1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/export.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/init.h> 12 #include <linux/kprobes.h> 13 #include <linux/kgdb.h> 14 #include <linux/smp.h> 15 #include <linux/io.h> 16 #include <linux/syscore_ops.h> 17 18 #include <asm/stackprotector.h> 19 #include <asm/perf_event.h> 20 #include <asm/mmu_context.h> 21 #include <asm/archrandom.h> 22 #include <asm/hypervisor.h> 23 #include <asm/processor.h> 24 #include <asm/tlbflush.h> 25 #include <asm/debugreg.h> 26 #include <asm/sections.h> 27 #include <asm/vsyscall.h> 28 #include <linux/topology.h> 29 #include <linux/cpumask.h> 30 #include <asm/pgtable.h> 31 #include <linux/atomic.h> 32 #include <asm/proto.h> 33 #include <asm/setup.h> 34 #include <asm/apic.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/mtrr.h> 38 #include <linux/numa.h> 39 #include <asm/asm.h> 40 #include <asm/bugs.h> 41 #include <asm/cpu.h> 42 #include <asm/mce.h> 43 #include <asm/msr.h> 44 #include <asm/pat.h> 45 #include <asm/microcode.h> 46 #include <asm/microcode_intel.h> 47 48 #ifdef CONFIG_X86_LOCAL_APIC 49 #include <asm/uv/uv.h> 50 #endif 51 52 #include "cpu.h" 53 54 /* all of these masks are initialized in setup_cpu_local_masks() */ 55 cpumask_var_t cpu_initialized_mask; 56 cpumask_var_t cpu_callout_mask; 57 cpumask_var_t cpu_callin_mask; 58 59 /* representing cpus for which sibling maps can be computed */ 60 cpumask_var_t cpu_sibling_setup_mask; 61 62 /* correctly size the local cpu masks */ 63 void __init setup_cpu_local_masks(void) 64 { 65 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 66 alloc_bootmem_cpumask_var(&cpu_callin_mask); 67 alloc_bootmem_cpumask_var(&cpu_callout_mask); 68 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 69 } 70 71 static void default_init(struct cpuinfo_x86 *c) 72 { 73 #ifdef CONFIG_X86_64 74 cpu_detect_cache_sizes(c); 75 #else 76 /* Not much we can do here... */ 77 /* Check if at least it has cpuid */ 78 if (c->cpuid_level == -1) { 79 /* No cpuid. It must be an ancient CPU */ 80 if (c->x86 == 4) 81 strcpy(c->x86_model_id, "486"); 82 else if (c->x86 == 3) 83 strcpy(c->x86_model_id, "386"); 84 } 85 #endif 86 } 87 88 static const struct cpu_dev default_cpu = { 89 .c_init = default_init, 90 .c_vendor = "Unknown", 91 .c_x86_vendor = X86_VENDOR_UNKNOWN, 92 }; 93 94 static const struct cpu_dev *this_cpu = &default_cpu; 95 96 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 97 #ifdef CONFIG_X86_64 98 /* 99 * We need valid kernel segments for data and code in long mode too 100 * IRET will check the segment types kkeil 2000/10/28 101 * Also sysret mandates a special GDT layout 102 * 103 * TLS descriptors are currently at a different place compared to i386. 104 * Hopefully nobody expects them at a fixed place (Wine?) 105 */ 106 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 107 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 108 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 109 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 110 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 112 #else 113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 117 /* 118 * Segments used for calling PnP BIOS have byte granularity. 119 * They code segments and data segments have fixed 64k limits, 120 * the transfer segment sizes are set at run time. 121 */ 122 /* 32-bit code */ 123 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 124 /* 16-bit code */ 125 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 126 /* 16-bit data */ 127 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 128 /* 16-bit data */ 129 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 130 /* 16-bit data */ 131 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 132 /* 133 * The APM segments have byte granularity and their bases 134 * are set at run time. All have 64k limits. 135 */ 136 /* 32-bit code */ 137 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 138 /* 16-bit code */ 139 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 140 /* data */ 141 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 142 143 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 144 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 145 GDT_STACK_CANARY_INIT 146 #endif 147 } }; 148 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 149 150 static int __init x86_mpx_setup(char *s) 151 { 152 /* require an exact match without trailing characters */ 153 if (strlen(s)) 154 return 0; 155 156 /* do not emit a message if the feature is not present */ 157 if (!boot_cpu_has(X86_FEATURE_MPX)) 158 return 1; 159 160 setup_clear_cpu_cap(X86_FEATURE_MPX); 161 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 162 return 1; 163 } 164 __setup("nompx", x86_mpx_setup); 165 166 static int __init x86_noinvpcid_setup(char *s) 167 { 168 /* noinvpcid doesn't accept parameters */ 169 if (s) 170 return -EINVAL; 171 172 /* do not emit a message if the feature is not present */ 173 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 174 return 0; 175 176 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 177 pr_info("noinvpcid: INVPCID feature disabled\n"); 178 return 0; 179 } 180 early_param("noinvpcid", x86_noinvpcid_setup); 181 182 #ifdef CONFIG_X86_32 183 static int cachesize_override = -1; 184 static int disable_x86_serial_nr = 1; 185 186 static int __init cachesize_setup(char *str) 187 { 188 get_option(&str, &cachesize_override); 189 return 1; 190 } 191 __setup("cachesize=", cachesize_setup); 192 193 static int __init x86_sep_setup(char *s) 194 { 195 setup_clear_cpu_cap(X86_FEATURE_SEP); 196 return 1; 197 } 198 __setup("nosep", x86_sep_setup); 199 200 /* Standard macro to see if a specific flag is changeable */ 201 static inline int flag_is_changeable_p(u32 flag) 202 { 203 u32 f1, f2; 204 205 /* 206 * Cyrix and IDT cpus allow disabling of CPUID 207 * so the code below may return different results 208 * when it is executed before and after enabling 209 * the CPUID. Add "volatile" to not allow gcc to 210 * optimize the subsequent calls to this function. 211 */ 212 asm volatile ("pushfl \n\t" 213 "pushfl \n\t" 214 "popl %0 \n\t" 215 "movl %0, %1 \n\t" 216 "xorl %2, %0 \n\t" 217 "pushl %0 \n\t" 218 "popfl \n\t" 219 "pushfl \n\t" 220 "popl %0 \n\t" 221 "popfl \n\t" 222 223 : "=&r" (f1), "=&r" (f2) 224 : "ir" (flag)); 225 226 return ((f1^f2) & flag) != 0; 227 } 228 229 /* Probe for the CPUID instruction */ 230 int have_cpuid_p(void) 231 { 232 return flag_is_changeable_p(X86_EFLAGS_ID); 233 } 234 235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 236 { 237 unsigned long lo, hi; 238 239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 240 return; 241 242 /* Disable processor serial number: */ 243 244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 245 lo |= 0x200000; 246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 247 248 pr_notice("CPU serial number disabled.\n"); 249 clear_cpu_cap(c, X86_FEATURE_PN); 250 251 /* Disabling the serial number may affect the cpuid level */ 252 c->cpuid_level = cpuid_eax(0); 253 } 254 255 static int __init x86_serial_nr_setup(char *s) 256 { 257 disable_x86_serial_nr = 0; 258 return 1; 259 } 260 __setup("serialnumber", x86_serial_nr_setup); 261 #else 262 static inline int flag_is_changeable_p(u32 flag) 263 { 264 return 1; 265 } 266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 267 { 268 } 269 #endif 270 271 static __init int setup_disable_smep(char *arg) 272 { 273 setup_clear_cpu_cap(X86_FEATURE_SMEP); 274 /* Check for things that depend on SMEP being enabled: */ 275 check_mpx_erratum(&boot_cpu_data); 276 return 1; 277 } 278 __setup("nosmep", setup_disable_smep); 279 280 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 281 { 282 if (cpu_has(c, X86_FEATURE_SMEP)) 283 cr4_set_bits(X86_CR4_SMEP); 284 } 285 286 static __init int setup_disable_smap(char *arg) 287 { 288 setup_clear_cpu_cap(X86_FEATURE_SMAP); 289 return 1; 290 } 291 __setup("nosmap", setup_disable_smap); 292 293 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 294 { 295 unsigned long eflags = native_save_fl(); 296 297 /* This should have been cleared long ago */ 298 BUG_ON(eflags & X86_EFLAGS_AC); 299 300 if (cpu_has(c, X86_FEATURE_SMAP)) { 301 #ifdef CONFIG_X86_SMAP 302 cr4_set_bits(X86_CR4_SMAP); 303 #else 304 cr4_clear_bits(X86_CR4_SMAP); 305 #endif 306 } 307 } 308 309 /* 310 * Protection Keys are not available in 32-bit mode. 311 */ 312 static bool pku_disabled; 313 314 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 315 { 316 /* check the boot processor, plus compile options for PKU: */ 317 if (!cpu_feature_enabled(X86_FEATURE_PKU)) 318 return; 319 /* checks the actual processor's cpuid bits: */ 320 if (!cpu_has(c, X86_FEATURE_PKU)) 321 return; 322 if (pku_disabled) 323 return; 324 325 cr4_set_bits(X86_CR4_PKE); 326 /* 327 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE 328 * cpuid bit to be set. We need to ensure that we 329 * update that bit in this CPU's "cpu_info". 330 */ 331 get_cpu_cap(c); 332 } 333 334 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 335 static __init int setup_disable_pku(char *arg) 336 { 337 /* 338 * Do not clear the X86_FEATURE_PKU bit. All of the 339 * runtime checks are against OSPKE so clearing the 340 * bit does nothing. 341 * 342 * This way, we will see "pku" in cpuinfo, but not 343 * "ospke", which is exactly what we want. It shows 344 * that the CPU has PKU, but the OS has not enabled it. 345 * This happens to be exactly how a system would look 346 * if we disabled the config option. 347 */ 348 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 349 pku_disabled = true; 350 return 1; 351 } 352 __setup("nopku", setup_disable_pku); 353 #endif /* CONFIG_X86_64 */ 354 355 /* 356 * Some CPU features depend on higher CPUID levels, which may not always 357 * be available due to CPUID level capping or broken virtualization 358 * software. Add those features to this table to auto-disable them. 359 */ 360 struct cpuid_dependent_feature { 361 u32 feature; 362 u32 level; 363 }; 364 365 static const struct cpuid_dependent_feature 366 cpuid_dependent_features[] = { 367 { X86_FEATURE_MWAIT, 0x00000005 }, 368 { X86_FEATURE_DCA, 0x00000009 }, 369 { X86_FEATURE_XSAVE, 0x0000000d }, 370 { 0, 0 } 371 }; 372 373 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 374 { 375 const struct cpuid_dependent_feature *df; 376 377 for (df = cpuid_dependent_features; df->feature; df++) { 378 379 if (!cpu_has(c, df->feature)) 380 continue; 381 /* 382 * Note: cpuid_level is set to -1 if unavailable, but 383 * extended_extended_level is set to 0 if unavailable 384 * and the legitimate extended levels are all negative 385 * when signed; hence the weird messing around with 386 * signs here... 387 */ 388 if (!((s32)df->level < 0 ? 389 (u32)df->level > (u32)c->extended_cpuid_level : 390 (s32)df->level > (s32)c->cpuid_level)) 391 continue; 392 393 clear_cpu_cap(c, df->feature); 394 if (!warn) 395 continue; 396 397 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 398 x86_cap_flag(df->feature), df->level); 399 } 400 } 401 402 /* 403 * Naming convention should be: <Name> [(<Codename>)] 404 * This table only is used unless init_<vendor>() below doesn't set it; 405 * in particular, if CPUID levels 0x80000002..4 are supported, this 406 * isn't used 407 */ 408 409 /* Look up CPU names by table lookup. */ 410 static const char *table_lookup_model(struct cpuinfo_x86 *c) 411 { 412 #ifdef CONFIG_X86_32 413 const struct legacy_cpu_model_info *info; 414 415 if (c->x86_model >= 16) 416 return NULL; /* Range check */ 417 418 if (!this_cpu) 419 return NULL; 420 421 info = this_cpu->legacy_models; 422 423 while (info->family) { 424 if (info->family == c->x86) 425 return info->model_names[c->x86_model]; 426 info++; 427 } 428 #endif 429 return NULL; /* Not found */ 430 } 431 432 __u32 cpu_caps_cleared[NCAPINTS]; 433 __u32 cpu_caps_set[NCAPINTS]; 434 435 void load_percpu_segment(int cpu) 436 { 437 #ifdef CONFIG_X86_32 438 loadsegment(fs, __KERNEL_PERCPU); 439 #else 440 __loadsegment_simple(gs, 0); 441 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 442 #endif 443 load_stack_canary_segment(); 444 } 445 446 /* 447 * Current gdt points %fs at the "master" per-cpu area: after this, 448 * it's on the real one. 449 */ 450 void switch_to_new_gdt(int cpu) 451 { 452 struct desc_ptr gdt_descr; 453 454 gdt_descr.address = (long)get_cpu_gdt_table(cpu); 455 gdt_descr.size = GDT_SIZE - 1; 456 load_gdt(&gdt_descr); 457 /* Reload the per-cpu base */ 458 459 load_percpu_segment(cpu); 460 } 461 462 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 463 464 static void get_model_name(struct cpuinfo_x86 *c) 465 { 466 unsigned int *v; 467 char *p, *q, *s; 468 469 if (c->extended_cpuid_level < 0x80000004) 470 return; 471 472 v = (unsigned int *)c->x86_model_id; 473 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 474 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 475 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 476 c->x86_model_id[48] = 0; 477 478 /* Trim whitespace */ 479 p = q = s = &c->x86_model_id[0]; 480 481 while (*p == ' ') 482 p++; 483 484 while (*p) { 485 /* Note the last non-whitespace index */ 486 if (!isspace(*p)) 487 s = q; 488 489 *q++ = *p++; 490 } 491 492 *(s + 1) = '\0'; 493 } 494 495 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 496 { 497 unsigned int n, dummy, ebx, ecx, edx, l2size; 498 499 n = c->extended_cpuid_level; 500 501 if (n >= 0x80000005) { 502 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 503 c->x86_cache_size = (ecx>>24) + (edx>>24); 504 #ifdef CONFIG_X86_64 505 /* On K8 L1 TLB is inclusive, so don't count it */ 506 c->x86_tlbsize = 0; 507 #endif 508 } 509 510 if (n < 0x80000006) /* Some chips just has a large L1. */ 511 return; 512 513 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 514 l2size = ecx >> 16; 515 516 #ifdef CONFIG_X86_64 517 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 518 #else 519 /* do processor-specific cache resizing */ 520 if (this_cpu->legacy_cache_size) 521 l2size = this_cpu->legacy_cache_size(c, l2size); 522 523 /* Allow user to override all this if necessary. */ 524 if (cachesize_override != -1) 525 l2size = cachesize_override; 526 527 if (l2size == 0) 528 return; /* Again, no L2 cache is possible */ 529 #endif 530 531 c->x86_cache_size = l2size; 532 } 533 534 u16 __read_mostly tlb_lli_4k[NR_INFO]; 535 u16 __read_mostly tlb_lli_2m[NR_INFO]; 536 u16 __read_mostly tlb_lli_4m[NR_INFO]; 537 u16 __read_mostly tlb_lld_4k[NR_INFO]; 538 u16 __read_mostly tlb_lld_2m[NR_INFO]; 539 u16 __read_mostly tlb_lld_4m[NR_INFO]; 540 u16 __read_mostly tlb_lld_1g[NR_INFO]; 541 542 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 543 { 544 if (this_cpu->c_detect_tlb) 545 this_cpu->c_detect_tlb(c); 546 547 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 548 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 549 tlb_lli_4m[ENTRIES]); 550 551 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 552 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 553 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 554 } 555 556 void detect_ht(struct cpuinfo_x86 *c) 557 { 558 #ifdef CONFIG_SMP 559 u32 eax, ebx, ecx, edx; 560 int index_msb, core_bits; 561 static bool printed; 562 563 if (!cpu_has(c, X86_FEATURE_HT)) 564 return; 565 566 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 567 goto out; 568 569 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 570 return; 571 572 cpuid(1, &eax, &ebx, &ecx, &edx); 573 574 smp_num_siblings = (ebx & 0xff0000) >> 16; 575 576 if (smp_num_siblings == 1) { 577 pr_info_once("CPU0: Hyper-Threading is disabled\n"); 578 goto out; 579 } 580 581 if (smp_num_siblings <= 1) 582 goto out; 583 584 index_msb = get_count_order(smp_num_siblings); 585 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 586 587 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 588 589 index_msb = get_count_order(smp_num_siblings); 590 591 core_bits = get_count_order(c->x86_max_cores); 592 593 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 594 ((1 << core_bits) - 1); 595 596 out: 597 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 598 pr_info("CPU: Physical Processor ID: %d\n", 599 c->phys_proc_id); 600 pr_info("CPU: Processor Core ID: %d\n", 601 c->cpu_core_id); 602 printed = 1; 603 } 604 #endif 605 } 606 607 static void get_cpu_vendor(struct cpuinfo_x86 *c) 608 { 609 char *v = c->x86_vendor_id; 610 int i; 611 612 for (i = 0; i < X86_VENDOR_NUM; i++) { 613 if (!cpu_devs[i]) 614 break; 615 616 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 617 (cpu_devs[i]->c_ident[1] && 618 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 619 620 this_cpu = cpu_devs[i]; 621 c->x86_vendor = this_cpu->c_x86_vendor; 622 return; 623 } 624 } 625 626 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 627 "CPU: Your system may be unstable.\n", v); 628 629 c->x86_vendor = X86_VENDOR_UNKNOWN; 630 this_cpu = &default_cpu; 631 } 632 633 void cpu_detect(struct cpuinfo_x86 *c) 634 { 635 /* Get vendor name */ 636 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 637 (unsigned int *)&c->x86_vendor_id[0], 638 (unsigned int *)&c->x86_vendor_id[8], 639 (unsigned int *)&c->x86_vendor_id[4]); 640 641 c->x86 = 4; 642 /* Intel-defined flags: level 0x00000001 */ 643 if (c->cpuid_level >= 0x00000001) { 644 u32 junk, tfms, cap0, misc; 645 646 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 647 c->x86 = x86_family(tfms); 648 c->x86_model = x86_model(tfms); 649 c->x86_mask = x86_stepping(tfms); 650 651 if (cap0 & (1<<19)) { 652 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 653 c->x86_cache_alignment = c->x86_clflush_size; 654 } 655 } 656 } 657 658 void get_cpu_cap(struct cpuinfo_x86 *c) 659 { 660 u32 eax, ebx, ecx, edx; 661 662 /* Intel-defined flags: level 0x00000001 */ 663 if (c->cpuid_level >= 0x00000001) { 664 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 665 666 c->x86_capability[CPUID_1_ECX] = ecx; 667 c->x86_capability[CPUID_1_EDX] = edx; 668 } 669 670 /* Additional Intel-defined flags: level 0x00000007 */ 671 if (c->cpuid_level >= 0x00000007) { 672 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 673 674 c->x86_capability[CPUID_7_0_EBX] = ebx; 675 676 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 677 c->x86_capability[CPUID_7_ECX] = ecx; 678 } 679 680 /* Extended state features: level 0x0000000d */ 681 if (c->cpuid_level >= 0x0000000d) { 682 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 683 684 c->x86_capability[CPUID_D_1_EAX] = eax; 685 } 686 687 /* Additional Intel-defined flags: level 0x0000000F */ 688 if (c->cpuid_level >= 0x0000000F) { 689 690 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 691 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 692 c->x86_capability[CPUID_F_0_EDX] = edx; 693 694 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 695 /* will be overridden if occupancy monitoring exists */ 696 c->x86_cache_max_rmid = ebx; 697 698 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 699 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 700 c->x86_capability[CPUID_F_1_EDX] = edx; 701 702 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || 703 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || 704 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { 705 c->x86_cache_max_rmid = ecx; 706 c->x86_cache_occ_scale = ebx; 707 } 708 } else { 709 c->x86_cache_max_rmid = -1; 710 c->x86_cache_occ_scale = -1; 711 } 712 } 713 714 /* AMD-defined flags: level 0x80000001 */ 715 eax = cpuid_eax(0x80000000); 716 c->extended_cpuid_level = eax; 717 718 if ((eax & 0xffff0000) == 0x80000000) { 719 if (eax >= 0x80000001) { 720 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 721 722 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 723 c->x86_capability[CPUID_8000_0001_EDX] = edx; 724 } 725 } 726 727 if (c->extended_cpuid_level >= 0x80000007) { 728 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 729 730 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 731 c->x86_power = edx; 732 } 733 734 if (c->extended_cpuid_level >= 0x80000008) { 735 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 736 737 c->x86_virt_bits = (eax >> 8) & 0xff; 738 c->x86_phys_bits = eax & 0xff; 739 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 740 } 741 #ifdef CONFIG_X86_32 742 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 743 c->x86_phys_bits = 36; 744 #endif 745 746 if (c->extended_cpuid_level >= 0x8000000a) 747 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 748 749 init_scattered_cpuid_features(c); 750 } 751 752 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 753 { 754 #ifdef CONFIG_X86_32 755 int i; 756 757 /* 758 * First of all, decide if this is a 486 or higher 759 * It's a 486 if we can modify the AC flag 760 */ 761 if (flag_is_changeable_p(X86_EFLAGS_AC)) 762 c->x86 = 4; 763 else 764 c->x86 = 3; 765 766 for (i = 0; i < X86_VENDOR_NUM; i++) 767 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 768 c->x86_vendor_id[0] = 0; 769 cpu_devs[i]->c_identify(c); 770 if (c->x86_vendor_id[0]) { 771 get_cpu_vendor(c); 772 break; 773 } 774 } 775 #endif 776 } 777 778 /* 779 * Do minimum CPU detection early. 780 * Fields really needed: vendor, cpuid_level, family, model, mask, 781 * cache alignment. 782 * The others are not touched to avoid unwanted side effects. 783 * 784 * WARNING: this function is only called on the BP. Don't add code here 785 * that is supposed to run on all CPUs. 786 */ 787 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 788 { 789 #ifdef CONFIG_X86_64 790 c->x86_clflush_size = 64; 791 c->x86_phys_bits = 36; 792 c->x86_virt_bits = 48; 793 #else 794 c->x86_clflush_size = 32; 795 c->x86_phys_bits = 32; 796 c->x86_virt_bits = 32; 797 #endif 798 c->x86_cache_alignment = c->x86_clflush_size; 799 800 memset(&c->x86_capability, 0, sizeof c->x86_capability); 801 c->extended_cpuid_level = 0; 802 803 if (!have_cpuid_p()) 804 identify_cpu_without_cpuid(c); 805 806 /* cyrix could have cpuid enabled via c_identify()*/ 807 if (!have_cpuid_p()) 808 return; 809 810 cpu_detect(c); 811 get_cpu_vendor(c); 812 get_cpu_cap(c); 813 814 if (this_cpu->c_early_init) 815 this_cpu->c_early_init(c); 816 817 c->cpu_index = 0; 818 filter_cpuid_features(c, false); 819 820 if (this_cpu->c_bsp_init) 821 this_cpu->c_bsp_init(c); 822 823 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 824 fpu__init_system(c); 825 } 826 827 void __init early_cpu_init(void) 828 { 829 const struct cpu_dev *const *cdev; 830 int count = 0; 831 832 #ifdef CONFIG_PROCESSOR_SELECT 833 pr_info("KERNEL supported cpus:\n"); 834 #endif 835 836 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 837 const struct cpu_dev *cpudev = *cdev; 838 839 if (count >= X86_VENDOR_NUM) 840 break; 841 cpu_devs[count] = cpudev; 842 count++; 843 844 #ifdef CONFIG_PROCESSOR_SELECT 845 { 846 unsigned int j; 847 848 for (j = 0; j < 2; j++) { 849 if (!cpudev->c_ident[j]) 850 continue; 851 pr_info(" %s %s\n", cpudev->c_vendor, 852 cpudev->c_ident[j]); 853 } 854 } 855 #endif 856 } 857 early_identify_cpu(&boot_cpu_data); 858 } 859 860 /* 861 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 862 * unfortunately, that's not true in practice because of early VIA 863 * chips and (more importantly) broken virtualizers that are not easy 864 * to detect. In the latter case it doesn't even *fail* reliably, so 865 * probing for it doesn't even work. Disable it completely on 32-bit 866 * unless we can find a reliable way to detect all the broken cases. 867 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 868 */ 869 static void detect_nopl(struct cpuinfo_x86 *c) 870 { 871 #ifdef CONFIG_X86_32 872 clear_cpu_cap(c, X86_FEATURE_NOPL); 873 #else 874 set_cpu_cap(c, X86_FEATURE_NOPL); 875 #endif 876 } 877 878 static void detect_null_seg_behavior(struct cpuinfo_x86 *c) 879 { 880 #ifdef CONFIG_X86_64 881 /* 882 * Empirically, writing zero to a segment selector on AMD does 883 * not clear the base, whereas writing zero to a segment 884 * selector on Intel does clear the base. Intel's behavior 885 * allows slightly faster context switches in the common case 886 * where GS is unused by the prev and next threads. 887 * 888 * Since neither vendor documents this anywhere that I can see, 889 * detect it directly instead of hardcoding the choice by 890 * vendor. 891 * 892 * I've designated AMD's behavior as the "bug" because it's 893 * counterintuitive and less friendly. 894 */ 895 896 unsigned long old_base, tmp; 897 rdmsrl(MSR_FS_BASE, old_base); 898 wrmsrl(MSR_FS_BASE, 1); 899 loadsegment(fs, 0); 900 rdmsrl(MSR_FS_BASE, tmp); 901 if (tmp != 0) 902 set_cpu_bug(c, X86_BUG_NULL_SEG); 903 wrmsrl(MSR_FS_BASE, old_base); 904 #endif 905 } 906 907 static void generic_identify(struct cpuinfo_x86 *c) 908 { 909 c->extended_cpuid_level = 0; 910 911 if (!have_cpuid_p()) 912 identify_cpu_without_cpuid(c); 913 914 /* cyrix could have cpuid enabled via c_identify()*/ 915 if (!have_cpuid_p()) 916 return; 917 918 cpu_detect(c); 919 920 get_cpu_vendor(c); 921 922 get_cpu_cap(c); 923 924 if (c->cpuid_level >= 0x00000001) { 925 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 926 #ifdef CONFIG_X86_32 927 # ifdef CONFIG_SMP 928 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 929 # else 930 c->apicid = c->initial_apicid; 931 # endif 932 #endif 933 c->phys_proc_id = c->initial_apicid; 934 } 935 936 get_model_name(c); /* Default name */ 937 938 detect_nopl(c); 939 940 detect_null_seg_behavior(c); 941 942 /* 943 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 944 * systems that run Linux at CPL > 0 may or may not have the 945 * issue, but, even if they have the issue, there's absolutely 946 * nothing we can do about it because we can't use the real IRET 947 * instruction. 948 * 949 * NB: For the time being, only 32-bit kernels support 950 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 951 * whether to apply espfix using paravirt hooks. If any 952 * non-paravirt system ever shows up that does *not* have the 953 * ESPFIX issue, we can change this. 954 */ 955 #ifdef CONFIG_X86_32 956 # ifdef CONFIG_PARAVIRT 957 do { 958 extern void native_iret(void); 959 if (pv_cpu_ops.iret == native_iret) 960 set_cpu_bug(c, X86_BUG_ESPFIX); 961 } while (0); 962 # else 963 set_cpu_bug(c, X86_BUG_ESPFIX); 964 # endif 965 #endif 966 } 967 968 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 969 { 970 /* 971 * The heavy lifting of max_rmid and cache_occ_scale are handled 972 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 973 * in case CQM bits really aren't there in this CPU. 974 */ 975 if (c != &boot_cpu_data) { 976 boot_cpu_data.x86_cache_max_rmid = 977 min(boot_cpu_data.x86_cache_max_rmid, 978 c->x86_cache_max_rmid); 979 } 980 } 981 982 /* 983 * This does the hard work of actually picking apart the CPU stuff... 984 */ 985 static void identify_cpu(struct cpuinfo_x86 *c) 986 { 987 int i; 988 989 c->loops_per_jiffy = loops_per_jiffy; 990 c->x86_cache_size = -1; 991 c->x86_vendor = X86_VENDOR_UNKNOWN; 992 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 993 c->x86_vendor_id[0] = '\0'; /* Unset */ 994 c->x86_model_id[0] = '\0'; /* Unset */ 995 c->x86_max_cores = 1; 996 c->x86_coreid_bits = 0; 997 #ifdef CONFIG_X86_64 998 c->x86_clflush_size = 64; 999 c->x86_phys_bits = 36; 1000 c->x86_virt_bits = 48; 1001 #else 1002 c->cpuid_level = -1; /* CPUID not detected */ 1003 c->x86_clflush_size = 32; 1004 c->x86_phys_bits = 32; 1005 c->x86_virt_bits = 32; 1006 #endif 1007 c->x86_cache_alignment = c->x86_clflush_size; 1008 memset(&c->x86_capability, 0, sizeof c->x86_capability); 1009 1010 generic_identify(c); 1011 1012 if (this_cpu->c_identify) 1013 this_cpu->c_identify(c); 1014 1015 /* Clear/Set all flags overridden by options, after probe */ 1016 for (i = 0; i < NCAPINTS; i++) { 1017 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1018 c->x86_capability[i] |= cpu_caps_set[i]; 1019 } 1020 1021 #ifdef CONFIG_X86_64 1022 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1023 #endif 1024 1025 /* 1026 * Vendor-specific initialization. In this section we 1027 * canonicalize the feature flags, meaning if there are 1028 * features a certain CPU supports which CPUID doesn't 1029 * tell us, CPUID claiming incorrect flags, or other bugs, 1030 * we handle them here. 1031 * 1032 * At the end of this section, c->x86_capability better 1033 * indicate the features this CPU genuinely supports! 1034 */ 1035 if (this_cpu->c_init) 1036 this_cpu->c_init(c); 1037 1038 /* Disable the PN if appropriate */ 1039 squash_the_stupid_serial_number(c); 1040 1041 /* Set up SMEP/SMAP */ 1042 setup_smep(c); 1043 setup_smap(c); 1044 1045 /* 1046 * The vendor-specific functions might have changed features. 1047 * Now we do "generic changes." 1048 */ 1049 1050 /* Filter out anything that depends on CPUID levels we don't have */ 1051 filter_cpuid_features(c, true); 1052 1053 /* If the model name is still unset, do table lookup. */ 1054 if (!c->x86_model_id[0]) { 1055 const char *p; 1056 p = table_lookup_model(c); 1057 if (p) 1058 strcpy(c->x86_model_id, p); 1059 else 1060 /* Last resort... */ 1061 sprintf(c->x86_model_id, "%02x/%02x", 1062 c->x86, c->x86_model); 1063 } 1064 1065 #ifdef CONFIG_X86_64 1066 detect_ht(c); 1067 #endif 1068 1069 init_hypervisor(c); 1070 x86_init_rdrand(c); 1071 x86_init_cache_qos(c); 1072 setup_pku(c); 1073 1074 /* 1075 * Clear/Set all flags overridden by options, need do it 1076 * before following smp all cpus cap AND. 1077 */ 1078 for (i = 0; i < NCAPINTS; i++) { 1079 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1080 c->x86_capability[i] |= cpu_caps_set[i]; 1081 } 1082 1083 /* 1084 * On SMP, boot_cpu_data holds the common feature set between 1085 * all CPUs; so make sure that we indicate which features are 1086 * common between the CPUs. The first time this routine gets 1087 * executed, c == &boot_cpu_data. 1088 */ 1089 if (c != &boot_cpu_data) { 1090 /* AND the already accumulated flags with these */ 1091 for (i = 0; i < NCAPINTS; i++) 1092 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1093 1094 /* OR, i.e. replicate the bug flags */ 1095 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1096 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1097 } 1098 1099 /* Init Machine Check Exception if available. */ 1100 mcheck_cpu_init(c); 1101 1102 select_idle_routine(c); 1103 1104 #ifdef CONFIG_NUMA 1105 numa_add_cpu(smp_processor_id()); 1106 #endif 1107 /* The boot/hotplug time assigment got cleared, restore it */ 1108 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id); 1109 } 1110 1111 /* 1112 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1113 * on 32-bit kernels: 1114 */ 1115 #ifdef CONFIG_X86_32 1116 void enable_sep_cpu(void) 1117 { 1118 struct tss_struct *tss; 1119 int cpu; 1120 1121 if (!boot_cpu_has(X86_FEATURE_SEP)) 1122 return; 1123 1124 cpu = get_cpu(); 1125 tss = &per_cpu(cpu_tss, cpu); 1126 1127 /* 1128 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1129 * see the big comment in struct x86_hw_tss's definition. 1130 */ 1131 1132 tss->x86_tss.ss1 = __KERNEL_CS; 1133 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1134 1135 wrmsr(MSR_IA32_SYSENTER_ESP, 1136 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack), 1137 0); 1138 1139 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1140 1141 put_cpu(); 1142 } 1143 #endif 1144 1145 void __init identify_boot_cpu(void) 1146 { 1147 identify_cpu(&boot_cpu_data); 1148 init_amd_e400_c1e_mask(); 1149 #ifdef CONFIG_X86_32 1150 sysenter_setup(); 1151 enable_sep_cpu(); 1152 #endif 1153 cpu_detect_tlb(&boot_cpu_data); 1154 } 1155 1156 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1157 { 1158 BUG_ON(c == &boot_cpu_data); 1159 identify_cpu(c); 1160 #ifdef CONFIG_X86_32 1161 enable_sep_cpu(); 1162 #endif 1163 mtrr_ap_init(); 1164 } 1165 1166 struct msr_range { 1167 unsigned min; 1168 unsigned max; 1169 }; 1170 1171 static const struct msr_range msr_range_array[] = { 1172 { 0x00000000, 0x00000418}, 1173 { 0xc0000000, 0xc000040b}, 1174 { 0xc0010000, 0xc0010142}, 1175 { 0xc0011000, 0xc001103b}, 1176 }; 1177 1178 static void __print_cpu_msr(void) 1179 { 1180 unsigned index_min, index_max; 1181 unsigned index; 1182 u64 val; 1183 int i; 1184 1185 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { 1186 index_min = msr_range_array[i].min; 1187 index_max = msr_range_array[i].max; 1188 1189 for (index = index_min; index < index_max; index++) { 1190 if (rdmsrl_safe(index, &val)) 1191 continue; 1192 pr_info(" MSR%08x: %016llx\n", index, val); 1193 } 1194 } 1195 } 1196 1197 static int show_msr; 1198 1199 static __init int setup_show_msr(char *arg) 1200 { 1201 int num; 1202 1203 get_option(&arg, &num); 1204 1205 if (num > 0) 1206 show_msr = num; 1207 return 1; 1208 } 1209 __setup("show_msr=", setup_show_msr); 1210 1211 static __init int setup_noclflush(char *arg) 1212 { 1213 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1214 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1215 return 1; 1216 } 1217 __setup("noclflush", setup_noclflush); 1218 1219 void print_cpu_info(struct cpuinfo_x86 *c) 1220 { 1221 const char *vendor = NULL; 1222 1223 if (c->x86_vendor < X86_VENDOR_NUM) { 1224 vendor = this_cpu->c_vendor; 1225 } else { 1226 if (c->cpuid_level >= 0) 1227 vendor = c->x86_vendor_id; 1228 } 1229 1230 if (vendor && !strstr(c->x86_model_id, vendor)) 1231 pr_cont("%s ", vendor); 1232 1233 if (c->x86_model_id[0]) 1234 pr_cont("%s", c->x86_model_id); 1235 else 1236 pr_cont("%d86", c->x86); 1237 1238 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1239 1240 if (c->x86_mask || c->cpuid_level >= 0) 1241 pr_cont(", stepping: 0x%x)\n", c->x86_mask); 1242 else 1243 pr_cont(")\n"); 1244 1245 print_cpu_msr(c); 1246 } 1247 1248 void print_cpu_msr(struct cpuinfo_x86 *c) 1249 { 1250 if (c->cpu_index < show_msr) 1251 __print_cpu_msr(); 1252 } 1253 1254 static __init int setup_disablecpuid(char *arg) 1255 { 1256 int bit; 1257 1258 if (get_option(&arg, &bit) && bit < NCAPINTS*32) 1259 setup_clear_cpu_cap(bit); 1260 else 1261 return 0; 1262 1263 return 1; 1264 } 1265 __setup("clearcpuid=", setup_disablecpuid); 1266 1267 #ifdef CONFIG_X86_64 1268 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; 1269 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1, 1270 (unsigned long) debug_idt_table }; 1271 1272 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1273 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1274 1275 /* 1276 * The following percpu variables are hot. Align current_task to 1277 * cacheline size such that they fall in the same cacheline. 1278 */ 1279 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1280 &init_task; 1281 EXPORT_PER_CPU_SYMBOL(current_task); 1282 1283 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1284 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; 1285 1286 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1287 1288 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1289 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1290 1291 /* 1292 * Special IST stacks which the CPU switches to when it calls 1293 * an IST-marked descriptor entry. Up to 7 stacks (hardware 1294 * limit), all of them are 4K, except the debug stack which 1295 * is 8K. 1296 */ 1297 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 1298 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 1299 [DEBUG_STACK - 1] = DEBUG_STKSZ 1300 }; 1301 1302 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks 1303 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); 1304 1305 /* May not be marked __init: used by software suspend */ 1306 void syscall_init(void) 1307 { 1308 /* 1309 * LSTAR and STAR live in a bit strange symbiosis. 1310 * They both write to the same internal register. STAR allows to 1311 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. 1312 */ 1313 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 1314 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1315 1316 #ifdef CONFIG_IA32_EMULATION 1317 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1318 /* 1319 * This only works on Intel CPUs. 1320 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1321 * This does not cause SYSENTER to jump to the wrong location, because 1322 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1323 */ 1324 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1325 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1326 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1327 #else 1328 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1329 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1330 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1331 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1332 #endif 1333 1334 /* Flags to clear on syscall */ 1335 wrmsrl(MSR_SYSCALL_MASK, 1336 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1337 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1338 } 1339 1340 /* 1341 * Copies of the original ist values from the tss are only accessed during 1342 * debugging, no special alignment required. 1343 */ 1344 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1345 1346 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1347 DEFINE_PER_CPU(int, debug_stack_usage); 1348 1349 int is_debug_stack(unsigned long addr) 1350 { 1351 return __this_cpu_read(debug_stack_usage) || 1352 (addr <= __this_cpu_read(debug_stack_addr) && 1353 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1354 } 1355 NOKPROBE_SYMBOL(is_debug_stack); 1356 1357 DEFINE_PER_CPU(u32, debug_idt_ctr); 1358 1359 void debug_stack_set_zero(void) 1360 { 1361 this_cpu_inc(debug_idt_ctr); 1362 load_current_idt(); 1363 } 1364 NOKPROBE_SYMBOL(debug_stack_set_zero); 1365 1366 void debug_stack_reset(void) 1367 { 1368 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1369 return; 1370 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1371 load_current_idt(); 1372 } 1373 NOKPROBE_SYMBOL(debug_stack_reset); 1374 1375 #else /* CONFIG_X86_64 */ 1376 1377 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1378 EXPORT_PER_CPU_SYMBOL(current_task); 1379 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1380 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1381 1382 /* 1383 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1384 * the top of the kernel stack. Use an extra percpu variable to track the 1385 * top of the kernel stack directly. 1386 */ 1387 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1388 (unsigned long)&init_thread_union + THREAD_SIZE; 1389 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1390 1391 #ifdef CONFIG_CC_STACKPROTECTOR 1392 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1393 #endif 1394 1395 #endif /* CONFIG_X86_64 */ 1396 1397 /* 1398 * Clear all 6 debug registers: 1399 */ 1400 static void clear_all_debug_regs(void) 1401 { 1402 int i; 1403 1404 for (i = 0; i < 8; i++) { 1405 /* Ignore db4, db5 */ 1406 if ((i == 4) || (i == 5)) 1407 continue; 1408 1409 set_debugreg(0, i); 1410 } 1411 } 1412 1413 #ifdef CONFIG_KGDB 1414 /* 1415 * Restore debug regs if using kgdbwait and you have a kernel debugger 1416 * connection established. 1417 */ 1418 static void dbg_restore_debug_regs(void) 1419 { 1420 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1421 arch_kgdb_ops.correct_hw_break(); 1422 } 1423 #else /* ! CONFIG_KGDB */ 1424 #define dbg_restore_debug_regs() 1425 #endif /* ! CONFIG_KGDB */ 1426 1427 static void wait_for_master_cpu(int cpu) 1428 { 1429 #ifdef CONFIG_SMP 1430 /* 1431 * wait for ACK from master CPU before continuing 1432 * with AP initialization 1433 */ 1434 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1435 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1436 cpu_relax(); 1437 #endif 1438 } 1439 1440 /* 1441 * cpu_init() initializes state that is per-CPU. Some data is already 1442 * initialized (naturally) in the bootstrap process, such as the GDT 1443 * and IDT. We reload them nevertheless, this function acts as a 1444 * 'CPU state barrier', nothing should get across. 1445 * A lot of state is already set up in PDA init for 64 bit 1446 */ 1447 #ifdef CONFIG_X86_64 1448 1449 void cpu_init(void) 1450 { 1451 struct orig_ist *oist; 1452 struct task_struct *me; 1453 struct tss_struct *t; 1454 unsigned long v; 1455 int cpu = raw_smp_processor_id(); 1456 int i; 1457 1458 wait_for_master_cpu(cpu); 1459 1460 /* 1461 * Initialize the CR4 shadow before doing anything that could 1462 * try to read it. 1463 */ 1464 cr4_init_shadow(); 1465 1466 /* 1467 * Load microcode on this cpu if a valid microcode is available. 1468 * This is early microcode loading procedure. 1469 */ 1470 load_ucode_ap(); 1471 1472 t = &per_cpu(cpu_tss, cpu); 1473 oist = &per_cpu(orig_ist, cpu); 1474 1475 #ifdef CONFIG_NUMA 1476 if (this_cpu_read(numa_node) == 0 && 1477 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1478 set_numa_node(early_cpu_to_node(cpu)); 1479 #endif 1480 1481 me = current; 1482 1483 pr_debug("Initializing CPU#%d\n", cpu); 1484 1485 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1486 1487 /* 1488 * Initialize the per-CPU GDT with the boot GDT, 1489 * and set up the GDT descriptor: 1490 */ 1491 1492 switch_to_new_gdt(cpu); 1493 loadsegment(fs, 0); 1494 1495 load_current_idt(); 1496 1497 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1498 syscall_init(); 1499 1500 wrmsrl(MSR_FS_BASE, 0); 1501 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1502 barrier(); 1503 1504 x86_configure_nx(); 1505 x2apic_setup(); 1506 1507 /* 1508 * set up and load the per-CPU TSS 1509 */ 1510 if (!oist->ist[0]) { 1511 char *estacks = per_cpu(exception_stacks, cpu); 1512 1513 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1514 estacks += exception_stack_sizes[v]; 1515 oist->ist[v] = t->x86_tss.ist[v] = 1516 (unsigned long)estacks; 1517 if (v == DEBUG_STACK-1) 1518 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1519 } 1520 } 1521 1522 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1523 1524 /* 1525 * <= is required because the CPU will access up to 1526 * 8 bits beyond the end of the IO permission bitmap. 1527 */ 1528 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1529 t->io_bitmap[i] = ~0UL; 1530 1531 atomic_inc(&init_mm.mm_count); 1532 me->active_mm = &init_mm; 1533 BUG_ON(me->mm); 1534 enter_lazy_tlb(&init_mm, me); 1535 1536 load_sp0(t, ¤t->thread); 1537 set_tss_desc(cpu, t); 1538 load_TR_desc(); 1539 load_mm_ldt(&init_mm); 1540 1541 clear_all_debug_regs(); 1542 dbg_restore_debug_regs(); 1543 1544 fpu__init_cpu(); 1545 1546 if (is_uv_system()) 1547 uv_cpu_init(); 1548 } 1549 1550 #else 1551 1552 void cpu_init(void) 1553 { 1554 int cpu = smp_processor_id(); 1555 struct task_struct *curr = current; 1556 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 1557 struct thread_struct *thread = &curr->thread; 1558 1559 wait_for_master_cpu(cpu); 1560 1561 /* 1562 * Initialize the CR4 shadow before doing anything that could 1563 * try to read it. 1564 */ 1565 cr4_init_shadow(); 1566 1567 show_ucode_info_early(); 1568 1569 pr_info("Initializing CPU#%d\n", cpu); 1570 1571 if (cpu_feature_enabled(X86_FEATURE_VME) || 1572 boot_cpu_has(X86_FEATURE_TSC) || 1573 boot_cpu_has(X86_FEATURE_DE)) 1574 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1575 1576 load_current_idt(); 1577 switch_to_new_gdt(cpu); 1578 1579 /* 1580 * Set up and load the per-CPU TSS and LDT 1581 */ 1582 atomic_inc(&init_mm.mm_count); 1583 curr->active_mm = &init_mm; 1584 BUG_ON(curr->mm); 1585 enter_lazy_tlb(&init_mm, curr); 1586 1587 load_sp0(t, thread); 1588 set_tss_desc(cpu, t); 1589 load_TR_desc(); 1590 load_mm_ldt(&init_mm); 1591 1592 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1593 1594 #ifdef CONFIG_DOUBLEFAULT 1595 /* Set up doublefault TSS pointer in the GDT */ 1596 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1597 #endif 1598 1599 clear_all_debug_regs(); 1600 dbg_restore_debug_regs(); 1601 1602 fpu__init_cpu(); 1603 } 1604 #endif 1605 1606 static void bsp_resume(void) 1607 { 1608 if (this_cpu->c_bsp_resume) 1609 this_cpu->c_bsp_resume(&boot_cpu_data); 1610 } 1611 1612 static struct syscore_ops cpu_syscore_ops = { 1613 .resume = bsp_resume, 1614 }; 1615 1616 static int __init init_cpu_syscore(void) 1617 { 1618 register_syscore_ops(&cpu_syscore_ops); 1619 return 0; 1620 } 1621 core_initcall(init_cpu_syscore); 1622