xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 5d0e4d78)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54 
55 #include "cpu.h"
56 
57 u32 elf_hwcap2 __read_mostly;
58 
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63 
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66 
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75 
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 	cpu_detect_cache_sizes(c);
80 #else
81 	/* Not much we can do here... */
82 	/* Check if at least it has cpuid */
83 	if (c->cpuid_level == -1) {
84 		/* No cpuid. It must be an ancient CPU */
85 		if (c->x86 == 4)
86 			strcpy(c->x86_model_id, "486");
87 		else if (c->x86 == 3)
88 			strcpy(c->x86_model_id, "386");
89 	}
90 #endif
91 }
92 
93 static const struct cpu_dev default_cpu = {
94 	.c_init		= default_init,
95 	.c_vendor	= "Unknown",
96 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
97 };
98 
99 static const struct cpu_dev *this_cpu = &default_cpu;
100 
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 	/*
104 	 * We need valid kernel segments for data and code in long mode too
105 	 * IRET will check the segment types  kkeil 2000/10/28
106 	 * Also sysret mandates a special GDT layout
107 	 *
108 	 * TLS descriptors are currently at a different place compared to i386.
109 	 * Hopefully nobody expects them at a fixed place (Wine?)
110 	 */
111 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 	/*
123 	 * Segments used for calling PnP BIOS have byte granularity.
124 	 * They code segments and data segments have fixed 64k limits,
125 	 * the transfer segment sizes are set at run time.
126 	 */
127 	/* 32-bit code */
128 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 	/* 16-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 	/* 16-bit data */
132 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/*
138 	 * The APM segments have byte granularity and their bases
139 	 * are set at run time.  All have 64k limits.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* data */
146 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147 
148 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 	GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154 
155 static int __init x86_mpx_setup(char *s)
156 {
157 	/* require an exact match without trailing characters */
158 	if (strlen(s))
159 		return 0;
160 
161 	/* do not emit a message if the feature is not present */
162 	if (!boot_cpu_has(X86_FEATURE_MPX))
163 		return 1;
164 
165 	setup_clear_cpu_cap(X86_FEATURE_MPX);
166 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 	return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170 
171 static int __init x86_noinvpcid_setup(char *s)
172 {
173 	/* noinvpcid doesn't accept parameters */
174 	if (s)
175 		return -EINVAL;
176 
177 	/* do not emit a message if the feature is not present */
178 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
179 		return 0;
180 
181 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
182 	pr_info("noinvpcid: INVPCID feature disabled\n");
183 	return 0;
184 }
185 early_param("noinvpcid", x86_noinvpcid_setup);
186 
187 #ifdef CONFIG_X86_32
188 static int cachesize_override = -1;
189 static int disable_x86_serial_nr = 1;
190 
191 static int __init cachesize_setup(char *str)
192 {
193 	get_option(&str, &cachesize_override);
194 	return 1;
195 }
196 __setup("cachesize=", cachesize_setup);
197 
198 static int __init x86_sep_setup(char *s)
199 {
200 	setup_clear_cpu_cap(X86_FEATURE_SEP);
201 	return 1;
202 }
203 __setup("nosep", x86_sep_setup);
204 
205 /* Standard macro to see if a specific flag is changeable */
206 static inline int flag_is_changeable_p(u32 flag)
207 {
208 	u32 f1, f2;
209 
210 	/*
211 	 * Cyrix and IDT cpus allow disabling of CPUID
212 	 * so the code below may return different results
213 	 * when it is executed before and after enabling
214 	 * the CPUID. Add "volatile" to not allow gcc to
215 	 * optimize the subsequent calls to this function.
216 	 */
217 	asm volatile ("pushfl		\n\t"
218 		      "pushfl		\n\t"
219 		      "popl %0		\n\t"
220 		      "movl %0, %1	\n\t"
221 		      "xorl %2, %0	\n\t"
222 		      "pushl %0		\n\t"
223 		      "popfl		\n\t"
224 		      "pushfl		\n\t"
225 		      "popl %0		\n\t"
226 		      "popfl		\n\t"
227 
228 		      : "=&r" (f1), "=&r" (f2)
229 		      : "ir" (flag));
230 
231 	return ((f1^f2) & flag) != 0;
232 }
233 
234 /* Probe for the CPUID instruction */
235 int have_cpuid_p(void)
236 {
237 	return flag_is_changeable_p(X86_EFLAGS_ID);
238 }
239 
240 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
241 {
242 	unsigned long lo, hi;
243 
244 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
245 		return;
246 
247 	/* Disable processor serial number: */
248 
249 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
250 	lo |= 0x200000;
251 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
252 
253 	pr_notice("CPU serial number disabled.\n");
254 	clear_cpu_cap(c, X86_FEATURE_PN);
255 
256 	/* Disabling the serial number may affect the cpuid level */
257 	c->cpuid_level = cpuid_eax(0);
258 }
259 
260 static int __init x86_serial_nr_setup(char *s)
261 {
262 	disable_x86_serial_nr = 0;
263 	return 1;
264 }
265 __setup("serialnumber", x86_serial_nr_setup);
266 #else
267 static inline int flag_is_changeable_p(u32 flag)
268 {
269 	return 1;
270 }
271 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 }
274 #endif
275 
276 static __init int setup_disable_smep(char *arg)
277 {
278 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
279 	/* Check for things that depend on SMEP being enabled: */
280 	check_mpx_erratum(&boot_cpu_data);
281 	return 1;
282 }
283 __setup("nosmep", setup_disable_smep);
284 
285 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
286 {
287 	if (cpu_has(c, X86_FEATURE_SMEP))
288 		cr4_set_bits(X86_CR4_SMEP);
289 }
290 
291 static __init int setup_disable_smap(char *arg)
292 {
293 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
294 	return 1;
295 }
296 __setup("nosmap", setup_disable_smap);
297 
298 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
299 {
300 	unsigned long eflags = native_save_fl();
301 
302 	/* This should have been cleared long ago */
303 	BUG_ON(eflags & X86_EFLAGS_AC);
304 
305 	if (cpu_has(c, X86_FEATURE_SMAP)) {
306 #ifdef CONFIG_X86_SMAP
307 		cr4_set_bits(X86_CR4_SMAP);
308 #else
309 		cr4_clear_bits(X86_CR4_SMAP);
310 #endif
311 	}
312 }
313 
314 /*
315  * Protection Keys are not available in 32-bit mode.
316  */
317 static bool pku_disabled;
318 
319 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
320 {
321 	/* check the boot processor, plus compile options for PKU: */
322 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
323 		return;
324 	/* checks the actual processor's cpuid bits: */
325 	if (!cpu_has(c, X86_FEATURE_PKU))
326 		return;
327 	if (pku_disabled)
328 		return;
329 
330 	cr4_set_bits(X86_CR4_PKE);
331 	/*
332 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
333 	 * cpuid bit to be set.  We need to ensure that we
334 	 * update that bit in this CPU's "cpu_info".
335 	 */
336 	get_cpu_cap(c);
337 }
338 
339 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
340 static __init int setup_disable_pku(char *arg)
341 {
342 	/*
343 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
344 	 * runtime checks are against OSPKE so clearing the
345 	 * bit does nothing.
346 	 *
347 	 * This way, we will see "pku" in cpuinfo, but not
348 	 * "ospke", which is exactly what we want.  It shows
349 	 * that the CPU has PKU, but the OS has not enabled it.
350 	 * This happens to be exactly how a system would look
351 	 * if we disabled the config option.
352 	 */
353 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
354 	pku_disabled = true;
355 	return 1;
356 }
357 __setup("nopku", setup_disable_pku);
358 #endif /* CONFIG_X86_64 */
359 
360 /*
361  * Some CPU features depend on higher CPUID levels, which may not always
362  * be available due to CPUID level capping or broken virtualization
363  * software.  Add those features to this table to auto-disable them.
364  */
365 struct cpuid_dependent_feature {
366 	u32 feature;
367 	u32 level;
368 };
369 
370 static const struct cpuid_dependent_feature
371 cpuid_dependent_features[] = {
372 	{ X86_FEATURE_MWAIT,		0x00000005 },
373 	{ X86_FEATURE_DCA,		0x00000009 },
374 	{ X86_FEATURE_XSAVE,		0x0000000d },
375 	{ 0, 0 }
376 };
377 
378 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
379 {
380 	const struct cpuid_dependent_feature *df;
381 
382 	for (df = cpuid_dependent_features; df->feature; df++) {
383 
384 		if (!cpu_has(c, df->feature))
385 			continue;
386 		/*
387 		 * Note: cpuid_level is set to -1 if unavailable, but
388 		 * extended_extended_level is set to 0 if unavailable
389 		 * and the legitimate extended levels are all negative
390 		 * when signed; hence the weird messing around with
391 		 * signs here...
392 		 */
393 		if (!((s32)df->level < 0 ?
394 		     (u32)df->level > (u32)c->extended_cpuid_level :
395 		     (s32)df->level > (s32)c->cpuid_level))
396 			continue;
397 
398 		clear_cpu_cap(c, df->feature);
399 		if (!warn)
400 			continue;
401 
402 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
403 			x86_cap_flag(df->feature), df->level);
404 	}
405 }
406 
407 /*
408  * Naming convention should be: <Name> [(<Codename>)]
409  * This table only is used unless init_<vendor>() below doesn't set it;
410  * in particular, if CPUID levels 0x80000002..4 are supported, this
411  * isn't used
412  */
413 
414 /* Look up CPU names by table lookup. */
415 static const char *table_lookup_model(struct cpuinfo_x86 *c)
416 {
417 #ifdef CONFIG_X86_32
418 	const struct legacy_cpu_model_info *info;
419 
420 	if (c->x86_model >= 16)
421 		return NULL;	/* Range check */
422 
423 	if (!this_cpu)
424 		return NULL;
425 
426 	info = this_cpu->legacy_models;
427 
428 	while (info->family) {
429 		if (info->family == c->x86)
430 			return info->model_names[c->x86_model];
431 		info++;
432 	}
433 #endif
434 	return NULL;		/* Not found */
435 }
436 
437 __u32 cpu_caps_cleared[NCAPINTS];
438 __u32 cpu_caps_set[NCAPINTS];
439 
440 void load_percpu_segment(int cpu)
441 {
442 #ifdef CONFIG_X86_32
443 	loadsegment(fs, __KERNEL_PERCPU);
444 #else
445 	__loadsegment_simple(gs, 0);
446 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
447 #endif
448 	load_stack_canary_segment();
449 }
450 
451 /* Setup the fixmap mapping only once per-processor */
452 static inline void setup_fixmap_gdt(int cpu)
453 {
454 #ifdef CONFIG_X86_64
455 	/* On 64-bit systems, we use a read-only fixmap GDT. */
456 	pgprot_t prot = PAGE_KERNEL_RO;
457 #else
458 	/*
459 	 * On native 32-bit systems, the GDT cannot be read-only because
460 	 * our double fault handler uses a task gate, and entering through
461 	 * a task gate needs to change an available TSS to busy.  If the GDT
462 	 * is read-only, that will triple fault.
463 	 *
464 	 * On Xen PV, the GDT must be read-only because the hypervisor requires
465 	 * it.
466 	 */
467 	pgprot_t prot = boot_cpu_has(X86_FEATURE_XENPV) ?
468 		PAGE_KERNEL_RO : PAGE_KERNEL;
469 #endif
470 
471 	__set_fixmap(get_cpu_gdt_ro_index(cpu), get_cpu_gdt_paddr(cpu), prot);
472 }
473 
474 /* Load the original GDT from the per-cpu structure */
475 void load_direct_gdt(int cpu)
476 {
477 	struct desc_ptr gdt_descr;
478 
479 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
480 	gdt_descr.size = GDT_SIZE - 1;
481 	load_gdt(&gdt_descr);
482 }
483 EXPORT_SYMBOL_GPL(load_direct_gdt);
484 
485 /* Load a fixmap remapping of the per-cpu GDT */
486 void load_fixmap_gdt(int cpu)
487 {
488 	struct desc_ptr gdt_descr;
489 
490 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
491 	gdt_descr.size = GDT_SIZE - 1;
492 	load_gdt(&gdt_descr);
493 }
494 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
495 
496 /*
497  * Current gdt points %fs at the "master" per-cpu area: after this,
498  * it's on the real one.
499  */
500 void switch_to_new_gdt(int cpu)
501 {
502 	/* Load the original GDT */
503 	load_direct_gdt(cpu);
504 	/* Reload the per-cpu base */
505 	load_percpu_segment(cpu);
506 }
507 
508 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
509 
510 static void get_model_name(struct cpuinfo_x86 *c)
511 {
512 	unsigned int *v;
513 	char *p, *q, *s;
514 
515 	if (c->extended_cpuid_level < 0x80000004)
516 		return;
517 
518 	v = (unsigned int *)c->x86_model_id;
519 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
520 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
521 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
522 	c->x86_model_id[48] = 0;
523 
524 	/* Trim whitespace */
525 	p = q = s = &c->x86_model_id[0];
526 
527 	while (*p == ' ')
528 		p++;
529 
530 	while (*p) {
531 		/* Note the last non-whitespace index */
532 		if (!isspace(*p))
533 			s = q;
534 
535 		*q++ = *p++;
536 	}
537 
538 	*(s + 1) = '\0';
539 }
540 
541 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
542 {
543 	unsigned int n, dummy, ebx, ecx, edx, l2size;
544 
545 	n = c->extended_cpuid_level;
546 
547 	if (n >= 0x80000005) {
548 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
549 		c->x86_cache_size = (ecx>>24) + (edx>>24);
550 #ifdef CONFIG_X86_64
551 		/* On K8 L1 TLB is inclusive, so don't count it */
552 		c->x86_tlbsize = 0;
553 #endif
554 	}
555 
556 	if (n < 0x80000006)	/* Some chips just has a large L1. */
557 		return;
558 
559 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
560 	l2size = ecx >> 16;
561 
562 #ifdef CONFIG_X86_64
563 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
564 #else
565 	/* do processor-specific cache resizing */
566 	if (this_cpu->legacy_cache_size)
567 		l2size = this_cpu->legacy_cache_size(c, l2size);
568 
569 	/* Allow user to override all this if necessary. */
570 	if (cachesize_override != -1)
571 		l2size = cachesize_override;
572 
573 	if (l2size == 0)
574 		return;		/* Again, no L2 cache is possible */
575 #endif
576 
577 	c->x86_cache_size = l2size;
578 }
579 
580 u16 __read_mostly tlb_lli_4k[NR_INFO];
581 u16 __read_mostly tlb_lli_2m[NR_INFO];
582 u16 __read_mostly tlb_lli_4m[NR_INFO];
583 u16 __read_mostly tlb_lld_4k[NR_INFO];
584 u16 __read_mostly tlb_lld_2m[NR_INFO];
585 u16 __read_mostly tlb_lld_4m[NR_INFO];
586 u16 __read_mostly tlb_lld_1g[NR_INFO];
587 
588 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
589 {
590 	if (this_cpu->c_detect_tlb)
591 		this_cpu->c_detect_tlb(c);
592 
593 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
594 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
595 		tlb_lli_4m[ENTRIES]);
596 
597 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
598 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
599 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
600 }
601 
602 void detect_ht(struct cpuinfo_x86 *c)
603 {
604 #ifdef CONFIG_SMP
605 	u32 eax, ebx, ecx, edx;
606 	int index_msb, core_bits;
607 	static bool printed;
608 
609 	if (!cpu_has(c, X86_FEATURE_HT))
610 		return;
611 
612 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
613 		goto out;
614 
615 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
616 		return;
617 
618 	cpuid(1, &eax, &ebx, &ecx, &edx);
619 
620 	smp_num_siblings = (ebx & 0xff0000) >> 16;
621 
622 	if (smp_num_siblings == 1) {
623 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
624 		goto out;
625 	}
626 
627 	if (smp_num_siblings <= 1)
628 		goto out;
629 
630 	index_msb = get_count_order(smp_num_siblings);
631 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
632 
633 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
634 
635 	index_msb = get_count_order(smp_num_siblings);
636 
637 	core_bits = get_count_order(c->x86_max_cores);
638 
639 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
640 				       ((1 << core_bits) - 1);
641 
642 out:
643 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
644 		pr_info("CPU: Physical Processor ID: %d\n",
645 			c->phys_proc_id);
646 		pr_info("CPU: Processor Core ID: %d\n",
647 			c->cpu_core_id);
648 		printed = 1;
649 	}
650 #endif
651 }
652 
653 static void get_cpu_vendor(struct cpuinfo_x86 *c)
654 {
655 	char *v = c->x86_vendor_id;
656 	int i;
657 
658 	for (i = 0; i < X86_VENDOR_NUM; i++) {
659 		if (!cpu_devs[i])
660 			break;
661 
662 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
663 		    (cpu_devs[i]->c_ident[1] &&
664 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
665 
666 			this_cpu = cpu_devs[i];
667 			c->x86_vendor = this_cpu->c_x86_vendor;
668 			return;
669 		}
670 	}
671 
672 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
673 		    "CPU: Your system may be unstable.\n", v);
674 
675 	c->x86_vendor = X86_VENDOR_UNKNOWN;
676 	this_cpu = &default_cpu;
677 }
678 
679 void cpu_detect(struct cpuinfo_x86 *c)
680 {
681 	/* Get vendor name */
682 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
683 	      (unsigned int *)&c->x86_vendor_id[0],
684 	      (unsigned int *)&c->x86_vendor_id[8],
685 	      (unsigned int *)&c->x86_vendor_id[4]);
686 
687 	c->x86 = 4;
688 	/* Intel-defined flags: level 0x00000001 */
689 	if (c->cpuid_level >= 0x00000001) {
690 		u32 junk, tfms, cap0, misc;
691 
692 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
693 		c->x86		= x86_family(tfms);
694 		c->x86_model	= x86_model(tfms);
695 		c->x86_mask	= x86_stepping(tfms);
696 
697 		if (cap0 & (1<<19)) {
698 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
699 			c->x86_cache_alignment = c->x86_clflush_size;
700 		}
701 	}
702 }
703 
704 static void apply_forced_caps(struct cpuinfo_x86 *c)
705 {
706 	int i;
707 
708 	for (i = 0; i < NCAPINTS; i++) {
709 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
710 		c->x86_capability[i] |= cpu_caps_set[i];
711 	}
712 }
713 
714 void get_cpu_cap(struct cpuinfo_x86 *c)
715 {
716 	u32 eax, ebx, ecx, edx;
717 
718 	/* Intel-defined flags: level 0x00000001 */
719 	if (c->cpuid_level >= 0x00000001) {
720 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
721 
722 		c->x86_capability[CPUID_1_ECX] = ecx;
723 		c->x86_capability[CPUID_1_EDX] = edx;
724 	}
725 
726 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
727 	if (c->cpuid_level >= 0x00000006)
728 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
729 
730 	/* Additional Intel-defined flags: level 0x00000007 */
731 	if (c->cpuid_level >= 0x00000007) {
732 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
733 		c->x86_capability[CPUID_7_0_EBX] = ebx;
734 		c->x86_capability[CPUID_7_ECX] = ecx;
735 	}
736 
737 	/* Extended state features: level 0x0000000d */
738 	if (c->cpuid_level >= 0x0000000d) {
739 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
740 
741 		c->x86_capability[CPUID_D_1_EAX] = eax;
742 	}
743 
744 	/* Additional Intel-defined flags: level 0x0000000F */
745 	if (c->cpuid_level >= 0x0000000F) {
746 
747 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
748 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
749 		c->x86_capability[CPUID_F_0_EDX] = edx;
750 
751 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
752 			/* will be overridden if occupancy monitoring exists */
753 			c->x86_cache_max_rmid = ebx;
754 
755 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
756 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
757 			c->x86_capability[CPUID_F_1_EDX] = edx;
758 
759 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
760 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
761 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
762 				c->x86_cache_max_rmid = ecx;
763 				c->x86_cache_occ_scale = ebx;
764 			}
765 		} else {
766 			c->x86_cache_max_rmid = -1;
767 			c->x86_cache_occ_scale = -1;
768 		}
769 	}
770 
771 	/* AMD-defined flags: level 0x80000001 */
772 	eax = cpuid_eax(0x80000000);
773 	c->extended_cpuid_level = eax;
774 
775 	if ((eax & 0xffff0000) == 0x80000000) {
776 		if (eax >= 0x80000001) {
777 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
778 
779 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
780 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
781 		}
782 	}
783 
784 	if (c->extended_cpuid_level >= 0x80000007) {
785 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
786 
787 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
788 		c->x86_power = edx;
789 	}
790 
791 	if (c->extended_cpuid_level >= 0x80000008) {
792 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
793 
794 		c->x86_virt_bits = (eax >> 8) & 0xff;
795 		c->x86_phys_bits = eax & 0xff;
796 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
797 	}
798 #ifdef CONFIG_X86_32
799 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
800 		c->x86_phys_bits = 36;
801 #endif
802 
803 	if (c->extended_cpuid_level >= 0x8000000a)
804 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
805 
806 	init_scattered_cpuid_features(c);
807 
808 	/*
809 	 * Clear/Set all flags overridden by options, after probe.
810 	 * This needs to happen each time we re-probe, which may happen
811 	 * several times during CPU initialization.
812 	 */
813 	apply_forced_caps(c);
814 }
815 
816 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
817 {
818 #ifdef CONFIG_X86_32
819 	int i;
820 
821 	/*
822 	 * First of all, decide if this is a 486 or higher
823 	 * It's a 486 if we can modify the AC flag
824 	 */
825 	if (flag_is_changeable_p(X86_EFLAGS_AC))
826 		c->x86 = 4;
827 	else
828 		c->x86 = 3;
829 
830 	for (i = 0; i < X86_VENDOR_NUM; i++)
831 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
832 			c->x86_vendor_id[0] = 0;
833 			cpu_devs[i]->c_identify(c);
834 			if (c->x86_vendor_id[0]) {
835 				get_cpu_vendor(c);
836 				break;
837 			}
838 		}
839 #endif
840 }
841 
842 /*
843  * Do minimum CPU detection early.
844  * Fields really needed: vendor, cpuid_level, family, model, mask,
845  * cache alignment.
846  * The others are not touched to avoid unwanted side effects.
847  *
848  * WARNING: this function is only called on the BP.  Don't add code here
849  * that is supposed to run on all CPUs.
850  */
851 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
852 {
853 #ifdef CONFIG_X86_64
854 	c->x86_clflush_size = 64;
855 	c->x86_phys_bits = 36;
856 	c->x86_virt_bits = 48;
857 #else
858 	c->x86_clflush_size = 32;
859 	c->x86_phys_bits = 32;
860 	c->x86_virt_bits = 32;
861 #endif
862 	c->x86_cache_alignment = c->x86_clflush_size;
863 
864 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
865 	c->extended_cpuid_level = 0;
866 
867 	/* cyrix could have cpuid enabled via c_identify()*/
868 	if (have_cpuid_p()) {
869 		cpu_detect(c);
870 		get_cpu_vendor(c);
871 		get_cpu_cap(c);
872 		setup_force_cpu_cap(X86_FEATURE_CPUID);
873 
874 		if (this_cpu->c_early_init)
875 			this_cpu->c_early_init(c);
876 
877 		c->cpu_index = 0;
878 		filter_cpuid_features(c, false);
879 
880 		if (this_cpu->c_bsp_init)
881 			this_cpu->c_bsp_init(c);
882 	} else {
883 		identify_cpu_without_cpuid(c);
884 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
885 	}
886 
887 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
888 	fpu__init_system(c);
889 }
890 
891 void __init early_cpu_init(void)
892 {
893 	const struct cpu_dev *const *cdev;
894 	int count = 0;
895 
896 #ifdef CONFIG_PROCESSOR_SELECT
897 	pr_info("KERNEL supported cpus:\n");
898 #endif
899 
900 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
901 		const struct cpu_dev *cpudev = *cdev;
902 
903 		if (count >= X86_VENDOR_NUM)
904 			break;
905 		cpu_devs[count] = cpudev;
906 		count++;
907 
908 #ifdef CONFIG_PROCESSOR_SELECT
909 		{
910 			unsigned int j;
911 
912 			for (j = 0; j < 2; j++) {
913 				if (!cpudev->c_ident[j])
914 					continue;
915 				pr_info("  %s %s\n", cpudev->c_vendor,
916 					cpudev->c_ident[j]);
917 			}
918 		}
919 #endif
920 	}
921 	early_identify_cpu(&boot_cpu_data);
922 }
923 
924 /*
925  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
926  * unfortunately, that's not true in practice because of early VIA
927  * chips and (more importantly) broken virtualizers that are not easy
928  * to detect. In the latter case it doesn't even *fail* reliably, so
929  * probing for it doesn't even work. Disable it completely on 32-bit
930  * unless we can find a reliable way to detect all the broken cases.
931  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
932  */
933 static void detect_nopl(struct cpuinfo_x86 *c)
934 {
935 #ifdef CONFIG_X86_32
936 	clear_cpu_cap(c, X86_FEATURE_NOPL);
937 #else
938 	set_cpu_cap(c, X86_FEATURE_NOPL);
939 #endif
940 }
941 
942 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
943 {
944 #ifdef CONFIG_X86_64
945 	/*
946 	 * Empirically, writing zero to a segment selector on AMD does
947 	 * not clear the base, whereas writing zero to a segment
948 	 * selector on Intel does clear the base.  Intel's behavior
949 	 * allows slightly faster context switches in the common case
950 	 * where GS is unused by the prev and next threads.
951 	 *
952 	 * Since neither vendor documents this anywhere that I can see,
953 	 * detect it directly instead of hardcoding the choice by
954 	 * vendor.
955 	 *
956 	 * I've designated AMD's behavior as the "bug" because it's
957 	 * counterintuitive and less friendly.
958 	 */
959 
960 	unsigned long old_base, tmp;
961 	rdmsrl(MSR_FS_BASE, old_base);
962 	wrmsrl(MSR_FS_BASE, 1);
963 	loadsegment(fs, 0);
964 	rdmsrl(MSR_FS_BASE, tmp);
965 	if (tmp != 0)
966 		set_cpu_bug(c, X86_BUG_NULL_SEG);
967 	wrmsrl(MSR_FS_BASE, old_base);
968 #endif
969 }
970 
971 static void generic_identify(struct cpuinfo_x86 *c)
972 {
973 	c->extended_cpuid_level = 0;
974 
975 	if (!have_cpuid_p())
976 		identify_cpu_without_cpuid(c);
977 
978 	/* cyrix could have cpuid enabled via c_identify()*/
979 	if (!have_cpuid_p())
980 		return;
981 
982 	cpu_detect(c);
983 
984 	get_cpu_vendor(c);
985 
986 	get_cpu_cap(c);
987 
988 	if (c->cpuid_level >= 0x00000001) {
989 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
990 #ifdef CONFIG_X86_32
991 # ifdef CONFIG_SMP
992 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
993 # else
994 		c->apicid = c->initial_apicid;
995 # endif
996 #endif
997 		c->phys_proc_id = c->initial_apicid;
998 	}
999 
1000 	get_model_name(c); /* Default name */
1001 
1002 	detect_nopl(c);
1003 
1004 	detect_null_seg_behavior(c);
1005 
1006 	/*
1007 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1008 	 * systems that run Linux at CPL > 0 may or may not have the
1009 	 * issue, but, even if they have the issue, there's absolutely
1010 	 * nothing we can do about it because we can't use the real IRET
1011 	 * instruction.
1012 	 *
1013 	 * NB: For the time being, only 32-bit kernels support
1014 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1015 	 * whether to apply espfix using paravirt hooks.  If any
1016 	 * non-paravirt system ever shows up that does *not* have the
1017 	 * ESPFIX issue, we can change this.
1018 	 */
1019 #ifdef CONFIG_X86_32
1020 # ifdef CONFIG_PARAVIRT
1021 	do {
1022 		extern void native_iret(void);
1023 		if (pv_cpu_ops.iret == native_iret)
1024 			set_cpu_bug(c, X86_BUG_ESPFIX);
1025 	} while (0);
1026 # else
1027 	set_cpu_bug(c, X86_BUG_ESPFIX);
1028 # endif
1029 #endif
1030 }
1031 
1032 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1033 {
1034 	/*
1035 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1036 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1037 	 * in case CQM bits really aren't there in this CPU.
1038 	 */
1039 	if (c != &boot_cpu_data) {
1040 		boot_cpu_data.x86_cache_max_rmid =
1041 			min(boot_cpu_data.x86_cache_max_rmid,
1042 			    c->x86_cache_max_rmid);
1043 	}
1044 }
1045 
1046 /*
1047  * Validate that ACPI/mptables have the same information about the
1048  * effective APIC id and update the package map.
1049  */
1050 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1051 {
1052 #ifdef CONFIG_SMP
1053 	unsigned int apicid, cpu = smp_processor_id();
1054 
1055 	apicid = apic->cpu_present_to_apicid(cpu);
1056 
1057 	if (apicid != c->apicid) {
1058 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1059 		       cpu, apicid, c->initial_apicid);
1060 	}
1061 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1062 #else
1063 	c->logical_proc_id = 0;
1064 #endif
1065 }
1066 
1067 /*
1068  * This does the hard work of actually picking apart the CPU stuff...
1069  */
1070 static void identify_cpu(struct cpuinfo_x86 *c)
1071 {
1072 	int i;
1073 
1074 	c->loops_per_jiffy = loops_per_jiffy;
1075 	c->x86_cache_size = -1;
1076 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1077 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1078 	c->x86_vendor_id[0] = '\0'; /* Unset */
1079 	c->x86_model_id[0] = '\0';  /* Unset */
1080 	c->x86_max_cores = 1;
1081 	c->x86_coreid_bits = 0;
1082 	c->cu_id = 0xff;
1083 #ifdef CONFIG_X86_64
1084 	c->x86_clflush_size = 64;
1085 	c->x86_phys_bits = 36;
1086 	c->x86_virt_bits = 48;
1087 #else
1088 	c->cpuid_level = -1;	/* CPUID not detected */
1089 	c->x86_clflush_size = 32;
1090 	c->x86_phys_bits = 32;
1091 	c->x86_virt_bits = 32;
1092 #endif
1093 	c->x86_cache_alignment = c->x86_clflush_size;
1094 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1095 
1096 	generic_identify(c);
1097 
1098 	if (this_cpu->c_identify)
1099 		this_cpu->c_identify(c);
1100 
1101 	/* Clear/Set all flags overridden by options, after probe */
1102 	apply_forced_caps(c);
1103 
1104 #ifdef CONFIG_X86_64
1105 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1106 #endif
1107 
1108 	/*
1109 	 * Vendor-specific initialization.  In this section we
1110 	 * canonicalize the feature flags, meaning if there are
1111 	 * features a certain CPU supports which CPUID doesn't
1112 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1113 	 * we handle them here.
1114 	 *
1115 	 * At the end of this section, c->x86_capability better
1116 	 * indicate the features this CPU genuinely supports!
1117 	 */
1118 	if (this_cpu->c_init)
1119 		this_cpu->c_init(c);
1120 
1121 	/* Disable the PN if appropriate */
1122 	squash_the_stupid_serial_number(c);
1123 
1124 	/* Set up SMEP/SMAP */
1125 	setup_smep(c);
1126 	setup_smap(c);
1127 
1128 	/*
1129 	 * The vendor-specific functions might have changed features.
1130 	 * Now we do "generic changes."
1131 	 */
1132 
1133 	/* Filter out anything that depends on CPUID levels we don't have */
1134 	filter_cpuid_features(c, true);
1135 
1136 	/* If the model name is still unset, do table lookup. */
1137 	if (!c->x86_model_id[0]) {
1138 		const char *p;
1139 		p = table_lookup_model(c);
1140 		if (p)
1141 			strcpy(c->x86_model_id, p);
1142 		else
1143 			/* Last resort... */
1144 			sprintf(c->x86_model_id, "%02x/%02x",
1145 				c->x86, c->x86_model);
1146 	}
1147 
1148 #ifdef CONFIG_X86_64
1149 	detect_ht(c);
1150 #endif
1151 
1152 	x86_init_rdrand(c);
1153 	x86_init_cache_qos(c);
1154 	setup_pku(c);
1155 
1156 	/*
1157 	 * Clear/Set all flags overridden by options, need do it
1158 	 * before following smp all cpus cap AND.
1159 	 */
1160 	apply_forced_caps(c);
1161 
1162 	/*
1163 	 * On SMP, boot_cpu_data holds the common feature set between
1164 	 * all CPUs; so make sure that we indicate which features are
1165 	 * common between the CPUs.  The first time this routine gets
1166 	 * executed, c == &boot_cpu_data.
1167 	 */
1168 	if (c != &boot_cpu_data) {
1169 		/* AND the already accumulated flags with these */
1170 		for (i = 0; i < NCAPINTS; i++)
1171 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1172 
1173 		/* OR, i.e. replicate the bug flags */
1174 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1175 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1176 	}
1177 
1178 	/* Init Machine Check Exception if available. */
1179 	mcheck_cpu_init(c);
1180 
1181 	select_idle_routine(c);
1182 
1183 #ifdef CONFIG_NUMA
1184 	numa_add_cpu(smp_processor_id());
1185 #endif
1186 }
1187 
1188 /*
1189  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1190  * on 32-bit kernels:
1191  */
1192 #ifdef CONFIG_X86_32
1193 void enable_sep_cpu(void)
1194 {
1195 	struct tss_struct *tss;
1196 	int cpu;
1197 
1198 	if (!boot_cpu_has(X86_FEATURE_SEP))
1199 		return;
1200 
1201 	cpu = get_cpu();
1202 	tss = &per_cpu(cpu_tss, cpu);
1203 
1204 	/*
1205 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1206 	 * see the big comment in struct x86_hw_tss's definition.
1207 	 */
1208 
1209 	tss->x86_tss.ss1 = __KERNEL_CS;
1210 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1211 
1212 	wrmsr(MSR_IA32_SYSENTER_ESP,
1213 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1214 	      0);
1215 
1216 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1217 
1218 	put_cpu();
1219 }
1220 #endif
1221 
1222 void __init identify_boot_cpu(void)
1223 {
1224 	identify_cpu(&boot_cpu_data);
1225 #ifdef CONFIG_X86_32
1226 	sysenter_setup();
1227 	enable_sep_cpu();
1228 #endif
1229 	cpu_detect_tlb(&boot_cpu_data);
1230 }
1231 
1232 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1233 {
1234 	BUG_ON(c == &boot_cpu_data);
1235 	identify_cpu(c);
1236 #ifdef CONFIG_X86_32
1237 	enable_sep_cpu();
1238 #endif
1239 	mtrr_ap_init();
1240 	validate_apic_and_package_id(c);
1241 }
1242 
1243 static __init int setup_noclflush(char *arg)
1244 {
1245 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1246 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1247 	return 1;
1248 }
1249 __setup("noclflush", setup_noclflush);
1250 
1251 void print_cpu_info(struct cpuinfo_x86 *c)
1252 {
1253 	const char *vendor = NULL;
1254 
1255 	if (c->x86_vendor < X86_VENDOR_NUM) {
1256 		vendor = this_cpu->c_vendor;
1257 	} else {
1258 		if (c->cpuid_level >= 0)
1259 			vendor = c->x86_vendor_id;
1260 	}
1261 
1262 	if (vendor && !strstr(c->x86_model_id, vendor))
1263 		pr_cont("%s ", vendor);
1264 
1265 	if (c->x86_model_id[0])
1266 		pr_cont("%s", c->x86_model_id);
1267 	else
1268 		pr_cont("%d86", c->x86);
1269 
1270 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1271 
1272 	if (c->x86_mask || c->cpuid_level >= 0)
1273 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1274 	else
1275 		pr_cont(")\n");
1276 }
1277 
1278 static __init int setup_disablecpuid(char *arg)
1279 {
1280 	int bit;
1281 
1282 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1283 		setup_clear_cpu_cap(bit);
1284 	else
1285 		return 0;
1286 
1287 	return 1;
1288 }
1289 __setup("clearcpuid=", setup_disablecpuid);
1290 
1291 #ifdef CONFIG_X86_64
1292 struct desc_ptr idt_descr __ro_after_init = {
1293 	.size = NR_VECTORS * 16 - 1,
1294 	.address = (unsigned long) idt_table,
1295 };
1296 const struct desc_ptr debug_idt_descr = {
1297 	.size = NR_VECTORS * 16 - 1,
1298 	.address = (unsigned long) debug_idt_table,
1299 };
1300 
1301 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1302 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1303 
1304 /*
1305  * The following percpu variables are hot.  Align current_task to
1306  * cacheline size such that they fall in the same cacheline.
1307  */
1308 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1309 	&init_task;
1310 EXPORT_PER_CPU_SYMBOL(current_task);
1311 
1312 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1313 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1314 
1315 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1316 
1317 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1318 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1319 
1320 /*
1321  * Special IST stacks which the CPU switches to when it calls
1322  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1323  * limit), all of them are 4K, except the debug stack which
1324  * is 8K.
1325  */
1326 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1327 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1328 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1329 };
1330 
1331 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1332 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1333 
1334 /* May not be marked __init: used by software suspend */
1335 void syscall_init(void)
1336 {
1337 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1338 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1339 
1340 #ifdef CONFIG_IA32_EMULATION
1341 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1342 	/*
1343 	 * This only works on Intel CPUs.
1344 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1345 	 * This does not cause SYSENTER to jump to the wrong location, because
1346 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1347 	 */
1348 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1349 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1350 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1351 #else
1352 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1353 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1354 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1355 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1356 #endif
1357 
1358 	/* Flags to clear on syscall */
1359 	wrmsrl(MSR_SYSCALL_MASK,
1360 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1361 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1362 }
1363 
1364 /*
1365  * Copies of the original ist values from the tss are only accessed during
1366  * debugging, no special alignment required.
1367  */
1368 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1369 
1370 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1371 DEFINE_PER_CPU(int, debug_stack_usage);
1372 
1373 int is_debug_stack(unsigned long addr)
1374 {
1375 	return __this_cpu_read(debug_stack_usage) ||
1376 		(addr <= __this_cpu_read(debug_stack_addr) &&
1377 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1378 }
1379 NOKPROBE_SYMBOL(is_debug_stack);
1380 
1381 DEFINE_PER_CPU(u32, debug_idt_ctr);
1382 
1383 void debug_stack_set_zero(void)
1384 {
1385 	this_cpu_inc(debug_idt_ctr);
1386 	load_current_idt();
1387 }
1388 NOKPROBE_SYMBOL(debug_stack_set_zero);
1389 
1390 void debug_stack_reset(void)
1391 {
1392 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1393 		return;
1394 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1395 		load_current_idt();
1396 }
1397 NOKPROBE_SYMBOL(debug_stack_reset);
1398 
1399 #else	/* CONFIG_X86_64 */
1400 
1401 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1402 EXPORT_PER_CPU_SYMBOL(current_task);
1403 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1404 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1405 
1406 /*
1407  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1408  * the top of the kernel stack.  Use an extra percpu variable to track the
1409  * top of the kernel stack directly.
1410  */
1411 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1412 	(unsigned long)&init_thread_union + THREAD_SIZE;
1413 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1414 
1415 #ifdef CONFIG_CC_STACKPROTECTOR
1416 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1417 #endif
1418 
1419 #endif	/* CONFIG_X86_64 */
1420 
1421 /*
1422  * Clear all 6 debug registers:
1423  */
1424 static void clear_all_debug_regs(void)
1425 {
1426 	int i;
1427 
1428 	for (i = 0; i < 8; i++) {
1429 		/* Ignore db4, db5 */
1430 		if ((i == 4) || (i == 5))
1431 			continue;
1432 
1433 		set_debugreg(0, i);
1434 	}
1435 }
1436 
1437 #ifdef CONFIG_KGDB
1438 /*
1439  * Restore debug regs if using kgdbwait and you have a kernel debugger
1440  * connection established.
1441  */
1442 static void dbg_restore_debug_regs(void)
1443 {
1444 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1445 		arch_kgdb_ops.correct_hw_break();
1446 }
1447 #else /* ! CONFIG_KGDB */
1448 #define dbg_restore_debug_regs()
1449 #endif /* ! CONFIG_KGDB */
1450 
1451 static void wait_for_master_cpu(int cpu)
1452 {
1453 #ifdef CONFIG_SMP
1454 	/*
1455 	 * wait for ACK from master CPU before continuing
1456 	 * with AP initialization
1457 	 */
1458 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1459 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1460 		cpu_relax();
1461 #endif
1462 }
1463 
1464 /*
1465  * cpu_init() initializes state that is per-CPU. Some data is already
1466  * initialized (naturally) in the bootstrap process, such as the GDT
1467  * and IDT. We reload them nevertheless, this function acts as a
1468  * 'CPU state barrier', nothing should get across.
1469  * A lot of state is already set up in PDA init for 64 bit
1470  */
1471 #ifdef CONFIG_X86_64
1472 
1473 void cpu_init(void)
1474 {
1475 	struct orig_ist *oist;
1476 	struct task_struct *me;
1477 	struct tss_struct *t;
1478 	unsigned long v;
1479 	int cpu = raw_smp_processor_id();
1480 	int i;
1481 
1482 	wait_for_master_cpu(cpu);
1483 
1484 	/*
1485 	 * Initialize the CR4 shadow before doing anything that could
1486 	 * try to read it.
1487 	 */
1488 	cr4_init_shadow();
1489 
1490 	if (cpu)
1491 		load_ucode_ap();
1492 
1493 	t = &per_cpu(cpu_tss, cpu);
1494 	oist = &per_cpu(orig_ist, cpu);
1495 
1496 #ifdef CONFIG_NUMA
1497 	if (this_cpu_read(numa_node) == 0 &&
1498 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1499 		set_numa_node(early_cpu_to_node(cpu));
1500 #endif
1501 
1502 	me = current;
1503 
1504 	pr_debug("Initializing CPU#%d\n", cpu);
1505 
1506 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1507 
1508 	/*
1509 	 * Initialize the per-CPU GDT with the boot GDT,
1510 	 * and set up the GDT descriptor:
1511 	 */
1512 
1513 	switch_to_new_gdt(cpu);
1514 	loadsegment(fs, 0);
1515 
1516 	load_current_idt();
1517 
1518 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1519 	syscall_init();
1520 
1521 	wrmsrl(MSR_FS_BASE, 0);
1522 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1523 	barrier();
1524 
1525 	x86_configure_nx();
1526 	x2apic_setup();
1527 
1528 	/*
1529 	 * set up and load the per-CPU TSS
1530 	 */
1531 	if (!oist->ist[0]) {
1532 		char *estacks = per_cpu(exception_stacks, cpu);
1533 
1534 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1535 			estacks += exception_stack_sizes[v];
1536 			oist->ist[v] = t->x86_tss.ist[v] =
1537 					(unsigned long)estacks;
1538 			if (v == DEBUG_STACK-1)
1539 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1540 		}
1541 	}
1542 
1543 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1544 
1545 	/*
1546 	 * <= is required because the CPU will access up to
1547 	 * 8 bits beyond the end of the IO permission bitmap.
1548 	 */
1549 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1550 		t->io_bitmap[i] = ~0UL;
1551 
1552 	mmgrab(&init_mm);
1553 	me->active_mm = &init_mm;
1554 	BUG_ON(me->mm);
1555 	enter_lazy_tlb(&init_mm, me);
1556 
1557 	load_sp0(t, &current->thread);
1558 	set_tss_desc(cpu, t);
1559 	load_TR_desc();
1560 	load_mm_ldt(&init_mm);
1561 
1562 	clear_all_debug_regs();
1563 	dbg_restore_debug_regs();
1564 
1565 	fpu__init_cpu();
1566 
1567 	if (is_uv_system())
1568 		uv_cpu_init();
1569 
1570 	setup_fixmap_gdt(cpu);
1571 	load_fixmap_gdt(cpu);
1572 }
1573 
1574 #else
1575 
1576 void cpu_init(void)
1577 {
1578 	int cpu = smp_processor_id();
1579 	struct task_struct *curr = current;
1580 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1581 	struct thread_struct *thread = &curr->thread;
1582 
1583 	wait_for_master_cpu(cpu);
1584 
1585 	/*
1586 	 * Initialize the CR4 shadow before doing anything that could
1587 	 * try to read it.
1588 	 */
1589 	cr4_init_shadow();
1590 
1591 	show_ucode_info_early();
1592 
1593 	pr_info("Initializing CPU#%d\n", cpu);
1594 
1595 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1596 	    boot_cpu_has(X86_FEATURE_TSC) ||
1597 	    boot_cpu_has(X86_FEATURE_DE))
1598 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1599 
1600 	load_current_idt();
1601 	switch_to_new_gdt(cpu);
1602 
1603 	/*
1604 	 * Set up and load the per-CPU TSS and LDT
1605 	 */
1606 	mmgrab(&init_mm);
1607 	curr->active_mm = &init_mm;
1608 	BUG_ON(curr->mm);
1609 	enter_lazy_tlb(&init_mm, curr);
1610 
1611 	load_sp0(t, thread);
1612 	set_tss_desc(cpu, t);
1613 	load_TR_desc();
1614 	load_mm_ldt(&init_mm);
1615 
1616 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1617 
1618 #ifdef CONFIG_DOUBLEFAULT
1619 	/* Set up doublefault TSS pointer in the GDT */
1620 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1621 #endif
1622 
1623 	clear_all_debug_regs();
1624 	dbg_restore_debug_regs();
1625 
1626 	fpu__init_cpu();
1627 
1628 	setup_fixmap_gdt(cpu);
1629 	load_fixmap_gdt(cpu);
1630 }
1631 #endif
1632 
1633 static void bsp_resume(void)
1634 {
1635 	if (this_cpu->c_bsp_resume)
1636 		this_cpu->c_bsp_resume(&boot_cpu_data);
1637 }
1638 
1639 static struct syscore_ops cpu_syscore_ops = {
1640 	.resume		= bsp_resume,
1641 };
1642 
1643 static int __init init_cpu_syscore(void)
1644 {
1645 	register_syscore_ops(&cpu_syscore_ops);
1646 	return 0;
1647 }
1648 core_initcall(init_cpu_syscore);
1649