even if they have the issue, there's absolutely
1212 	 * nothing we can do about it because we can't use the real IRET
1213 	 * instruction.
1214 	 *
1215 	 * NB: For the time being, only 32-bit kernels support
1216 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1217 	 * whether to apply espfix using paravirt hooks.  If any
1218 	 * non-paravirt system ever shows up that does *not* have the
1219 	 * ESPFIX issue, we can change this.
1220 	 */
1221 #ifdef CONFIG_X86_32
1222 # ifdef CONFIG_PARAVIRT
1223 	do {
1224 		extern void native_iret(void);
1225 		if (pv_cpu_ops.iret == native_iret)
1226 			set_cpu_bug(c, X86_BUG_ESPFIX);
1227 	} while (0);
1228 # else
1229 	set_cpu_bug(c, X86_BUG_ESPFIX);
1230 # endif
1231 #endif
1232 }
1233 
1234 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1235 {
1236 	/*
1237 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1238 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1239 	 * in case CQM bits really aren't there in this CPU.
1240 	 */
1241 	if (c != &boot_cpu_data) {
1242 		boot_cpu_data.x86_cache_max_rmid =
1243 			min(boot_cpu_data.x86_cache_max_rmid,
1244 			    c->x86_cache_max_rmid);
1245 	}
1246 }
1247 
1248 /*
1249  * Validate that ACPI/mptables have the same information about the
1250  * effective APIC id and update the package map.
1251  */
1252 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1253 {
1254 #ifdef CONFIG_SMP
1255 	unsigned int apicid, cpu = smp_processor_id();
1256 
1257 	apicid = apic->cpu_present_to_apicid(cpu);
1258 
1259 	if (apicid != c->apicid) {
1260 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1261 		       cpu, apicid, c->initial_apicid);
1262 	}
1263 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1264 #else
1265 	c->logical_proc_id = 0;
1266 #endif
1267 }
1268 
1269 /*
1270  * This does the hard work of actually picking apart the CPU stuff...
1271  */
1272 static void identify_cpu(struct cpuinfo_x86 *c)
1273 {
1274 	int i;
1275 
1276 	c->loops_per_jiffy = loops_per_jiffy;
1277 	c->x86_cache_size = 0;
1278 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1279 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1280 	c->x86_vendor_id[0] = '\0'; /* Unset */
1281 	c->x86_model_id[0] = '\0';  /* Unset */
1282 	c->x86_max_cores = 1;
1283 	c->x86_coreid_bits = 0;
1284 	c->cu_id = 0xff;
1285 #ifdef CONFIG_X86_64
1286 	c->x86_clflush_size = 64;
1287 	c->x86_phys_bits = 36;
1288 	c->x86_virt_bits = 48;
1289 #else
1290 	c->cpuid_level = -1;	/* CPUID not detected */
1291 	c->x86_clflush_size = 32;
1292 	c->x86_phys_bits = 32;
1293 	c->x86_virt_bits = 32;
1294 #endif
1295 	c->x86_cache_alignment = c->x86_clflush_size;
1296 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1297 
1298 	generic_identify(c);
1299 
1300 	if (this_cpu->c_identify)
1301 		this_cpu->c_identify(c);
1302 
1303 	/* Clear/Set all flags overridden by options, after probe */
1304 	apply_forced_caps(c);
1305 
1306 #ifdef CONFIG_X86_64
1307 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1308 #endif
1309 
1310 	/*
1311 	 * Vendor-specific initialization.  In this section we
1312 	 * canonicalize the feature flags, meaning if there are
1313 	 * features a certain CPU supports which CPUID doesn't
1314 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1315 	 * we handle them here.
1316 	 *
1317 	 * At the end of this section, c->x86_capability better
1318 	 * indicate the features this CPU genuinely supports!
1319 	 */
1320 	if (this_cpu->c_init)
1321 		this_cpu->c_init(c);
1322 
1323 	/* Disable the PN if appropriate */
1324 	squash_the_stupid_serial_number(c);
1325 
1326 	/* Set up SMEP/SMAP/UMIP */
1327 	setup_smep(c);
1328 	setup_smap(c);
1329 	setup_umip(c);
1330 
1331 	/*
1332 	 * The vendor-specific functions might have changed features.
1333 	 * Now we do "generic changes."
1334 	 */
1335 
1336 	/* Filter out anything that depends on CPUID levels we don't have */
1337 	filter_cpuid_features(c, true);
1338 
1339 	/* If the model name is still unset, do table lookup. */
1340 	if (!c->x86_model_id[0]) {
1341 		const char *p;
1342 		p = table_lookup_model(c);
1343 		if (p)
1344 			strcpy(c->x86_model_id, p);
1345 		else
1346 			/* Last resort... */
1347 			sprintf(c->x86_model_id, "%02x/%02x",
1348 				c->x86, c->x86_model);
1349 	}
1350 
1351 #ifdef CONFIG_X86_64
1352 	detect_ht(c);
1353 #endif
1354 
1355 	x86_init_rdrand(c);
1356 	x86_init_cache_qos(c);
1357 	setup_pku(c);
1358 
1359 	/*
1360 	 * Clear/Set all flags overridden by options, need do it
1361 	 * before following smp all cpus cap AND.
1362 	 */
1363 	apply_forced_caps(c);
1364 
1365 	/*
1366 	 * On SMP, boot_cpu_data holds the common feature set between
1367 	 * all CPUs; so make sure that we indicate which features are
1368 	 * common between the CPUs.  The first time this routine gets
1369 	 * executed, c == &boot_cpu_data.
1370 	 */
1371 	if (c != &boot_cpu_data) {
1372 		/* AND the already accumulated flags with these */
1373 		for (i = 0; i < NCAPINTS; i++)
1374 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1375 
1376 		/* OR, i.e. replicate the bug flags */
1377 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1378 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1379 	}
1380 
1381 	/* Init Machine Check Exception if available. */
1382 	mcheck_cpu_init(c);
1383 
1384 	select_idle_routine(c);
1385 
1386 #ifdef CONFIG_NUMA
1387 	numa_add_cpu(smp_processor_id());
1388 #endif
1389 }
1390 
1391 /*
1392  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1393  * on 32-bit kernels:
1394  */
1395 #ifdef CONFIG_X86_32
1396 void enable_sep_cpu(void)
1397 {
1398 	struct tss_struct *tss;
1399 	int cpu;
1400 
1401 	if (!boot_cpu_has(X86_FEATURE_SEP))
1402 		return;
1403 
1404 	cpu = get_cpu();
1405 	tss = &per_cpu(cpu_tss_rw, cpu);
1406 
1407 	/*
1408 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1409 	 * see the big comment in struct x86_hw_tss's definition.
1410 	 */
1411 
1412 	tss->x86_tss.ss1 = __KERNEL_CS;
1413 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1414 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1415 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1416 
1417 	put_cpu();
1418 }
1419 #endif
1420 
1421 void __init identify_boot_cpu(void)
1422 {
1423 	identify_cpu(&boot_cpu_data);
1424 #ifdef CONFIG_X86_32
1425 	sysenter_setup();
1426 	enable_sep_cpu();
1427 #endif
1428 	cpu_detect_tlb(&boot_cpu_data);
1429 }
1430 
1431 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1432 {
1433 	BUG_ON(c == &boot_cpu_data);
1434 	identify_cpu(c);
1435 #ifdef CONFIG_X86_32
1436 	enable_sep_cpu();
1437 #endif
1438 	mtrr_ap_init();
1439 	validate_apic_and_package_id(c);
1440 	x86_spec_ctrl_setup_ap();
1441 }
1442 
1443 static __init int setup_noclflush(char *arg)
1444 {
1445 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1446 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1447 	return 1;
1448 }
1449 __setup("noclflush", setup_noclflush);
1450 
1451 void print_cpu_info(struct cpuinfo_x86 *c)
1452 {
1453 	const char *vendor = NULL;
1454 
1455 	if (c->x86_vendor < X86_VENDOR_NUM) {
1456 		vendor = this_cpu->c_vendor;
1457 	} else {
1458 		if (c->cpuid_level >= 0)
1459 			vendor = c->x86_vendor_id;
1460 	}
1461 
1462 	if (vendor && !strstr(c->x86_model_id, vendor))
1463 		pr_cont("%s ", vendor);
1464 
1465 	if (c->x86_model_id[0])
1466 		pr_cont("%s", c->x86_model_id);
1467 	else
1468 		pr_cont("%d86", c->x86);
1469 
1470 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1471 
1472 	if (c->x86_stepping || c->cpuid_level >= 0)
1473 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1474 	else
1475 		pr_cont(")\n");
1476 }
1477 
1478 /*
1479  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1480  * But we need to keep a dummy __setup around otherwise it would
1481  * show up as an environment variable for init.
1482  */
1483 static __init int setup_clearcpuid(char *arg)
1484 {
1485 	return 1;
1486 }
1487 __setup("clearcpuid=", setup_clearcpuid);
1488 
1489 #ifdef CONFIG_X86_64
1490 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1491 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1492 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1493 
1494 /*
1495  * The following percpu variables are hot.  Align current_task to
1496  * cacheline size such that they fall in the same cacheline.
1497  */
1498 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1499 	&init_task;
1500 EXPORT_PER_CPU_SYMBOL(current_task);
1501 
1502 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1503 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1504 
1505 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1506 
1507 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1508 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1509 
1510 /* May not be marked __init: used by software suspend */
1511 void syscall_init(void)
1512 {
1513 	extern char _entry_trampoline[];
1514 	extern char entry_SYSCALL_64_trampoline[];
1515 
1516 	int cpu = smp_processor_id();
1517 	unsigned long SYSCALL64_entry_trampoline =
1518 		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1519 		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1520 
1521 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1522 	if (static_cpu_has(X86_FEATURE_PTI))
1523 		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1524 	else
1525 		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1526 
1527 #ifdef CONFIG_IA32_EMULATION
1528 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1529 	/*
1530 	 * This only works on Intel CPUs.
1531 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1532 	 * This does not cause SYSENTER to jump to the wrong location, because
1533 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1534 	 */
1535 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1536 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1537 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1538 #else
1539 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1540 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1541 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1542 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1543 #endif
1544 
1545 	/* Flags to clear on syscall */
1546 	wrmsrl(MSR_SYSCALL_MASK,
1547 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1548 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1549 }
1550 
1551 /*
1552  * Copies of the original ist values from the tss are only accessed during
1553  * debugging, no special alignment required.
1554  */
1555 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1556 
1557 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1558 DEFINE_PER_CPU(int, debug_stack_usage);
1559 
1560 int is_debug_stack(unsigned long addr)
1561 {
1562 	return __this_cpu_read(debug_stack_usage) ||
1563 		(addr <= __this_cpu_read(debug_stack_addr) &&
1564 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1565 }
1566 NOKPROBE_SYMBOL(is_debug_stack);
1567 
1568 DEFINE_PER_CPU(u32, debug_idt_ctr);
1569 
1570 void debug_stack_set_zero(void)
1571 {
1572 	this_cpu_inc(debug_idt_ctr);
1573 	load_current_idt();
1574 }
1575 NOKPROBE_SYMBOL(debug_stack_set_zero);
1576 
1577 void debug_stack_reset(void)
1578 {
1579 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1580 		return;
1581 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1582 		load_current_idt();
1583 }
1584 NOKPROBE_SYMBOL(debug_stack_reset);
1585 
1586 #else	/* CONFIG_X86_64 */
1587 
1588 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1589 EXPORT_PER_CPU_SYMBOL(current_task);
1590 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1591 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1592 
1593 /*
1594  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1595  * the top of the kernel stack.  Use an extra percpu variable to track the
1596  * top of the kernel stack directly.
1597  */
1598 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1599 	(unsigned long)&init_thread_union + THREAD_SIZE;
1600 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1601 
1602 #ifdef CONFIG_CC_STACKPROTECTOR
1603 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1604 #endif
1605 
1606 #endif	/* CONFIG_X86_64 */
1607 
1608 /*
1609  * Clear all 6 debug registers:
1610  */
1611 static void clear_all_debug_regs(void)
1612 {
1613 	int i;
1614 
1615 	for (i = 0; i < 8; i++) {
1616 		/* Ignore db4, db5 */
1617 		if ((i == 4) || (i == 5))
1618 			continue;
1619 
1620 		set_debugreg(0, i);
1621 	}
1622 }
1623 
1624 #ifdef CONFIG_KGDB
1625 /*
1626  * Restore debug regs if using kgdbwait and you have a kernel debugger
1627  * connection established.
1628  */
1629 static void dbg_restore_debug_regs(void)
1630 {
1631 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1632 		arch_kgdb_ops.correct_hw_break();
1633 }
1634 #else /* ! CONFIG_KGDB */
1635 #define dbg_restore_debug_regs()
1636 #endif /* ! CONFIG_KGDB */
1637 
1638 static void wait_for_master_cpu(int cpu)
1639 {
1640 #ifdef CONFIG_SMP
1641 	/*
1642 	 * wait for ACK from master CPU before continuing
1643 	 * with AP initialization
1644 	 */
1645 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1646 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1647 		cpu_relax();
1648 #endif
1649 }
1650 
1651 /*
1652  * cpu_init() initializes state that is per-CPU. Some data is already
1653  * initialized (naturally) in the bootstrap process, such as the GDT
1654  * and IDT. We reload them nevertheless, this function acts as a
1655  * 'CPU state barrier', nothing should get across.
1656  * A lot of state is already set up in PDA init for 64 bit
1657  */
1658 #ifdef CONFIG_X86_64
1659 
1660 void cpu_init(void)
1661 {
1662 	struct orig_ist *oist;
1663 	struct task_struct *me;
1664 	struct tss_struct *t;
1665 	unsigned long v;
1666 	int cpu = raw_smp_processor_id();
1667 	int i;
1668 
1669 	wait_for_master_cpu(cpu);
1670 
1671 	/*
1672 	 * Initialize the CR4 shadow before doing anything that could
1673 	 * try to read it.
1674 	 */
1675 	cr4_init_shadow();
1676 
1677 	if (cpu)
1678 		load_ucode_ap();
1679 
1680 	t = &per_cpu(cpu_tss_rw, cpu);
1681 	oist = &per_cpu(orig_ist, cpu);
1682 
1683 #ifdef CONFIG_NUMA
1684 	if (this_cpu_read(numa_node) == 0 &&
1685 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1686 		set_numa_node(early_cpu_to_node(cpu));
1687 #endif
1688 
1689 	me = current;
1690 
1691 	pr_debug("Initializing CPU#%d\n", cpu);
1692 
1693 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1694 
1695 	/*
1696 	 * Initialize the per-CPU GDT with the boot GDT,
1697 	 * and set up the GDT descriptor:
1698 	 */
1699 
1700 	switch_to_new_gdt(cpu);
1701 	loadsegment(fs, 0);
1702 
1703 	load_current_idt();
1704 
1705 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1706 	syscall_init();
1707 
1708 	wrmsrl(MSR_FS_BASE, 0);
1709 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1710 	barrier();
1711 
1712 	x86_configure_nx();
1713 	x2apic_setup();
1714 
1715 	/*
1716 	 * set up and load the per-CPU TSS
1717 	 */
1718 	if (!oist->ist[0]) {
1719 		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1720 
1721 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1722 			estacks += exception_stack_sizes[v];
1723 			oist->ist[v] = t->x86_tss.ist[v] =
1724 					(unsigned long)estacks;
1725 			if (v == DEBUG_STACK-1)
1726 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1727 		}
1728 	}
1729 
1730 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1731 
1732 	/*
1733 	 * <= is required because the CPU will access up to
1734 	 * 8 bits beyond the end of the IO permission bitmap.
1735 	 */
1736 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1737 		t->io_bitmap[i] = ~0UL;
1738 
1739 	mmgrab(&init_mm);
1740 	me->active_mm = &init_mm;
1741 	BUG_ON(me->mm);
1742 	initialize_tlbstate_and_flush();
1743 	enter_lazy_tlb(&init_mm, me);
1744 
1745 	/*
1746 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1747 	 * regardless of what task is running.
1748 	 */
1749 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1750 	load_TR_desc();
1751 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1752 
1753 	load_mm_ldt(&init_mm);
1754 
1755 	clear_all_debug_regs();
1756 	dbg_restore_debug_regs();
1757 
1758 	fpu__init_cpu();
1759 
1760 	if (is_uv_system())
1761 		uv_cpu_init();
1762 
1763 	load_fixmap_gdt(cpu);
1764 }
1765 
1766 #else
1767 
1768 void cpu_init(void)
1769 {
1770 	int cpu = smp_processor_id();
1771 	struct task_struct *curr = current;
1772 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1773 
1774 	wait_for_master_cpu(cpu);
1775 
1776 	/*
1777 	 * Initialize the CR4 shadow before doing anything that could
1778 	 * try to read it.
1779 	 */
1780 	cr4_init_shadow();
1781 
1782 	show_ucode_info_early();
1783 
1784 	pr_info("Initializing CPU#%d\n", cpu);
1785 
1786 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1787 	    boot_cpu_has(X86_FEATURE_TSC) ||
1788 	    boot_cpu_has(X86_FEATURE_DE))
1789 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1790 
1791 	load_current_idt();
1792 	switch_to_new_gdt(cpu);
1793 
1794 	/*
1795 	 * Set up and load the per-CPU TSS and LDT
1796 	 */
1797 	mmgrab(&init_mm);
1798 	curr->active_mm = &init_mm;
1799 	BUG_ON(curr->mm);
1800 	initialize_tlbstate_and_flush();
1801 	enter_lazy_tlb(&init_mm, curr);
1802 
1803 	/*
1804 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1805 	 * task never enters user mode.
1806 	 */
1807 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1808 	load_TR_desc();
1809 
1810 	load_mm_ldt(&init_mm);
1811 
1812 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1813 
1814 #ifdef CONFIG_DOUBLEFAULT
1815 	/* Set up doublefault TSS pointer in the GDT */
1816 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1817 #endif
1818 
1819 	clear_all_debug_regs();
1820 	dbg_restore_debug_regs();
1821 
1822 	fpu__init_cpu();
1823 
1824 	load_fixmap_gdt(cpu);
1825 }
1826 #endif
1827 
1828 static void bsp_resume(void)
1829 {
1830 	if (this_cpu->c_bsp_resume)
1831 		this_cpu->c_bsp_resume(&boot_cpu_data);
1832 }
1833 
1834 static struct syscore_ops cpu_syscore_ops = {
1835 	.resume		= bsp_resume,
1836 };
1837 
1838 static int __init init_cpu_syscore(void)
1839 {
1840 	register_syscore_ops(&cpu_syscore_ops);
1841 	return 0;
1842 }
1843 core_initcall(init_cpu_syscore);
1844 
1845 /*
1846  * The microcode loader calls this upon late microcode load to recheck features,
1847  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1848  * hotplug lock.
1849  */
1850 void microcode_check(void)
1851 {
1852 	struct cpuinfo_x86 info;
1853 
1854 	perf_check_microcode();
1855 
1856 	/* Reload CPUID max function as it might've changed. */
1857 	info.cpuid_level = cpuid_eax(0);
1858 
1859 	/*
1860 	 * Copy all capability leafs to pick up the synthetic ones so that
1861 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1862 	 * get overwritten in get_cpu_cap().
1863 	 */
1864 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1865 
1866 	get_cpu_cap(&info);
1867 
1868 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1869 		return;
1870 
1871 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1872 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1873 }
1874