1 /* cpu_feature_enabled() cannot be used this early */ 2 #define USE_EARLY_PGTABLE_L5 3 4 #include <linux/memblock.h> 5 #include <linux/linkage.h> 6 #include <linux/bitops.h> 7 #include <linux/kernel.h> 8 #include <linux/export.h> 9 #include <linux/percpu.h> 10 #include <linux/string.h> 11 #include <linux/ctype.h> 12 #include <linux/delay.h> 13 #include <linux/sched/mm.h> 14 #include <linux/sched/clock.h> 15 #include <linux/sched/task.h> 16 #include <linux/init.h> 17 #include <linux/kprobes.h> 18 #include <linux/kgdb.h> 19 #include <linux/smp.h> 20 #include <linux/io.h> 21 #include <linux/syscore_ops.h> 22 23 #include <asm/stackprotector.h> 24 #include <asm/perf_event.h> 25 #include <asm/mmu_context.h> 26 #include <asm/archrandom.h> 27 #include <asm/hypervisor.h> 28 #include <asm/processor.h> 29 #include <asm/tlbflush.h> 30 #include <asm/debugreg.h> 31 #include <asm/sections.h> 32 #include <asm/vsyscall.h> 33 #include <linux/topology.h> 34 #include <linux/cpumask.h> 35 #include <asm/pgtable.h> 36 #include <linux/atomic.h> 37 #include <asm/proto.h> 38 #include <asm/setup.h> 39 #include <asm/apic.h> 40 #include <asm/desc.h> 41 #include <asm/fpu/internal.h> 42 #include <asm/mtrr.h> 43 #include <asm/hwcap2.h> 44 #include <linux/numa.h> 45 #include <asm/asm.h> 46 #include <asm/bugs.h> 47 #include <asm/cpu.h> 48 #include <asm/mce.h> 49 #include <asm/msr.h> 50 #include <asm/pat.h> 51 #include <asm/microcode.h> 52 #include <asm/microcode_intel.h> 53 #include <asm/intel-family.h> 54 #include <asm/cpu_device_id.h> 55 56 #ifdef CONFIG_X86_LOCAL_APIC 57 #include <asm/uv/uv.h> 58 #endif 59 60 #include "cpu.h" 61 62 u32 elf_hwcap2 __read_mostly; 63 64 /* all of these masks are initialized in setup_cpu_local_masks() */ 65 cpumask_var_t cpu_initialized_mask; 66 cpumask_var_t cpu_callout_mask; 67 cpumask_var_t cpu_callin_mask; 68 69 /* representing cpus for which sibling maps can be computed */ 70 cpumask_var_t cpu_sibling_setup_mask; 71 72 /* Number of siblings per CPU package */ 73 int smp_num_siblings = 1; 74 EXPORT_SYMBOL(smp_num_siblings); 75 76 /* Last level cache ID of each logical CPU */ 77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; 78 79 /* correctly size the local cpu masks */ 80 void __init setup_cpu_local_masks(void) 81 { 82 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 83 alloc_bootmem_cpumask_var(&cpu_callin_mask); 84 alloc_bootmem_cpumask_var(&cpu_callout_mask); 85 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 86 } 87 88 static void default_init(struct cpuinfo_x86 *c) 89 { 90 #ifdef CONFIG_X86_64 91 cpu_detect_cache_sizes(c); 92 #else 93 /* Not much we can do here... */ 94 /* Check if at least it has cpuid */ 95 if (c->cpuid_level == -1) { 96 /* No cpuid. It must be an ancient CPU */ 97 if (c->x86 == 4) 98 strcpy(c->x86_model_id, "486"); 99 else if (c->x86 == 3) 100 strcpy(c->x86_model_id, "386"); 101 } 102 #endif 103 } 104 105 static const struct cpu_dev default_cpu = { 106 .c_init = default_init, 107 .c_vendor = "Unknown", 108 .c_x86_vendor = X86_VENDOR_UNKNOWN, 109 }; 110 111 static const struct cpu_dev *this_cpu = &default_cpu; 112 113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 114 #ifdef CONFIG_X86_64 115 /* 116 * We need valid kernel segments for data and code in long mode too 117 * IRET will check the segment types kkeil 2000/10/28 118 * Also sysret mandates a special GDT layout 119 * 120 * TLS descriptors are currently at a different place compared to i386. 121 * Hopefully nobody expects them at a fixed place (Wine?) 122 */ 123 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 124 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 125 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 126 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 127 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 128 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 129 #else 130 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 131 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 132 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 133 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 134 /* 135 * Segments used for calling PnP BIOS have byte granularity. 136 * They code segments and data segments have fixed 64k limits, 137 * the transfer segment sizes are set at run time. 138 */ 139 /* 32-bit code */ 140 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 141 /* 16-bit code */ 142 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 143 /* 16-bit data */ 144 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 145 /* 16-bit data */ 146 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 147 /* 16-bit data */ 148 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 149 /* 150 * The APM segments have byte granularity and their bases 151 * are set at run time. All have 64k limits. 152 */ 153 /* 32-bit code */ 154 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 155 /* 16-bit code */ 156 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 157 /* data */ 158 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 159 160 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 161 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 162 GDT_STACK_CANARY_INIT 163 #endif 164 } }; 165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 166 167 static int __init x86_mpx_setup(char *s) 168 { 169 /* require an exact match without trailing characters */ 170 if (strlen(s)) 171 return 0; 172 173 /* do not emit a message if the feature is not present */ 174 if (!boot_cpu_has(X86_FEATURE_MPX)) 175 return 1; 176 177 setup_clear_cpu_cap(X86_FEATURE_MPX); 178 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 179 return 1; 180 } 181 __setup("nompx", x86_mpx_setup); 182 183 #ifdef CONFIG_X86_64 184 static int __init x86_nopcid_setup(char *s) 185 { 186 /* nopcid doesn't accept parameters */ 187 if (s) 188 return -EINVAL; 189 190 /* do not emit a message if the feature is not present */ 191 if (!boot_cpu_has(X86_FEATURE_PCID)) 192 return 0; 193 194 setup_clear_cpu_cap(X86_FEATURE_PCID); 195 pr_info("nopcid: PCID feature disabled\n"); 196 return 0; 197 } 198 early_param("nopcid", x86_nopcid_setup); 199 #endif 200 201 static int __init x86_noinvpcid_setup(char *s) 202 { 203 /* noinvpcid doesn't accept parameters */ 204 if (s) 205 return -EINVAL; 206 207 /* do not emit a message if the feature is not present */ 208 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 209 return 0; 210 211 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 212 pr_info("noinvpcid: INVPCID feature disabled\n"); 213 return 0; 214 } 215 early_param("noinvpcid", x86_noinvpcid_setup); 216 217 #ifdef CONFIG_X86_32 218 static int cachesize_override = -1; 219 static int disable_x86_serial_nr = 1; 220 221 static int __init cachesize_setup(char *str) 222 { 223 get_option(&str, &cachesize_override); 224 return 1; 225 } 226 __setup("cachesize=", cachesize_setup); 227 228 static int __init x86_sep_setup(char *s) 229 { 230 setup_clear_cpu_cap(X86_FEATURE_SEP); 231 return 1; 232 } 233 __setup("nosep", x86_sep_setup); 234 235 /* Standard macro to see if a specific flag is changeable */ 236 static inline int flag_is_changeable_p(u32 flag) 237 { 238 u32 f1, f2; 239 240 /* 241 * Cyrix and IDT cpus allow disabling of CPUID 242 * so the code below may return different results 243 * when it is executed before and after enabling 244 * the CPUID. Add "volatile" to not allow gcc to 245 * optimize the subsequent calls to this function. 246 */ 247 asm volatile ("pushfl \n\t" 248 "pushfl \n\t" 249 "popl %0 \n\t" 250 "movl %0, %1 \n\t" 251 "xorl %2, %0 \n\t" 252 "pushl %0 \n\t" 253 "popfl \n\t" 254 "pushfl \n\t" 255 "popl %0 \n\t" 256 "popfl \n\t" 257 258 : "=&r" (f1), "=&r" (f2) 259 : "ir" (flag)); 260 261 return ((f1^f2) & flag) != 0; 262 } 263 264 /* Probe for the CPUID instruction */ 265 int have_cpuid_p(void) 266 { 267 return flag_is_changeable_p(X86_EFLAGS_ID); 268 } 269 270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 271 { 272 unsigned long lo, hi; 273 274 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 275 return; 276 277 /* Disable processor serial number: */ 278 279 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 280 lo |= 0x200000; 281 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 282 283 pr_notice("CPU serial number disabled.\n"); 284 clear_cpu_cap(c, X86_FEATURE_PN); 285 286 /* Disabling the serial number may affect the cpuid level */ 287 c->cpuid_level = cpuid_eax(0); 288 } 289 290 static int __init x86_serial_nr_setup(char *s) 291 { 292 disable_x86_serial_nr = 0; 293 return 1; 294 } 295 __setup("serialnumber", x86_serial_nr_setup); 296 #else 297 static inline int flag_is_changeable_p(u32 flag) 298 { 299 return 1; 300 } 301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 302 { 303 } 304 #endif 305 306 static __init int setup_disable_smep(char *arg) 307 { 308 setup_clear_cpu_cap(X86_FEATURE_SMEP); 309 /* Check for things that depend on SMEP being enabled: */ 310 check_mpx_erratum(&boot_cpu_data); 311 return 1; 312 } 313 __setup("nosmep", setup_disable_smep); 314 315 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 316 { 317 if (cpu_has(c, X86_FEATURE_SMEP)) 318 cr4_set_bits(X86_CR4_SMEP); 319 } 320 321 static __init int setup_disable_smap(char *arg) 322 { 323 setup_clear_cpu_cap(X86_FEATURE_SMAP); 324 return 1; 325 } 326 __setup("nosmap", setup_disable_smap); 327 328 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 329 { 330 unsigned long eflags = native_save_fl(); 331 332 /* This should have been cleared long ago */ 333 BUG_ON(eflags & X86_EFLAGS_AC); 334 335 if (cpu_has(c, X86_FEATURE_SMAP)) { 336 #ifdef CONFIG_X86_SMAP 337 cr4_set_bits(X86_CR4_SMAP); 338 #else 339 cr4_clear_bits(X86_CR4_SMAP); 340 #endif 341 } 342 } 343 344 static __always_inline void setup_umip(struct cpuinfo_x86 *c) 345 { 346 /* Check the boot processor, plus build option for UMIP. */ 347 if (!cpu_feature_enabled(X86_FEATURE_UMIP)) 348 goto out; 349 350 /* Check the current processor's cpuid bits. */ 351 if (!cpu_has(c, X86_FEATURE_UMIP)) 352 goto out; 353 354 cr4_set_bits(X86_CR4_UMIP); 355 356 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); 357 358 return; 359 360 out: 361 /* 362 * Make sure UMIP is disabled in case it was enabled in a 363 * previous boot (e.g., via kexec). 364 */ 365 cr4_clear_bits(X86_CR4_UMIP); 366 } 367 368 /* 369 * Protection Keys are not available in 32-bit mode. 370 */ 371 static bool pku_disabled; 372 373 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 374 { 375 /* check the boot processor, plus compile options for PKU: */ 376 if (!cpu_feature_enabled(X86_FEATURE_PKU)) 377 return; 378 /* checks the actual processor's cpuid bits: */ 379 if (!cpu_has(c, X86_FEATURE_PKU)) 380 return; 381 if (pku_disabled) 382 return; 383 384 cr4_set_bits(X86_CR4_PKE); 385 /* 386 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE 387 * cpuid bit to be set. We need to ensure that we 388 * update that bit in this CPU's "cpu_info". 389 */ 390 get_cpu_cap(c); 391 } 392 393 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 394 static __init int setup_disable_pku(char *arg) 395 { 396 /* 397 * Do not clear the X86_FEATURE_PKU bit. All of the 398 * runtime checks are against OSPKE so clearing the 399 * bit does nothing. 400 * 401 * This way, we will see "pku" in cpuinfo, but not 402 * "ospke", which is exactly what we want. It shows 403 * that the CPU has PKU, but the OS has not enabled it. 404 * This happens to be exactly how a system would look 405 * if we disabled the config option. 406 */ 407 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 408 pku_disabled = true; 409 return 1; 410 } 411 __setup("nopku", setup_disable_pku); 412 #endif /* CONFIG_X86_64 */ 413 414 /* 415 * Some CPU features depend on higher CPUID levels, which may not always 416 * be available due to CPUID level capping or broken virtualization 417 * software. Add those features to this table to auto-disable them. 418 */ 419 struct cpuid_dependent_feature { 420 u32 feature; 421 u32 level; 422 }; 423 424 static const struct cpuid_dependent_feature 425 cpuid_dependent_features[] = { 426 { X86_FEATURE_MWAIT, 0x00000005 }, 427 { X86_FEATURE_DCA, 0x00000009 }, 428 { X86_FEATURE_XSAVE, 0x0000000d }, 429 { 0, 0 } 430 }; 431 432 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 433 { 434 const struct cpuid_dependent_feature *df; 435 436 for (df = cpuid_dependent_features; df->feature; df++) { 437 438 if (!cpu_has(c, df->feature)) 439 continue; 440 /* 441 * Note: cpuid_level is set to -1 if unavailable, but 442 * extended_extended_level is set to 0 if unavailable 443 * and the legitimate extended levels are all negative 444 * when signed; hence the weird messing around with 445 * signs here... 446 */ 447 if (!((s32)df->level < 0 ? 448 (u32)df->level > (u32)c->extended_cpuid_level : 449 (s32)df->level > (s32)c->cpuid_level)) 450 continue; 451 452 clear_cpu_cap(c, df->feature); 453 if (!warn) 454 continue; 455 456 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 457 x86_cap_flag(df->feature), df->level); 458 } 459 } 460 461 /* 462 * Naming convention should be: <Name> [(<Codename>)] 463 * This table only is used unless init_<vendor>() below doesn't set it; 464 * in particular, if CPUID levels 0x80000002..4 are supported, this 465 * isn't used 466 */ 467 468 /* Look up CPU names by table lookup. */ 469 static const char *table_lookup_model(struct cpuinfo_x86 *c) 470 { 471 #ifdef CONFIG_X86_32 472 const struct legacy_cpu_model_info *info; 473 474 if (c->x86_model >= 16) 475 return NULL; /* Range check */ 476 477 if (!this_cpu) 478 return NULL; 479 480 info = this_cpu->legacy_models; 481 482 while (info->family) { 483 if (info->family == c->x86) 484 return info->model_names[c->x86_model]; 485 info++; 486 } 487 #endif 488 return NULL; /* Not found */ 489 } 490 491 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 492 __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 493 494 void load_percpu_segment(int cpu) 495 { 496 #ifdef CONFIG_X86_32 497 loadsegment(fs, __KERNEL_PERCPU); 498 #else 499 __loadsegment_simple(gs, 0); 500 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); 501 #endif 502 load_stack_canary_segment(); 503 } 504 505 #ifdef CONFIG_X86_32 506 /* The 32-bit entry code needs to find cpu_entry_area. */ 507 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); 508 #endif 509 510 #ifdef CONFIG_X86_64 511 /* 512 * Special IST stacks which the CPU switches to when it calls 513 * an IST-marked descriptor entry. Up to 7 stacks (hardware 514 * limit), all of them are 4K, except the debug stack which 515 * is 8K. 516 */ 517 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 518 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 519 [DEBUG_STACK - 1] = DEBUG_STKSZ 520 }; 521 #endif 522 523 /* Load the original GDT from the per-cpu structure */ 524 void load_direct_gdt(int cpu) 525 { 526 struct desc_ptr gdt_descr; 527 528 gdt_descr.address = (long)get_cpu_gdt_rw(cpu); 529 gdt_descr.size = GDT_SIZE - 1; 530 load_gdt(&gdt_descr); 531 } 532 EXPORT_SYMBOL_GPL(load_direct_gdt); 533 534 /* Load a fixmap remapping of the per-cpu GDT */ 535 void load_fixmap_gdt(int cpu) 536 { 537 struct desc_ptr gdt_descr; 538 539 gdt_descr.address = (long)get_cpu_gdt_ro(cpu); 540 gdt_descr.size = GDT_SIZE - 1; 541 load_gdt(&gdt_descr); 542 } 543 EXPORT_SYMBOL_GPL(load_fixmap_gdt); 544 545 /* 546 * Current gdt points %fs at the "master" per-cpu area: after this, 547 * it's on the real one. 548 */ 549 void switch_to_new_gdt(int cpu) 550 { 551 /* Load the original GDT */ 552 load_direct_gdt(cpu); 553 /* Reload the per-cpu base */ 554 load_percpu_segment(cpu); 555 } 556 557 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 558 559 static void get_model_name(struct cpuinfo_x86 *c) 560 { 561 unsigned int *v; 562 char *p, *q, *s; 563 564 if (c->extended_cpuid_level < 0x80000004) 565 return; 566 567 v = (unsigned int *)c->x86_model_id; 568 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 569 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 570 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 571 c->x86_model_id[48] = 0; 572 573 /* Trim whitespace */ 574 p = q = s = &c->x86_model_id[0]; 575 576 while (*p == ' ') 577 p++; 578 579 while (*p) { 580 /* Note the last non-whitespace index */ 581 if (!isspace(*p)) 582 s = q; 583 584 *q++ = *p++; 585 } 586 587 *(s + 1) = '\0'; 588 } 589 590 void detect_num_cpu_cores(struct cpuinfo_x86 *c) 591 { 592 unsigned int eax, ebx, ecx, edx; 593 594 c->x86_max_cores = 1; 595 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4) 596 return; 597 598 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx); 599 if (eax & 0x1f) 600 c->x86_max_cores = (eax >> 26) + 1; 601 } 602 603 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 604 { 605 unsigned int n, dummy, ebx, ecx, edx, l2size; 606 607 n = c->extended_cpuid_level; 608 609 if (n >= 0x80000005) { 610 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 611 c->x86_cache_size = (ecx>>24) + (edx>>24); 612 #ifdef CONFIG_X86_64 613 /* On K8 L1 TLB is inclusive, so don't count it */ 614 c->x86_tlbsize = 0; 615 #endif 616 } 617 618 if (n < 0x80000006) /* Some chips just has a large L1. */ 619 return; 620 621 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 622 l2size = ecx >> 16; 623 624 #ifdef CONFIG_X86_64 625 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 626 #else 627 /* do processor-specific cache resizing */ 628 if (this_cpu->legacy_cache_size) 629 l2size = this_cpu->legacy_cache_size(c, l2size); 630 631 /* Allow user to override all this if necessary. */ 632 if (cachesize_override != -1) 633 l2size = cachesize_override; 634 635 if (l2size == 0) 636 return; /* Again, no L2 cache is possible */ 637 #endif 638 639 c->x86_cache_size = l2size; 640 } 641 642 u16 __read_mostly tlb_lli_4k[NR_INFO]; 643 u16 __read_mostly tlb_lli_2m[NR_INFO]; 644 u16 __read_mostly tlb_lli_4m[NR_INFO]; 645 u16 __read_mostly tlb_lld_4k[NR_INFO]; 646 u16 __read_mostly tlb_lld_2m[NR_INFO]; 647 u16 __read_mostly tlb_lld_4m[NR_INFO]; 648 u16 __read_mostly tlb_lld_1g[NR_INFO]; 649 650 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 651 { 652 if (this_cpu->c_detect_tlb) 653 this_cpu->c_detect_tlb(c); 654 655 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 656 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 657 tlb_lli_4m[ENTRIES]); 658 659 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 660 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 661 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 662 } 663 664 int detect_ht_early(struct cpuinfo_x86 *c) 665 { 666 #ifdef CONFIG_SMP 667 u32 eax, ebx, ecx, edx; 668 669 if (!cpu_has(c, X86_FEATURE_HT)) 670 return -1; 671 672 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 673 return -1; 674 675 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 676 return -1; 677 678 cpuid(1, &eax, &ebx, &ecx, &edx); 679 680 smp_num_siblings = (ebx & 0xff0000) >> 16; 681 if (smp_num_siblings == 1) 682 pr_info_once("CPU0: Hyper-Threading is disabled\n"); 683 #endif 684 return 0; 685 } 686 687 void detect_ht(struct cpuinfo_x86 *c) 688 { 689 #ifdef CONFIG_SMP 690 int index_msb, core_bits; 691 692 if (detect_ht_early(c) < 0) 693 return; 694 695 index_msb = get_count_order(smp_num_siblings); 696 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 697 698 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 699 700 index_msb = get_count_order(smp_num_siblings); 701 702 core_bits = get_count_order(c->x86_max_cores); 703 704 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 705 ((1 << core_bits) - 1); 706 #endif 707 } 708 709 static void get_cpu_vendor(struct cpuinfo_x86 *c) 710 { 711 char *v = c->x86_vendor_id; 712 int i; 713 714 for (i = 0; i < X86_VENDOR_NUM; i++) { 715 if (!cpu_devs[i]) 716 break; 717 718 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 719 (cpu_devs[i]->c_ident[1] && 720 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 721 722 this_cpu = cpu_devs[i]; 723 c->x86_vendor = this_cpu->c_x86_vendor; 724 return; 725 } 726 } 727 728 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 729 "CPU: Your system may be unstable.\n", v); 730 731 c->x86_vendor = X86_VENDOR_UNKNOWN; 732 this_cpu = &default_cpu; 733 } 734 735 void cpu_detect(struct cpuinfo_x86 *c) 736 { 737 /* Get vendor name */ 738 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 739 (unsigned int *)&c->x86_vendor_id[0], 740 (unsigned int *)&c->x86_vendor_id[8], 741 (unsigned int *)&c->x86_vendor_id[4]); 742 743 c->x86 = 4; 744 /* Intel-defined flags: level 0x00000001 */ 745 if (c->cpuid_level >= 0x00000001) { 746 u32 junk, tfms, cap0, misc; 747 748 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 749 c->x86 = x86_family(tfms); 750 c->x86_model = x86_model(tfms); 751 c->x86_stepping = x86_stepping(tfms); 752 753 if (cap0 & (1<<19)) { 754 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 755 c->x86_cache_alignment = c->x86_clflush_size; 756 } 757 } 758 } 759 760 static void apply_forced_caps(struct cpuinfo_x86 *c) 761 { 762 int i; 763 764 for (i = 0; i < NCAPINTS + NBUGINTS; i++) { 765 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 766 c->x86_capability[i] |= cpu_caps_set[i]; 767 } 768 } 769 770 static void init_speculation_control(struct cpuinfo_x86 *c) 771 { 772 /* 773 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, 774 * and they also have a different bit for STIBP support. Also, 775 * a hypervisor might have set the individual AMD bits even on 776 * Intel CPUs, for finer-grained selection of what's available. 777 */ 778 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { 779 set_cpu_cap(c, X86_FEATURE_IBRS); 780 set_cpu_cap(c, X86_FEATURE_IBPB); 781 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 782 } 783 784 if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) 785 set_cpu_cap(c, X86_FEATURE_STIBP); 786 787 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || 788 cpu_has(c, X86_FEATURE_VIRT_SSBD)) 789 set_cpu_cap(c, X86_FEATURE_SSBD); 790 791 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { 792 set_cpu_cap(c, X86_FEATURE_IBRS); 793 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 794 } 795 796 if (cpu_has(c, X86_FEATURE_AMD_IBPB)) 797 set_cpu_cap(c, X86_FEATURE_IBPB); 798 799 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { 800 set_cpu_cap(c, X86_FEATURE_STIBP); 801 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 802 } 803 804 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { 805 set_cpu_cap(c, X86_FEATURE_SSBD); 806 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 807 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); 808 } 809 } 810 811 void get_cpu_cap(struct cpuinfo_x86 *c) 812 { 813 u32 eax, ebx, ecx, edx; 814 815 /* Intel-defined flags: level 0x00000001 */ 816 if (c->cpuid_level >= 0x00000001) { 817 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 818 819 c->x86_capability[CPUID_1_ECX] = ecx; 820 c->x86_capability[CPUID_1_EDX] = edx; 821 } 822 823 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ 824 if (c->cpuid_level >= 0x00000006) 825 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 826 827 /* Additional Intel-defined flags: level 0x00000007 */ 828 if (c->cpuid_level >= 0x00000007) { 829 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 830 c->x86_capability[CPUID_7_0_EBX] = ebx; 831 c->x86_capability[CPUID_7_ECX] = ecx; 832 c->x86_capability[CPUID_7_EDX] = edx; 833 } 834 835 /* Extended state features: level 0x0000000d */ 836 if (c->cpuid_level >= 0x0000000d) { 837 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 838 839 c->x86_capability[CPUID_D_1_EAX] = eax; 840 } 841 842 /* Additional Intel-defined flags: level 0x0000000F */ 843 if (c->cpuid_level >= 0x0000000F) { 844 845 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 846 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 847 c->x86_capability[CPUID_F_0_EDX] = edx; 848 849 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 850 /* will be overridden if occupancy monitoring exists */ 851 c->x86_cache_max_rmid = ebx; 852 853 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 854 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 855 c->x86_capability[CPUID_F_1_EDX] = edx; 856 857 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || 858 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || 859 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { 860 c->x86_cache_max_rmid = ecx; 861 c->x86_cache_occ_scale = ebx; 862 } 863 } else { 864 c->x86_cache_max_rmid = -1; 865 c->x86_cache_occ_scale = -1; 866 } 867 } 868 869 /* AMD-defined flags: level 0x80000001 */ 870 eax = cpuid_eax(0x80000000); 871 c->extended_cpuid_level = eax; 872 873 if ((eax & 0xffff0000) == 0x80000000) { 874 if (eax >= 0x80000001) { 875 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 876 877 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 878 c->x86_capability[CPUID_8000_0001_EDX] = edx; 879 } 880 } 881 882 if (c->extended_cpuid_level >= 0x80000007) { 883 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 884 885 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 886 c->x86_power = edx; 887 } 888 889 if (c->extended_cpuid_level >= 0x80000008) { 890 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 891 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 892 } 893 894 if (c->extended_cpuid_level >= 0x8000000a) 895 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 896 897 init_scattered_cpuid_features(c); 898 init_speculation_control(c); 899 900 /* 901 * Clear/Set all flags overridden by options, after probe. 902 * This needs to happen each time we re-probe, which may happen 903 * several times during CPU initialization. 904 */ 905 apply_forced_caps(c); 906 } 907 908 void get_cpu_address_sizes(struct cpuinfo_x86 *c) 909 { 910 u32 eax, ebx, ecx, edx; 911 912 if (c->extended_cpuid_level >= 0x80000008) { 913 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 914 915 c->x86_virt_bits = (eax >> 8) & 0xff; 916 c->x86_phys_bits = eax & 0xff; 917 } 918 #ifdef CONFIG_X86_32 919 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 920 c->x86_phys_bits = 36; 921 #endif 922 c->x86_cache_bits = c->x86_phys_bits; 923 } 924 925 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 926 { 927 #ifdef CONFIG_X86_32 928 int i; 929 930 /* 931 * First of all, decide if this is a 486 or higher 932 * It's a 486 if we can modify the AC flag 933 */ 934 if (flag_is_changeable_p(X86_EFLAGS_AC)) 935 c->x86 = 4; 936 else 937 c->x86 = 3; 938 939 for (i = 0; i < X86_VENDOR_NUM; i++) 940 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 941 c->x86_vendor_id[0] = 0; 942 cpu_devs[i]->c_identify(c); 943 if (c->x86_vendor_id[0]) { 944 get_cpu_vendor(c); 945 break; 946 } 947 } 948 #endif 949 } 950 951 static const __initconst struct x86_cpu_id cpu_no_speculation[] = { 952 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SALTWELL, X86_FEATURE_ANY }, 953 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SALTWELL_TABLET, X86_FEATURE_ANY }, 954 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_BONNELL_MID, X86_FEATURE_ANY }, 955 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SALTWELL_MID, X86_FEATURE_ANY }, 956 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_BONNELL, X86_FEATURE_ANY }, 957 { X86_VENDOR_CENTAUR, 5 }, 958 { X86_VENDOR_INTEL, 5 }, 959 { X86_VENDOR_NSC, 5 }, 960 { X86_VENDOR_ANY, 4 }, 961 {} 962 }; 963 964 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = { 965 { X86_VENDOR_AMD }, 966 { X86_VENDOR_HYGON }, 967 {} 968 }; 969 970 /* Only list CPUs which speculate but are non susceptible to SSB */ 971 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = { 972 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT }, 973 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT }, 974 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT_X }, 975 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT_MID }, 976 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH }, 977 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL }, 978 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM }, 979 { X86_VENDOR_AMD, 0x12, }, 980 { X86_VENDOR_AMD, 0x11, }, 981 { X86_VENDOR_AMD, 0x10, }, 982 { X86_VENDOR_AMD, 0xf, }, 983 {} 984 }; 985 986 static const __initconst struct x86_cpu_id cpu_no_l1tf[] = { 987 /* in addition to cpu_no_speculation */ 988 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT }, 989 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT_X }, 990 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT }, 991 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT_MID }, 992 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT_MID }, 993 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT }, 994 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X }, 995 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_PLUS }, 996 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL }, 997 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM }, 998 {} 999 }; 1000 1001 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) 1002 { 1003 u64 ia32_cap = 0; 1004 1005 if (x86_match_cpu(cpu_no_speculation)) 1006 return; 1007 1008 setup_force_cpu_bug(X86_BUG_SPECTRE_V1); 1009 setup_force_cpu_bug(X86_BUG_SPECTRE_V2); 1010 1011 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES)) 1012 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap); 1013 1014 if (!x86_match_cpu(cpu_no_spec_store_bypass) && 1015 !(ia32_cap & ARCH_CAP_SSB_NO) && 1016 !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) 1017 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); 1018 1019 if (ia32_cap & ARCH_CAP_IBRS_ALL) 1020 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); 1021 1022 if (x86_match_cpu(cpu_no_meltdown)) 1023 return; 1024 1025 /* Rogue Data Cache Load? No! */ 1026 if (ia32_cap & ARCH_CAP_RDCL_NO) 1027 return; 1028 1029 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); 1030 1031 if (x86_match_cpu(cpu_no_l1tf)) 1032 return; 1033 1034 setup_force_cpu_bug(X86_BUG_L1TF); 1035 } 1036 1037 /* 1038 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 1039 * unfortunately, that's not true in practice because of early VIA 1040 * chips and (more importantly) broken virtualizers that are not easy 1041 * to detect. In the latter case it doesn't even *fail* reliably, so 1042 * probing for it doesn't even work. Disable it completely on 32-bit 1043 * unless we can find a reliable way to detect all the broken cases. 1044 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 1045 */ 1046 static void detect_nopl(void) 1047 { 1048 #ifdef CONFIG_X86_32 1049 setup_clear_cpu_cap(X86_FEATURE_NOPL); 1050 #else 1051 setup_force_cpu_cap(X86_FEATURE_NOPL); 1052 #endif 1053 } 1054 1055 /* 1056 * Do minimum CPU detection early. 1057 * Fields really needed: vendor, cpuid_level, family, model, mask, 1058 * cache alignment. 1059 * The others are not touched to avoid unwanted side effects. 1060 * 1061 * WARNING: this function is only called on the boot CPU. Don't add code 1062 * here that is supposed to run on all CPUs. 1063 */ 1064 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 1065 { 1066 #ifdef CONFIG_X86_64 1067 c->x86_clflush_size = 64; 1068 c->x86_phys_bits = 36; 1069 c->x86_virt_bits = 48; 1070 #else 1071 c->x86_clflush_size = 32; 1072 c->x86_phys_bits = 32; 1073 c->x86_virt_bits = 32; 1074 #endif 1075 c->x86_cache_alignment = c->x86_clflush_size; 1076 1077 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 1078 c->extended_cpuid_level = 0; 1079 1080 if (!have_cpuid_p()) 1081 identify_cpu_without_cpuid(c); 1082 1083 /* cyrix could have cpuid enabled via c_identify()*/ 1084 if (have_cpuid_p()) { 1085 cpu_detect(c); 1086 get_cpu_vendor(c); 1087 get_cpu_cap(c); 1088 get_cpu_address_sizes(c); 1089 setup_force_cpu_cap(X86_FEATURE_CPUID); 1090 1091 if (this_cpu->c_early_init) 1092 this_cpu->c_early_init(c); 1093 1094 c->cpu_index = 0; 1095 filter_cpuid_features(c, false); 1096 1097 if (this_cpu->c_bsp_init) 1098 this_cpu->c_bsp_init(c); 1099 } else { 1100 setup_clear_cpu_cap(X86_FEATURE_CPUID); 1101 } 1102 1103 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 1104 1105 cpu_set_bug_bits(c); 1106 1107 fpu__init_system(c); 1108 1109 #ifdef CONFIG_X86_32 1110 /* 1111 * Regardless of whether PCID is enumerated, the SDM says 1112 * that it can't be enabled in 32-bit mode. 1113 */ 1114 setup_clear_cpu_cap(X86_FEATURE_PCID); 1115 #endif 1116 1117 /* 1118 * Later in the boot process pgtable_l5_enabled() relies on 1119 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not 1120 * enabled by this point we need to clear the feature bit to avoid 1121 * false-positives at the later stage. 1122 * 1123 * pgtable_l5_enabled() can be false here for several reasons: 1124 * - 5-level paging is disabled compile-time; 1125 * - it's 32-bit kernel; 1126 * - machine doesn't support 5-level paging; 1127 * - user specified 'no5lvl' in kernel command line. 1128 */ 1129 if (!pgtable_l5_enabled()) 1130 setup_clear_cpu_cap(X86_FEATURE_LA57); 1131 1132 detect_nopl(); 1133 } 1134 1135 void __init early_cpu_init(void) 1136 { 1137 const struct cpu_dev *const *cdev; 1138 int count = 0; 1139 1140 #ifdef CONFIG_PROCESSOR_SELECT 1141 pr_info("KERNEL supported cpus:\n"); 1142 #endif 1143 1144 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 1145 const struct cpu_dev *cpudev = *cdev; 1146 1147 if (count >= X86_VENDOR_NUM) 1148 break; 1149 cpu_devs[count] = cpudev; 1150 count++; 1151 1152 #ifdef CONFIG_PROCESSOR_SELECT 1153 { 1154 unsigned int j; 1155 1156 for (j = 0; j < 2; j++) { 1157 if (!cpudev->c_ident[j]) 1158 continue; 1159 pr_info(" %s %s\n", cpudev->c_vendor, 1160 cpudev->c_ident[j]); 1161 } 1162 } 1163 #endif 1164 } 1165 early_identify_cpu(&boot_cpu_data); 1166 } 1167 1168 static void detect_null_seg_behavior(struct cpuinfo_x86 *c) 1169 { 1170 #ifdef CONFIG_X86_64 1171 /* 1172 * Empirically, writing zero to a segment selector on AMD does 1173 * not clear the base, whereas writing zero to a segment 1174 * selector on Intel does clear the base. Intel's behavior 1175 * allows slightly faster context switches in the common case 1176 * where GS is unused by the prev and next threads. 1177 * 1178 * Since neither vendor documents this anywhere that I can see, 1179 * detect it directly instead of hardcoding the choice by 1180 * vendor. 1181 * 1182 * I've designated AMD's behavior as the "bug" because it's 1183 * counterintuitive and less friendly. 1184 */ 1185 1186 unsigned long old_base, tmp; 1187 rdmsrl(MSR_FS_BASE, old_base); 1188 wrmsrl(MSR_FS_BASE, 1); 1189 loadsegment(fs, 0); 1190 rdmsrl(MSR_FS_BASE, tmp); 1191 if (tmp != 0) 1192 set_cpu_bug(c, X86_BUG_NULL_SEG); 1193 wrmsrl(MSR_FS_BASE, old_base); 1194 #endif 1195 } 1196 1197 static void generic_identify(struct cpuinfo_x86 *c) 1198 { 1199 c->extended_cpuid_level = 0; 1200 1201 if (!have_cpuid_p()) 1202 identify_cpu_without_cpuid(c); 1203 1204 /* cyrix could have cpuid enabled via c_identify()*/ 1205 if (!have_cpuid_p()) 1206 return; 1207 1208 cpu_detect(c); 1209 1210 get_cpu_vendor(c); 1211 1212 get_cpu_cap(c); 1213 1214 get_cpu_address_sizes(c); 1215 1216 if (c->cpuid_level >= 0x00000001) { 1217 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 1218 #ifdef CONFIG_X86_32 1219 # ifdef CONFIG_SMP 1220 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1221 # else 1222 c->apicid = c->initial_apicid; 1223 # endif 1224 #endif 1225 c->phys_proc_id = c->initial_apicid; 1226 } 1227 1228 get_model_name(c); /* Default name */ 1229 1230 detect_null_seg_behavior(c); 1231 1232 /* 1233 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 1234 * systems that run Linux at CPL > 0 may or may not have the 1235 * issue, but, even if they have the issue, there's absolutely 1236 * nothing we can do about it because we can't use the real IRET 1237 * instruction. 1238 * 1239 * NB: For the time being, only 32-bit kernels support 1240 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 1241 * whether to apply espfix using paravirt hooks. If any 1242 * non-paravirt system ever shows up that does *not* have the 1243 * ESPFIX issue, we can change this. 1244 */ 1245 #ifdef CONFIG_X86_32 1246 # ifdef CONFIG_PARAVIRT_XXL 1247 do { 1248 extern void native_iret(void); 1249 if (pv_ops.cpu.iret == native_iret) 1250 set_cpu_bug(c, X86_BUG_ESPFIX); 1251 } while (0); 1252 # else 1253 set_cpu_bug(c, X86_BUG_ESPFIX); 1254 # endif 1255 #endif 1256 } 1257 1258 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 1259 { 1260 /* 1261 * The heavy lifting of max_rmid and cache_occ_scale are handled 1262 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 1263 * in case CQM bits really aren't there in this CPU. 1264 */ 1265 if (c != &boot_cpu_data) { 1266 boot_cpu_data.x86_cache_max_rmid = 1267 min(boot_cpu_data.x86_cache_max_rmid, 1268 c->x86_cache_max_rmid); 1269 } 1270 } 1271 1272 /* 1273 * Validate that ACPI/mptables have the same information about the 1274 * effective APIC id and update the package map. 1275 */ 1276 static void validate_apic_and_package_id(struct cpuinfo_x86 *c) 1277 { 1278 #ifdef CONFIG_SMP 1279 unsigned int apicid, cpu = smp_processor_id(); 1280 1281 apicid = apic->cpu_present_to_apicid(cpu); 1282 1283 if (apicid != c->apicid) { 1284 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", 1285 cpu, apicid, c->initial_apicid); 1286 } 1287 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); 1288 #else 1289 c->logical_proc_id = 0; 1290 #endif 1291 } 1292 1293 /* 1294 * This does the hard work of actually picking apart the CPU stuff... 1295 */ 1296 static void identify_cpu(struct cpuinfo_x86 *c) 1297 { 1298 int i; 1299 1300 c->loops_per_jiffy = loops_per_jiffy; 1301 c->x86_cache_size = 0; 1302 c->x86_vendor = X86_VENDOR_UNKNOWN; 1303 c->x86_model = c->x86_stepping = 0; /* So far unknown... */ 1304 c->x86_vendor_id[0] = '\0'; /* Unset */ 1305 c->x86_model_id[0] = '\0'; /* Unset */ 1306 c->x86_max_cores = 1; 1307 c->x86_coreid_bits = 0; 1308 c->cu_id = 0xff; 1309 #ifdef CONFIG_X86_64 1310 c->x86_clflush_size = 64; 1311 c->x86_phys_bits = 36; 1312 c->x86_virt_bits = 48; 1313 #else 1314 c->cpuid_level = -1; /* CPUID not detected */ 1315 c->x86_clflush_size = 32; 1316 c->x86_phys_bits = 32; 1317 c->x86_virt_bits = 32; 1318 #endif 1319 c->x86_cache_alignment = c->x86_clflush_size; 1320 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 1321 1322 generic_identify(c); 1323 1324 if (this_cpu->c_identify) 1325 this_cpu->c_identify(c); 1326 1327 /* Clear/Set all flags overridden by options, after probe */ 1328 apply_forced_caps(c); 1329 1330 #ifdef CONFIG_X86_64 1331 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1332 #endif 1333 1334 /* 1335 * Vendor-specific initialization. In this section we 1336 * canonicalize the feature flags, meaning if there are 1337 * features a certain CPU supports which CPUID doesn't 1338 * tell us, CPUID claiming incorrect flags, or other bugs, 1339 * we handle them here. 1340 * 1341 * At the end of this section, c->x86_capability better 1342 * indicate the features this CPU genuinely supports! 1343 */ 1344 if (this_cpu->c_init) 1345 this_cpu->c_init(c); 1346 1347 /* Disable the PN if appropriate */ 1348 squash_the_stupid_serial_number(c); 1349 1350 /* Set up SMEP/SMAP/UMIP */ 1351 setup_smep(c); 1352 setup_smap(c); 1353 setup_umip(c); 1354 1355 /* 1356 * The vendor-specific functions might have changed features. 1357 * Now we do "generic changes." 1358 */ 1359 1360 /* Filter out anything that depends on CPUID levels we don't have */ 1361 filter_cpuid_features(c, true); 1362 1363 /* If the model name is still unset, do table lookup. */ 1364 if (!c->x86_model_id[0]) { 1365 const char *p; 1366 p = table_lookup_model(c); 1367 if (p) 1368 strcpy(c->x86_model_id, p); 1369 else 1370 /* Last resort... */ 1371 sprintf(c->x86_model_id, "%02x/%02x", 1372 c->x86, c->x86_model); 1373 } 1374 1375 #ifdef CONFIG_X86_64 1376 detect_ht(c); 1377 #endif 1378 1379 x86_init_rdrand(c); 1380 x86_init_cache_qos(c); 1381 setup_pku(c); 1382 1383 /* 1384 * Clear/Set all flags overridden by options, need do it 1385 * before following smp all cpus cap AND. 1386 */ 1387 apply_forced_caps(c); 1388 1389 /* 1390 * On SMP, boot_cpu_data holds the common feature set between 1391 * all CPUs; so make sure that we indicate which features are 1392 * common between the CPUs. The first time this routine gets 1393 * executed, c == &boot_cpu_data. 1394 */ 1395 if (c != &boot_cpu_data) { 1396 /* AND the already accumulated flags with these */ 1397 for (i = 0; i < NCAPINTS; i++) 1398 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1399 1400 /* OR, i.e. replicate the bug flags */ 1401 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1402 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1403 } 1404 1405 /* Init Machine Check Exception if available. */ 1406 mcheck_cpu_init(c); 1407 1408 select_idle_routine(c); 1409 1410 #ifdef CONFIG_NUMA 1411 numa_add_cpu(smp_processor_id()); 1412 #endif 1413 } 1414 1415 /* 1416 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1417 * on 32-bit kernels: 1418 */ 1419 #ifdef CONFIG_X86_32 1420 void enable_sep_cpu(void) 1421 { 1422 struct tss_struct *tss; 1423 int cpu; 1424 1425 if (!boot_cpu_has(X86_FEATURE_SEP)) 1426 return; 1427 1428 cpu = get_cpu(); 1429 tss = &per_cpu(cpu_tss_rw, cpu); 1430 1431 /* 1432 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1433 * see the big comment in struct x86_hw_tss's definition. 1434 */ 1435 1436 tss->x86_tss.ss1 = __KERNEL_CS; 1437 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1438 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); 1439 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1440 1441 put_cpu(); 1442 } 1443 #endif 1444 1445 void __init identify_boot_cpu(void) 1446 { 1447 identify_cpu(&boot_cpu_data); 1448 #ifdef CONFIG_X86_32 1449 sysenter_setup(); 1450 enable_sep_cpu(); 1451 #endif 1452 cpu_detect_tlb(&boot_cpu_data); 1453 } 1454 1455 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1456 { 1457 BUG_ON(c == &boot_cpu_data); 1458 identify_cpu(c); 1459 #ifdef CONFIG_X86_32 1460 enable_sep_cpu(); 1461 #endif 1462 mtrr_ap_init(); 1463 validate_apic_and_package_id(c); 1464 x86_spec_ctrl_setup_ap(); 1465 } 1466 1467 static __init int setup_noclflush(char *arg) 1468 { 1469 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1470 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1471 return 1; 1472 } 1473 __setup("noclflush", setup_noclflush); 1474 1475 void print_cpu_info(struct cpuinfo_x86 *c) 1476 { 1477 const char *vendor = NULL; 1478 1479 if (c->x86_vendor < X86_VENDOR_NUM) { 1480 vendor = this_cpu->c_vendor; 1481 } else { 1482 if (c->cpuid_level >= 0) 1483 vendor = c->x86_vendor_id; 1484 } 1485 1486 if (vendor && !strstr(c->x86_model_id, vendor)) 1487 pr_cont("%s ", vendor); 1488 1489 if (c->x86_model_id[0]) 1490 pr_cont("%s", c->x86_model_id); 1491 else 1492 pr_cont("%d86", c->x86); 1493 1494 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1495 1496 if (c->x86_stepping || c->cpuid_level >= 0) 1497 pr_cont(", stepping: 0x%x)\n", c->x86_stepping); 1498 else 1499 pr_cont(")\n"); 1500 } 1501 1502 /* 1503 * clearcpuid= was already parsed in fpu__init_parse_early_param. 1504 * But we need to keep a dummy __setup around otherwise it would 1505 * show up as an environment variable for init. 1506 */ 1507 static __init int setup_clearcpuid(char *arg) 1508 { 1509 return 1; 1510 } 1511 __setup("clearcpuid=", setup_clearcpuid); 1512 1513 #ifdef CONFIG_X86_64 1514 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1515 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1516 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union); 1517 1518 /* 1519 * The following percpu variables are hot. Align current_task to 1520 * cacheline size such that they fall in the same cacheline. 1521 */ 1522 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1523 &init_task; 1524 EXPORT_PER_CPU_SYMBOL(current_task); 1525 1526 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1527 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE; 1528 1529 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1530 1531 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1532 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1533 1534 /* May not be marked __init: used by software suspend */ 1535 void syscall_init(void) 1536 { 1537 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 1538 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1539 1540 #ifdef CONFIG_IA32_EMULATION 1541 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1542 /* 1543 * This only works on Intel CPUs. 1544 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1545 * This does not cause SYSENTER to jump to the wrong location, because 1546 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1547 */ 1548 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1549 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 1550 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); 1551 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1552 #else 1553 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1554 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1555 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1556 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1557 #endif 1558 1559 /* Flags to clear on syscall */ 1560 wrmsrl(MSR_SYSCALL_MASK, 1561 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1562 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1563 } 1564 1565 /* 1566 * Copies of the original ist values from the tss are only accessed during 1567 * debugging, no special alignment required. 1568 */ 1569 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1570 1571 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1572 DEFINE_PER_CPU(int, debug_stack_usage); 1573 1574 int is_debug_stack(unsigned long addr) 1575 { 1576 return __this_cpu_read(debug_stack_usage) || 1577 (addr <= __this_cpu_read(debug_stack_addr) && 1578 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1579 } 1580 NOKPROBE_SYMBOL(is_debug_stack); 1581 1582 DEFINE_PER_CPU(u32, debug_idt_ctr); 1583 1584 void debug_stack_set_zero(void) 1585 { 1586 this_cpu_inc(debug_idt_ctr); 1587 load_current_idt(); 1588 } 1589 NOKPROBE_SYMBOL(debug_stack_set_zero); 1590 1591 void debug_stack_reset(void) 1592 { 1593 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1594 return; 1595 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1596 load_current_idt(); 1597 } 1598 NOKPROBE_SYMBOL(debug_stack_reset); 1599 1600 #else /* CONFIG_X86_64 */ 1601 1602 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1603 EXPORT_PER_CPU_SYMBOL(current_task); 1604 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1605 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1606 1607 /* 1608 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1609 * the top of the kernel stack. Use an extra percpu variable to track the 1610 * top of the kernel stack directly. 1611 */ 1612 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1613 (unsigned long)&init_thread_union + THREAD_SIZE; 1614 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1615 1616 #ifdef CONFIG_STACKPROTECTOR 1617 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1618 #endif 1619 1620 #endif /* CONFIG_X86_64 */ 1621 1622 /* 1623 * Clear all 6 debug registers: 1624 */ 1625 static void clear_all_debug_regs(void) 1626 { 1627 int i; 1628 1629 for (i = 0; i < 8; i++) { 1630 /* Ignore db4, db5 */ 1631 if ((i == 4) || (i == 5)) 1632 continue; 1633 1634 set_debugreg(0, i); 1635 } 1636 } 1637 1638 #ifdef CONFIG_KGDB 1639 /* 1640 * Restore debug regs if using kgdbwait and you have a kernel debugger 1641 * connection established. 1642 */ 1643 static void dbg_restore_debug_regs(void) 1644 { 1645 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1646 arch_kgdb_ops.correct_hw_break(); 1647 } 1648 #else /* ! CONFIG_KGDB */ 1649 #define dbg_restore_debug_regs() 1650 #endif /* ! CONFIG_KGDB */ 1651 1652 static void wait_for_master_cpu(int cpu) 1653 { 1654 #ifdef CONFIG_SMP 1655 /* 1656 * wait for ACK from master CPU before continuing 1657 * with AP initialization 1658 */ 1659 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1660 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1661 cpu_relax(); 1662 #endif 1663 } 1664 1665 #ifdef CONFIG_X86_64 1666 static void setup_getcpu(int cpu) 1667 { 1668 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); 1669 struct desc_struct d = { }; 1670 1671 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1672 write_rdtscp_aux(cpudata); 1673 1674 /* Store CPU and node number in limit. */ 1675 d.limit0 = cpudata; 1676 d.limit1 = cpudata >> 16; 1677 1678 d.type = 5; /* RO data, expand down, accessed */ 1679 d.dpl = 3; /* Visible to user code */ 1680 d.s = 1; /* Not a system segment */ 1681 d.p = 1; /* Present */ 1682 d.d = 1; /* 32-bit */ 1683 1684 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); 1685 } 1686 #endif 1687 1688 /* 1689 * cpu_init() initializes state that is per-CPU. Some data is already 1690 * initialized (naturally) in the bootstrap process, such as the GDT 1691 * and IDT. We reload them nevertheless, this function acts as a 1692 * 'CPU state barrier', nothing should get across. 1693 * A lot of state is already set up in PDA init for 64 bit 1694 */ 1695 #ifdef CONFIG_X86_64 1696 1697 void cpu_init(void) 1698 { 1699 struct orig_ist *oist; 1700 struct task_struct *me; 1701 struct tss_struct *t; 1702 unsigned long v; 1703 int cpu = raw_smp_processor_id(); 1704 int i; 1705 1706 wait_for_master_cpu(cpu); 1707 1708 /* 1709 * Initialize the CR4 shadow before doing anything that could 1710 * try to read it. 1711 */ 1712 cr4_init_shadow(); 1713 1714 if (cpu) 1715 load_ucode_ap(); 1716 1717 t = &per_cpu(cpu_tss_rw, cpu); 1718 oist = &per_cpu(orig_ist, cpu); 1719 1720 #ifdef CONFIG_NUMA 1721 if (this_cpu_read(numa_node) == 0 && 1722 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1723 set_numa_node(early_cpu_to_node(cpu)); 1724 #endif 1725 setup_getcpu(cpu); 1726 1727 me = current; 1728 1729 pr_debug("Initializing CPU#%d\n", cpu); 1730 1731 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1732 1733 /* 1734 * Initialize the per-CPU GDT with the boot GDT, 1735 * and set up the GDT descriptor: 1736 */ 1737 1738 switch_to_new_gdt(cpu); 1739 loadsegment(fs, 0); 1740 1741 load_current_idt(); 1742 1743 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1744 syscall_init(); 1745 1746 wrmsrl(MSR_FS_BASE, 0); 1747 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1748 barrier(); 1749 1750 x86_configure_nx(); 1751 x2apic_setup(); 1752 1753 /* 1754 * set up and load the per-CPU TSS 1755 */ 1756 if (!oist->ist[0]) { 1757 char *estacks = get_cpu_entry_area(cpu)->exception_stacks; 1758 1759 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1760 estacks += exception_stack_sizes[v]; 1761 oist->ist[v] = t->x86_tss.ist[v] = 1762 (unsigned long)estacks; 1763 if (v == DEBUG_STACK-1) 1764 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1765 } 1766 } 1767 1768 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 1769 1770 /* 1771 * <= is required because the CPU will access up to 1772 * 8 bits beyond the end of the IO permission bitmap. 1773 */ 1774 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1775 t->io_bitmap[i] = ~0UL; 1776 1777 mmgrab(&init_mm); 1778 me->active_mm = &init_mm; 1779 BUG_ON(me->mm); 1780 initialize_tlbstate_and_flush(); 1781 enter_lazy_tlb(&init_mm, me); 1782 1783 /* 1784 * Initialize the TSS. sp0 points to the entry trampoline stack 1785 * regardless of what task is running. 1786 */ 1787 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 1788 load_TR_desc(); 1789 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); 1790 1791 load_mm_ldt(&init_mm); 1792 1793 clear_all_debug_regs(); 1794 dbg_restore_debug_regs(); 1795 1796 fpu__init_cpu(); 1797 1798 if (is_uv_system()) 1799 uv_cpu_init(); 1800 1801 load_fixmap_gdt(cpu); 1802 } 1803 1804 #else 1805 1806 void cpu_init(void) 1807 { 1808 int cpu = smp_processor_id(); 1809 struct task_struct *curr = current; 1810 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu); 1811 1812 wait_for_master_cpu(cpu); 1813 1814 /* 1815 * Initialize the CR4 shadow before doing anything that could 1816 * try to read it. 1817 */ 1818 cr4_init_shadow(); 1819 1820 show_ucode_info_early(); 1821 1822 pr_info("Initializing CPU#%d\n", cpu); 1823 1824 if (cpu_feature_enabled(X86_FEATURE_VME) || 1825 boot_cpu_has(X86_FEATURE_TSC) || 1826 boot_cpu_has(X86_FEATURE_DE)) 1827 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1828 1829 load_current_idt(); 1830 switch_to_new_gdt(cpu); 1831 1832 /* 1833 * Set up and load the per-CPU TSS and LDT 1834 */ 1835 mmgrab(&init_mm); 1836 curr->active_mm = &init_mm; 1837 BUG_ON(curr->mm); 1838 initialize_tlbstate_and_flush(); 1839 enter_lazy_tlb(&init_mm, curr); 1840 1841 /* 1842 * Initialize the TSS. sp0 points to the entry trampoline stack 1843 * regardless of what task is running. 1844 */ 1845 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 1846 load_TR_desc(); 1847 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); 1848 1849 load_mm_ldt(&init_mm); 1850 1851 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 1852 1853 #ifdef CONFIG_DOUBLEFAULT 1854 /* Set up doublefault TSS pointer in the GDT */ 1855 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1856 #endif 1857 1858 clear_all_debug_regs(); 1859 dbg_restore_debug_regs(); 1860 1861 fpu__init_cpu(); 1862 1863 load_fixmap_gdt(cpu); 1864 } 1865 #endif 1866 1867 static void bsp_resume(void) 1868 { 1869 if (this_cpu->c_bsp_resume) 1870 this_cpu->c_bsp_resume(&boot_cpu_data); 1871 } 1872 1873 static struct syscore_ops cpu_syscore_ops = { 1874 .resume = bsp_resume, 1875 }; 1876 1877 static int __init init_cpu_syscore(void) 1878 { 1879 register_syscore_ops(&cpu_syscore_ops); 1880 return 0; 1881 } 1882 core_initcall(init_cpu_syscore); 1883 1884 /* 1885 * The microcode loader calls this upon late microcode load to recheck features, 1886 * only when microcode has been updated. Caller holds microcode_mutex and CPU 1887 * hotplug lock. 1888 */ 1889 void microcode_check(void) 1890 { 1891 struct cpuinfo_x86 info; 1892 1893 perf_check_microcode(); 1894 1895 /* Reload CPUID max function as it might've changed. */ 1896 info.cpuid_level = cpuid_eax(0); 1897 1898 /* 1899 * Copy all capability leafs to pick up the synthetic ones so that 1900 * memcmp() below doesn't fail on that. The ones coming from CPUID will 1901 * get overwritten in get_cpu_cap(). 1902 */ 1903 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)); 1904 1905 get_cpu_cap(&info); 1906 1907 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability))) 1908 return; 1909 1910 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); 1911 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); 1912 } 1913