xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 16b0314a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 
63 #include "cpu.h"
64 
65 u32 elf_hwcap2 __read_mostly;
66 
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71 
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74 
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78 
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81 
82 u16 get_llc_id(unsigned int cpu)
83 {
84 	return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87 
88 /* correctly size the local cpu masks */
89 void __init setup_cpu_local_masks(void)
90 {
91 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
92 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
93 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
94 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
95 }
96 
97 static void default_init(struct cpuinfo_x86 *c)
98 {
99 #ifdef CONFIG_X86_64
100 	cpu_detect_cache_sizes(c);
101 #else
102 	/* Not much we can do here... */
103 	/* Check if at least it has cpuid */
104 	if (c->cpuid_level == -1) {
105 		/* No cpuid. It must be an ancient CPU */
106 		if (c->x86 == 4)
107 			strcpy(c->x86_model_id, "486");
108 		else if (c->x86 == 3)
109 			strcpy(c->x86_model_id, "386");
110 	}
111 #endif
112 }
113 
114 static const struct cpu_dev default_cpu = {
115 	.c_init		= default_init,
116 	.c_vendor	= "Unknown",
117 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
118 };
119 
120 static const struct cpu_dev *this_cpu = &default_cpu;
121 
122 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
123 #ifdef CONFIG_X86_64
124 	/*
125 	 * We need valid kernel segments for data and code in long mode too
126 	 * IRET will check the segment types  kkeil 2000/10/28
127 	 * Also sysret mandates a special GDT layout
128 	 *
129 	 * TLS descriptors are currently at a different place compared to i386.
130 	 * Hopefully nobody expects them at a fixed place (Wine?)
131 	 */
132 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
133 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
134 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
135 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
136 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
137 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
138 #else
139 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
140 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
142 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
143 	/*
144 	 * Segments used for calling PnP BIOS have byte granularity.
145 	 * They code segments and data segments have fixed 64k limits,
146 	 * the transfer segment sizes are set at run time.
147 	 */
148 	/* 32-bit code */
149 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
150 	/* 16-bit code */
151 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
152 	/* 16-bit data */
153 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
154 	/* 16-bit data */
155 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
156 	/* 16-bit data */
157 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
158 	/*
159 	 * The APM segments have byte granularity and their bases
160 	 * are set at run time.  All have 64k limits.
161 	 */
162 	/* 32-bit code */
163 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
164 	/* 16-bit code */
165 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
166 	/* data */
167 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
168 
169 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
170 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
171 #endif
172 } };
173 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
174 
175 #ifdef CONFIG_X86_64
176 static int __init x86_nopcid_setup(char *s)
177 {
178 	/* nopcid doesn't accept parameters */
179 	if (s)
180 		return -EINVAL;
181 
182 	/* do not emit a message if the feature is not present */
183 	if (!boot_cpu_has(X86_FEATURE_PCID))
184 		return 0;
185 
186 	setup_clear_cpu_cap(X86_FEATURE_PCID);
187 	pr_info("nopcid: PCID feature disabled\n");
188 	return 0;
189 }
190 early_param("nopcid", x86_nopcid_setup);
191 #endif
192 
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195 	/* noinvpcid doesn't accept parameters */
196 	if (s)
197 		return -EINVAL;
198 
199 	/* do not emit a message if the feature is not present */
200 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
201 		return 0;
202 
203 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204 	pr_info("noinvpcid: INVPCID feature disabled\n");
205 	return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208 
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212 
213 static int __init cachesize_setup(char *str)
214 {
215 	get_option(&str, &cachesize_override);
216 	return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219 
220 static int __init x86_sep_setup(char *s)
221 {
222 	setup_clear_cpu_cap(X86_FEATURE_SEP);
223 	return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226 
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230 	u32 f1, f2;
231 
232 	/*
233 	 * Cyrix and IDT cpus allow disabling of CPUID
234 	 * so the code below may return different results
235 	 * when it is executed before and after enabling
236 	 * the CPUID. Add "volatile" to not allow gcc to
237 	 * optimize the subsequent calls to this function.
238 	 */
239 	asm volatile ("pushfl		\n\t"
240 		      "pushfl		\n\t"
241 		      "popl %0		\n\t"
242 		      "movl %0, %1	\n\t"
243 		      "xorl %2, %0	\n\t"
244 		      "pushl %0		\n\t"
245 		      "popfl		\n\t"
246 		      "pushfl		\n\t"
247 		      "popl %0		\n\t"
248 		      "popfl		\n\t"
249 
250 		      : "=&r" (f1), "=&r" (f2)
251 		      : "ir" (flag));
252 
253 	return ((f1^f2) & flag) != 0;
254 }
255 
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259 	return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261 
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264 	unsigned long lo, hi;
265 
266 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267 		return;
268 
269 	/* Disable processor serial number: */
270 
271 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272 	lo |= 0x200000;
273 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274 
275 	pr_notice("CPU serial number disabled.\n");
276 	clear_cpu_cap(c, X86_FEATURE_PN);
277 
278 	/* Disabling the serial number may affect the cpuid level */
279 	c->cpuid_level = cpuid_eax(0);
280 }
281 
282 static int __init x86_serial_nr_setup(char *s)
283 {
284 	disable_x86_serial_nr = 0;
285 	return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291 	return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297 
298 static __init int setup_disable_smep(char *arg)
299 {
300 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
301 	return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304 
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 	if (cpu_has(c, X86_FEATURE_SMEP))
308 		cr4_set_bits(X86_CR4_SMEP);
309 }
310 
311 static __init int setup_disable_smap(char *arg)
312 {
313 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 	return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317 
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 	unsigned long eflags = native_save_fl();
321 
322 	/* This should have been cleared long ago */
323 	BUG_ON(eflags & X86_EFLAGS_AC);
324 
325 	if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 		cr4_set_bits(X86_CR4_SMAP);
328 #else
329 		clear_cpu_cap(c, X86_FEATURE_SMAP);
330 		cr4_clear_bits(X86_CR4_SMAP);
331 #endif
332 	}
333 }
334 
335 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
336 {
337 	/* Check the boot processor, plus build option for UMIP. */
338 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
339 		goto out;
340 
341 	/* Check the current processor's cpuid bits. */
342 	if (!cpu_has(c, X86_FEATURE_UMIP))
343 		goto out;
344 
345 	cr4_set_bits(X86_CR4_UMIP);
346 
347 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
348 
349 	return;
350 
351 out:
352 	/*
353 	 * Make sure UMIP is disabled in case it was enabled in a
354 	 * previous boot (e.g., via kexec).
355 	 */
356 	cr4_clear_bits(X86_CR4_UMIP);
357 }
358 
359 /* These bits should not change their value after CPU init is finished. */
360 static const unsigned long cr4_pinned_mask =
361 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
362 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
363 static unsigned long cr4_pinned_bits __ro_after_init;
364 
365 void native_write_cr0(unsigned long val)
366 {
367 	unsigned long bits_missing = 0;
368 
369 set_register:
370 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
371 
372 	if (static_branch_likely(&cr_pinning)) {
373 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
374 			bits_missing = X86_CR0_WP;
375 			val |= bits_missing;
376 			goto set_register;
377 		}
378 		/* Warn after we've set the missing bits. */
379 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
380 	}
381 }
382 EXPORT_SYMBOL(native_write_cr0);
383 
384 void native_write_cr4(unsigned long val)
385 {
386 	unsigned long bits_changed = 0;
387 
388 set_register:
389 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
390 
391 	if (static_branch_likely(&cr_pinning)) {
392 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
393 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
394 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
395 			goto set_register;
396 		}
397 		/* Warn after we've corrected the changed bits. */
398 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
399 			  bits_changed);
400 	}
401 }
402 #if IS_MODULE(CONFIG_LKDTM)
403 EXPORT_SYMBOL_GPL(native_write_cr4);
404 #endif
405 
406 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
407 {
408 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
409 
410 	lockdep_assert_irqs_disabled();
411 
412 	newval = (cr4 & ~clear) | set;
413 	if (newval != cr4) {
414 		this_cpu_write(cpu_tlbstate.cr4, newval);
415 		__write_cr4(newval);
416 	}
417 }
418 EXPORT_SYMBOL(cr4_update_irqsoff);
419 
420 /* Read the CR4 shadow. */
421 unsigned long cr4_read_shadow(void)
422 {
423 	return this_cpu_read(cpu_tlbstate.cr4);
424 }
425 EXPORT_SYMBOL_GPL(cr4_read_shadow);
426 
427 void cr4_init(void)
428 {
429 	unsigned long cr4 = __read_cr4();
430 
431 	if (boot_cpu_has(X86_FEATURE_PCID))
432 		cr4 |= X86_CR4_PCIDE;
433 	if (static_branch_likely(&cr_pinning))
434 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
435 
436 	__write_cr4(cr4);
437 
438 	/* Initialize cr4 shadow for this CPU. */
439 	this_cpu_write(cpu_tlbstate.cr4, cr4);
440 }
441 
442 /*
443  * Once CPU feature detection is finished (and boot params have been
444  * parsed), record any of the sensitive CR bits that are set, and
445  * enable CR pinning.
446  */
447 static void __init setup_cr_pinning(void)
448 {
449 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
450 	static_key_enable(&cr_pinning.key);
451 }
452 
453 static __init int x86_nofsgsbase_setup(char *arg)
454 {
455 	/* Require an exact match without trailing characters. */
456 	if (strlen(arg))
457 		return 0;
458 
459 	/* Do not emit a message if the feature is not present. */
460 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
461 		return 1;
462 
463 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
464 	pr_info("FSGSBASE disabled via kernel command line\n");
465 	return 1;
466 }
467 __setup("nofsgsbase", x86_nofsgsbase_setup);
468 
469 /*
470  * Protection Keys are not available in 32-bit mode.
471  */
472 static bool pku_disabled;
473 
474 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
475 {
476 	if (c == &boot_cpu_data) {
477 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
478 			return;
479 		/*
480 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
481 		 * bit to be set.  Enforce it.
482 		 */
483 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
484 
485 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
486 		return;
487 	}
488 
489 	cr4_set_bits(X86_CR4_PKE);
490 	/* Load the default PKRU value */
491 	pkru_write_default();
492 }
493 
494 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
495 static __init int setup_disable_pku(char *arg)
496 {
497 	/*
498 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
499 	 * runtime checks are against OSPKE so clearing the
500 	 * bit does nothing.
501 	 *
502 	 * This way, we will see "pku" in cpuinfo, but not
503 	 * "ospke", which is exactly what we want.  It shows
504 	 * that the CPU has PKU, but the OS has not enabled it.
505 	 * This happens to be exactly how a system would look
506 	 * if we disabled the config option.
507 	 */
508 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
509 	pku_disabled = true;
510 	return 1;
511 }
512 __setup("nopku", setup_disable_pku);
513 #endif /* CONFIG_X86_64 */
514 
515 /*
516  * Some CPU features depend on higher CPUID levels, which may not always
517  * be available due to CPUID level capping or broken virtualization
518  * software.  Add those features to this table to auto-disable them.
519  */
520 struct cpuid_dependent_feature {
521 	u32 feature;
522 	u32 level;
523 };
524 
525 static const struct cpuid_dependent_feature
526 cpuid_dependent_features[] = {
527 	{ X86_FEATURE_MWAIT,		0x00000005 },
528 	{ X86_FEATURE_DCA,		0x00000009 },
529 	{ X86_FEATURE_XSAVE,		0x0000000d },
530 	{ 0, 0 }
531 };
532 
533 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
534 {
535 	const struct cpuid_dependent_feature *df;
536 
537 	for (df = cpuid_dependent_features; df->feature; df++) {
538 
539 		if (!cpu_has(c, df->feature))
540 			continue;
541 		/*
542 		 * Note: cpuid_level is set to -1 if unavailable, but
543 		 * extended_extended_level is set to 0 if unavailable
544 		 * and the legitimate extended levels are all negative
545 		 * when signed; hence the weird messing around with
546 		 * signs here...
547 		 */
548 		if (!((s32)df->level < 0 ?
549 		     (u32)df->level > (u32)c->extended_cpuid_level :
550 		     (s32)df->level > (s32)c->cpuid_level))
551 			continue;
552 
553 		clear_cpu_cap(c, df->feature);
554 		if (!warn)
555 			continue;
556 
557 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
558 			x86_cap_flag(df->feature), df->level);
559 	}
560 }
561 
562 /*
563  * Naming convention should be: <Name> [(<Codename>)]
564  * This table only is used unless init_<vendor>() below doesn't set it;
565  * in particular, if CPUID levels 0x80000002..4 are supported, this
566  * isn't used
567  */
568 
569 /* Look up CPU names by table lookup. */
570 static const char *table_lookup_model(struct cpuinfo_x86 *c)
571 {
572 #ifdef CONFIG_X86_32
573 	const struct legacy_cpu_model_info *info;
574 
575 	if (c->x86_model >= 16)
576 		return NULL;	/* Range check */
577 
578 	if (!this_cpu)
579 		return NULL;
580 
581 	info = this_cpu->legacy_models;
582 
583 	while (info->family) {
584 		if (info->family == c->x86)
585 			return info->model_names[c->x86_model];
586 		info++;
587 	}
588 #endif
589 	return NULL;		/* Not found */
590 }
591 
592 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
593 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
595 
596 void load_percpu_segment(int cpu)
597 {
598 #ifdef CONFIG_X86_32
599 	loadsegment(fs, __KERNEL_PERCPU);
600 #else
601 	__loadsegment_simple(gs, 0);
602 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
603 #endif
604 }
605 
606 #ifdef CONFIG_X86_32
607 /* The 32-bit entry code needs to find cpu_entry_area. */
608 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
609 #endif
610 
611 /* Load the original GDT from the per-cpu structure */
612 void load_direct_gdt(int cpu)
613 {
614 	struct desc_ptr gdt_descr;
615 
616 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
617 	gdt_descr.size = GDT_SIZE - 1;
618 	load_gdt(&gdt_descr);
619 }
620 EXPORT_SYMBOL_GPL(load_direct_gdt);
621 
622 /* Load a fixmap remapping of the per-cpu GDT */
623 void load_fixmap_gdt(int cpu)
624 {
625 	struct desc_ptr gdt_descr;
626 
627 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
628 	gdt_descr.size = GDT_SIZE - 1;
629 	load_gdt(&gdt_descr);
630 }
631 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
632 
633 /*
634  * Current gdt points %fs at the "master" per-cpu area: after this,
635  * it's on the real one.
636  */
637 void switch_to_new_gdt(int cpu)
638 {
639 	/* Load the original GDT */
640 	load_direct_gdt(cpu);
641 	/* Reload the per-cpu base */
642 	load_percpu_segment(cpu);
643 }
644 
645 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
646 
647 static void get_model_name(struct cpuinfo_x86 *c)
648 {
649 	unsigned int *v;
650 	char *p, *q, *s;
651 
652 	if (c->extended_cpuid_level < 0x80000004)
653 		return;
654 
655 	v = (unsigned int *)c->x86_model_id;
656 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
657 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
658 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
659 	c->x86_model_id[48] = 0;
660 
661 	/* Trim whitespace */
662 	p = q = s = &c->x86_model_id[0];
663 
664 	while (*p == ' ')
665 		p++;
666 
667 	while (*p) {
668 		/* Note the last non-whitespace index */
669 		if (!isspace(*p))
670 			s = q;
671 
672 		*q++ = *p++;
673 	}
674 
675 	*(s + 1) = '\0';
676 }
677 
678 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
679 {
680 	unsigned int eax, ebx, ecx, edx;
681 
682 	c->x86_max_cores = 1;
683 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
684 		return;
685 
686 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
687 	if (eax & 0x1f)
688 		c->x86_max_cores = (eax >> 26) + 1;
689 }
690 
691 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
692 {
693 	unsigned int n, dummy, ebx, ecx, edx, l2size;
694 
695 	n = c->extended_cpuid_level;
696 
697 	if (n >= 0x80000005) {
698 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
699 		c->x86_cache_size = (ecx>>24) + (edx>>24);
700 #ifdef CONFIG_X86_64
701 		/* On K8 L1 TLB is inclusive, so don't count it */
702 		c->x86_tlbsize = 0;
703 #endif
704 	}
705 
706 	if (n < 0x80000006)	/* Some chips just has a large L1. */
707 		return;
708 
709 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
710 	l2size = ecx >> 16;
711 
712 #ifdef CONFIG_X86_64
713 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
714 #else
715 	/* do processor-specific cache resizing */
716 	if (this_cpu->legacy_cache_size)
717 		l2size = this_cpu->legacy_cache_size(c, l2size);
718 
719 	/* Allow user to override all this if necessary. */
720 	if (cachesize_override != -1)
721 		l2size = cachesize_override;
722 
723 	if (l2size == 0)
724 		return;		/* Again, no L2 cache is possible */
725 #endif
726 
727 	c->x86_cache_size = l2size;
728 }
729 
730 u16 __read_mostly tlb_lli_4k[NR_INFO];
731 u16 __read_mostly tlb_lli_2m[NR_INFO];
732 u16 __read_mostly tlb_lli_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_4k[NR_INFO];
734 u16 __read_mostly tlb_lld_2m[NR_INFO];
735 u16 __read_mostly tlb_lld_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_1g[NR_INFO];
737 
738 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
739 {
740 	if (this_cpu->c_detect_tlb)
741 		this_cpu->c_detect_tlb(c);
742 
743 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
744 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
745 		tlb_lli_4m[ENTRIES]);
746 
747 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
748 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
749 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
750 }
751 
752 int detect_ht_early(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_SMP
755 	u32 eax, ebx, ecx, edx;
756 
757 	if (!cpu_has(c, X86_FEATURE_HT))
758 		return -1;
759 
760 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
761 		return -1;
762 
763 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
764 		return -1;
765 
766 	cpuid(1, &eax, &ebx, &ecx, &edx);
767 
768 	smp_num_siblings = (ebx & 0xff0000) >> 16;
769 	if (smp_num_siblings == 1)
770 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
771 #endif
772 	return 0;
773 }
774 
775 void detect_ht(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_SMP
778 	int index_msb, core_bits;
779 
780 	if (detect_ht_early(c) < 0)
781 		return;
782 
783 	index_msb = get_count_order(smp_num_siblings);
784 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
785 
786 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
787 
788 	index_msb = get_count_order(smp_num_siblings);
789 
790 	core_bits = get_count_order(c->x86_max_cores);
791 
792 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
793 				       ((1 << core_bits) - 1);
794 #endif
795 }
796 
797 static void get_cpu_vendor(struct cpuinfo_x86 *c)
798 {
799 	char *v = c->x86_vendor_id;
800 	int i;
801 
802 	for (i = 0; i < X86_VENDOR_NUM; i++) {
803 		if (!cpu_devs[i])
804 			break;
805 
806 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
807 		    (cpu_devs[i]->c_ident[1] &&
808 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
809 
810 			this_cpu = cpu_devs[i];
811 			c->x86_vendor = this_cpu->c_x86_vendor;
812 			return;
813 		}
814 	}
815 
816 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
817 		    "CPU: Your system may be unstable.\n", v);
818 
819 	c->x86_vendor = X86_VENDOR_UNKNOWN;
820 	this_cpu = &default_cpu;
821 }
822 
823 void cpu_detect(struct cpuinfo_x86 *c)
824 {
825 	/* Get vendor name */
826 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
827 	      (unsigned int *)&c->x86_vendor_id[0],
828 	      (unsigned int *)&c->x86_vendor_id[8],
829 	      (unsigned int *)&c->x86_vendor_id[4]);
830 
831 	c->x86 = 4;
832 	/* Intel-defined flags: level 0x00000001 */
833 	if (c->cpuid_level >= 0x00000001) {
834 		u32 junk, tfms, cap0, misc;
835 
836 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
837 		c->x86		= x86_family(tfms);
838 		c->x86_model	= x86_model(tfms);
839 		c->x86_stepping	= x86_stepping(tfms);
840 
841 		if (cap0 & (1<<19)) {
842 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
843 			c->x86_cache_alignment = c->x86_clflush_size;
844 		}
845 	}
846 }
847 
848 static void apply_forced_caps(struct cpuinfo_x86 *c)
849 {
850 	int i;
851 
852 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
853 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
854 		c->x86_capability[i] |= cpu_caps_set[i];
855 	}
856 }
857 
858 static void init_speculation_control(struct cpuinfo_x86 *c)
859 {
860 	/*
861 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
862 	 * and they also have a different bit for STIBP support. Also,
863 	 * a hypervisor might have set the individual AMD bits even on
864 	 * Intel CPUs, for finer-grained selection of what's available.
865 	 */
866 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
867 		set_cpu_cap(c, X86_FEATURE_IBRS);
868 		set_cpu_cap(c, X86_FEATURE_IBPB);
869 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
870 	}
871 
872 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
873 		set_cpu_cap(c, X86_FEATURE_STIBP);
874 
875 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
876 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
877 		set_cpu_cap(c, X86_FEATURE_SSBD);
878 
879 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
880 		set_cpu_cap(c, X86_FEATURE_IBRS);
881 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
882 	}
883 
884 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
885 		set_cpu_cap(c, X86_FEATURE_IBPB);
886 
887 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
888 		set_cpu_cap(c, X86_FEATURE_STIBP);
889 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
890 	}
891 
892 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
893 		set_cpu_cap(c, X86_FEATURE_SSBD);
894 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
895 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
896 	}
897 }
898 
899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901 	u32 eax, ebx, ecx, edx;
902 
903 	/* Intel-defined flags: level 0x00000001 */
904 	if (c->cpuid_level >= 0x00000001) {
905 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906 
907 		c->x86_capability[CPUID_1_ECX] = ecx;
908 		c->x86_capability[CPUID_1_EDX] = edx;
909 	}
910 
911 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 	if (c->cpuid_level >= 0x00000006)
913 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914 
915 	/* Additional Intel-defined flags: level 0x00000007 */
916 	if (c->cpuid_level >= 0x00000007) {
917 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 		c->x86_capability[CPUID_7_0_EBX] = ebx;
919 		c->x86_capability[CPUID_7_ECX] = ecx;
920 		c->x86_capability[CPUID_7_EDX] = edx;
921 
922 		/* Check valid sub-leaf index before accessing it */
923 		if (eax >= 1) {
924 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 			c->x86_capability[CPUID_7_1_EAX] = eax;
926 		}
927 	}
928 
929 	/* Extended state features: level 0x0000000d */
930 	if (c->cpuid_level >= 0x0000000d) {
931 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932 
933 		c->x86_capability[CPUID_D_1_EAX] = eax;
934 	}
935 
936 	/* AMD-defined flags: level 0x80000001 */
937 	eax = cpuid_eax(0x80000000);
938 	c->extended_cpuid_level = eax;
939 
940 	if ((eax & 0xffff0000) == 0x80000000) {
941 		if (eax >= 0x80000001) {
942 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943 
944 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 		}
947 	}
948 
949 	if (c->extended_cpuid_level >= 0x80000007) {
950 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951 
952 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 		c->x86_power = edx;
954 	}
955 
956 	if (c->extended_cpuid_level >= 0x80000008) {
957 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 	}
960 
961 	if (c->extended_cpuid_level >= 0x8000000a)
962 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963 
964 	if (c->extended_cpuid_level >= 0x8000001f)
965 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
966 
967 	init_scattered_cpuid_features(c);
968 	init_speculation_control(c);
969 
970 	/*
971 	 * Clear/Set all flags overridden by options, after probe.
972 	 * This needs to happen each time we re-probe, which may happen
973 	 * several times during CPU initialization.
974 	 */
975 	apply_forced_caps(c);
976 }
977 
978 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
979 {
980 	u32 eax, ebx, ecx, edx;
981 
982 	if (c->extended_cpuid_level >= 0x80000008) {
983 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
984 
985 		c->x86_virt_bits = (eax >> 8) & 0xff;
986 		c->x86_phys_bits = eax & 0xff;
987 	}
988 #ifdef CONFIG_X86_32
989 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
990 		c->x86_phys_bits = 36;
991 #endif
992 	c->x86_cache_bits = c->x86_phys_bits;
993 }
994 
995 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
996 {
997 #ifdef CONFIG_X86_32
998 	int i;
999 
1000 	/*
1001 	 * First of all, decide if this is a 486 or higher
1002 	 * It's a 486 if we can modify the AC flag
1003 	 */
1004 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1005 		c->x86 = 4;
1006 	else
1007 		c->x86 = 3;
1008 
1009 	for (i = 0; i < X86_VENDOR_NUM; i++)
1010 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1011 			c->x86_vendor_id[0] = 0;
1012 			cpu_devs[i]->c_identify(c);
1013 			if (c->x86_vendor_id[0]) {
1014 				get_cpu_vendor(c);
1015 				break;
1016 			}
1017 		}
1018 #endif
1019 }
1020 
1021 #define NO_SPECULATION		BIT(0)
1022 #define NO_MELTDOWN		BIT(1)
1023 #define NO_SSB			BIT(2)
1024 #define NO_L1TF			BIT(3)
1025 #define NO_MDS			BIT(4)
1026 #define MSBDS_ONLY		BIT(5)
1027 #define NO_SWAPGS		BIT(6)
1028 #define NO_ITLB_MULTIHIT	BIT(7)
1029 #define NO_SPECTRE_V2		BIT(8)
1030 
1031 #define VULNWL(vendor, family, model, whitelist)	\
1032 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1033 
1034 #define VULNWL_INTEL(model, whitelist)		\
1035 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1036 
1037 #define VULNWL_AMD(family, whitelist)		\
1038 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1039 
1040 #define VULNWL_HYGON(family, whitelist)		\
1041 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1042 
1043 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1044 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1045 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1046 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1047 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1048 
1049 	/* Intel Family 6 */
1050 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1052 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1053 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1054 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1055 
1056 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 
1063 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1064 
1065 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 
1068 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071 
1072 	/*
1073 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1074 	 * being documented as such in the APM).  But according to AMD, %gs is
1075 	 * updated non-speculatively, and the issuing of %gs-relative memory
1076 	 * operands will be blocked until the %gs update completes, which is
1077 	 * good enough for our purposes.
1078 	 */
1079 
1080 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1081 
1082 	/* AMD Family 0xf - 0x12 */
1083 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 
1088 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1089 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091 
1092 	/* Zhaoxin Family 7 */
1093 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1094 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1095 	{}
1096 };
1097 
1098 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1099 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1100 					    INTEL_FAM6_##model, steppings, \
1101 					    X86_FEATURE_ANY, issues)
1102 
1103 #define SRBDS		BIT(0)
1104 
1105 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1106 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1107 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1108 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1109 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1110 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1111 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1112 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1113 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1114 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1115 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1116 	{}
1117 };
1118 
1119 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1120 {
1121 	const struct x86_cpu_id *m = x86_match_cpu(table);
1122 
1123 	return m && !!(m->driver_data & which);
1124 }
1125 
1126 u64 x86_read_arch_cap_msr(void)
1127 {
1128 	u64 ia32_cap = 0;
1129 
1130 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1131 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1132 
1133 	return ia32_cap;
1134 }
1135 
1136 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1137 {
1138 	u64 ia32_cap = x86_read_arch_cap_msr();
1139 
1140 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1141 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1142 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1143 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1144 
1145 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1146 		return;
1147 
1148 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1149 
1150 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1151 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1152 
1153 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1154 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1155 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1156 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1157 
1158 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1159 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1160 
1161 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1162 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1163 		setup_force_cpu_bug(X86_BUG_MDS);
1164 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1165 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1166 	}
1167 
1168 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1169 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1170 
1171 	/*
1172 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1173 	 *	- TSX is supported or
1174 	 *	- TSX_CTRL is present
1175 	 *
1176 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1177 	 * the kernel boot e.g. kexec.
1178 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1179 	 * update is not present or running as guest that don't get TSX_CTRL.
1180 	 */
1181 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1182 	    (cpu_has(c, X86_FEATURE_RTM) ||
1183 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1184 		setup_force_cpu_bug(X86_BUG_TAA);
1185 
1186 	/*
1187 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1188 	 * in the vulnerability blacklist.
1189 	 */
1190 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1191 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1192 	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1193 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1194 
1195 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1196 		return;
1197 
1198 	/* Rogue Data Cache Load? No! */
1199 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1200 		return;
1201 
1202 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1203 
1204 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1205 		return;
1206 
1207 	setup_force_cpu_bug(X86_BUG_L1TF);
1208 }
1209 
1210 /*
1211  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1212  * unfortunately, that's not true in practice because of early VIA
1213  * chips and (more importantly) broken virtualizers that are not easy
1214  * to detect. In the latter case it doesn't even *fail* reliably, so
1215  * probing for it doesn't even work. Disable it completely on 32-bit
1216  * unless we can find a reliable way to detect all the broken cases.
1217  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1218  */
1219 static void detect_nopl(void)
1220 {
1221 #ifdef CONFIG_X86_32
1222 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1223 #else
1224 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1225 #endif
1226 }
1227 
1228 /*
1229  * We parse cpu parameters early because fpu__init_system() is executed
1230  * before parse_early_param().
1231  */
1232 static void __init cpu_parse_early_param(void)
1233 {
1234 	char arg[128];
1235 	char *argptr = arg;
1236 	int arglen, res, bit;
1237 
1238 #ifdef CONFIG_X86_32
1239 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1240 #ifdef CONFIG_MATH_EMULATION
1241 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1242 #else
1243 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1244 #endif
1245 
1246 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1247 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1248 #endif
1249 
1250 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1251 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1252 
1253 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1254 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1255 
1256 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1257 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1258 
1259 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1260 	if (arglen <= 0)
1261 		return;
1262 
1263 	pr_info("Clearing CPUID bits:");
1264 	do {
1265 		res = get_option(&argptr, &bit);
1266 		if (res == 0 || res == 3)
1267 			break;
1268 
1269 		/* If the argument was too long, the last bit may be cut off */
1270 		if (res == 1 && arglen >= sizeof(arg))
1271 			break;
1272 
1273 		if (bit >= 0 && bit < NCAPINTS * 32) {
1274 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1275 			setup_clear_cpu_cap(bit);
1276 		}
1277 	} while (res == 2);
1278 	pr_cont("\n");
1279 }
1280 
1281 /*
1282  * Do minimum CPU detection early.
1283  * Fields really needed: vendor, cpuid_level, family, model, mask,
1284  * cache alignment.
1285  * The others are not touched to avoid unwanted side effects.
1286  *
1287  * WARNING: this function is only called on the boot CPU.  Don't add code
1288  * here that is supposed to run on all CPUs.
1289  */
1290 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1291 {
1292 #ifdef CONFIG_X86_64
1293 	c->x86_clflush_size = 64;
1294 	c->x86_phys_bits = 36;
1295 	c->x86_virt_bits = 48;
1296 #else
1297 	c->x86_clflush_size = 32;
1298 	c->x86_phys_bits = 32;
1299 	c->x86_virt_bits = 32;
1300 #endif
1301 	c->x86_cache_alignment = c->x86_clflush_size;
1302 
1303 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1304 	c->extended_cpuid_level = 0;
1305 
1306 	if (!have_cpuid_p())
1307 		identify_cpu_without_cpuid(c);
1308 
1309 	/* cyrix could have cpuid enabled via c_identify()*/
1310 	if (have_cpuid_p()) {
1311 		cpu_detect(c);
1312 		get_cpu_vendor(c);
1313 		get_cpu_cap(c);
1314 		get_cpu_address_sizes(c);
1315 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1316 		cpu_parse_early_param();
1317 
1318 		if (this_cpu->c_early_init)
1319 			this_cpu->c_early_init(c);
1320 
1321 		c->cpu_index = 0;
1322 		filter_cpuid_features(c, false);
1323 
1324 		if (this_cpu->c_bsp_init)
1325 			this_cpu->c_bsp_init(c);
1326 	} else {
1327 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1328 	}
1329 
1330 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1331 
1332 	cpu_set_bug_bits(c);
1333 
1334 	sld_setup(c);
1335 
1336 	fpu__init_system(c);
1337 
1338 	init_sigframe_size();
1339 
1340 #ifdef CONFIG_X86_32
1341 	/*
1342 	 * Regardless of whether PCID is enumerated, the SDM says
1343 	 * that it can't be enabled in 32-bit mode.
1344 	 */
1345 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1346 #endif
1347 
1348 	/*
1349 	 * Later in the boot process pgtable_l5_enabled() relies on
1350 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1351 	 * enabled by this point we need to clear the feature bit to avoid
1352 	 * false-positives at the later stage.
1353 	 *
1354 	 * pgtable_l5_enabled() can be false here for several reasons:
1355 	 *  - 5-level paging is disabled compile-time;
1356 	 *  - it's 32-bit kernel;
1357 	 *  - machine doesn't support 5-level paging;
1358 	 *  - user specified 'no5lvl' in kernel command line.
1359 	 */
1360 	if (!pgtable_l5_enabled())
1361 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1362 
1363 	detect_nopl();
1364 }
1365 
1366 void __init early_cpu_init(void)
1367 {
1368 	const struct cpu_dev *const *cdev;
1369 	int count = 0;
1370 
1371 #ifdef CONFIG_PROCESSOR_SELECT
1372 	pr_info("KERNEL supported cpus:\n");
1373 #endif
1374 
1375 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1376 		const struct cpu_dev *cpudev = *cdev;
1377 
1378 		if (count >= X86_VENDOR_NUM)
1379 			break;
1380 		cpu_devs[count] = cpudev;
1381 		count++;
1382 
1383 #ifdef CONFIG_PROCESSOR_SELECT
1384 		{
1385 			unsigned int j;
1386 
1387 			for (j = 0; j < 2; j++) {
1388 				if (!cpudev->c_ident[j])
1389 					continue;
1390 				pr_info("  %s %s\n", cpudev->c_vendor,
1391 					cpudev->c_ident[j]);
1392 			}
1393 		}
1394 #endif
1395 	}
1396 	early_identify_cpu(&boot_cpu_data);
1397 }
1398 
1399 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1400 {
1401 #ifdef CONFIG_X86_64
1402 	/*
1403 	 * Empirically, writing zero to a segment selector on AMD does
1404 	 * not clear the base, whereas writing zero to a segment
1405 	 * selector on Intel does clear the base.  Intel's behavior
1406 	 * allows slightly faster context switches in the common case
1407 	 * where GS is unused by the prev and next threads.
1408 	 *
1409 	 * Since neither vendor documents this anywhere that I can see,
1410 	 * detect it directly instead of hard-coding the choice by
1411 	 * vendor.
1412 	 *
1413 	 * I've designated AMD's behavior as the "bug" because it's
1414 	 * counterintuitive and less friendly.
1415 	 */
1416 
1417 	unsigned long old_base, tmp;
1418 	rdmsrl(MSR_FS_BASE, old_base);
1419 	wrmsrl(MSR_FS_BASE, 1);
1420 	loadsegment(fs, 0);
1421 	rdmsrl(MSR_FS_BASE, tmp);
1422 	if (tmp != 0)
1423 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1424 	wrmsrl(MSR_FS_BASE, old_base);
1425 #endif
1426 }
1427 
1428 static void generic_identify(struct cpuinfo_x86 *c)
1429 {
1430 	c->extended_cpuid_level = 0;
1431 
1432 	if (!have_cpuid_p())
1433 		identify_cpu_without_cpuid(c);
1434 
1435 	/* cyrix could have cpuid enabled via c_identify()*/
1436 	if (!have_cpuid_p())
1437 		return;
1438 
1439 	cpu_detect(c);
1440 
1441 	get_cpu_vendor(c);
1442 
1443 	get_cpu_cap(c);
1444 
1445 	get_cpu_address_sizes(c);
1446 
1447 	if (c->cpuid_level >= 0x00000001) {
1448 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1449 #ifdef CONFIG_X86_32
1450 # ifdef CONFIG_SMP
1451 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1452 # else
1453 		c->apicid = c->initial_apicid;
1454 # endif
1455 #endif
1456 		c->phys_proc_id = c->initial_apicid;
1457 	}
1458 
1459 	get_model_name(c); /* Default name */
1460 
1461 	detect_null_seg_behavior(c);
1462 
1463 	/*
1464 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1465 	 * systems that run Linux at CPL > 0 may or may not have the
1466 	 * issue, but, even if they have the issue, there's absolutely
1467 	 * nothing we can do about it because we can't use the real IRET
1468 	 * instruction.
1469 	 *
1470 	 * NB: For the time being, only 32-bit kernels support
1471 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1472 	 * whether to apply espfix using paravirt hooks.  If any
1473 	 * non-paravirt system ever shows up that does *not* have the
1474 	 * ESPFIX issue, we can change this.
1475 	 */
1476 #ifdef CONFIG_X86_32
1477 	set_cpu_bug(c, X86_BUG_ESPFIX);
1478 #endif
1479 }
1480 
1481 /*
1482  * Validate that ACPI/mptables have the same information about the
1483  * effective APIC id and update the package map.
1484  */
1485 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1486 {
1487 #ifdef CONFIG_SMP
1488 	unsigned int apicid, cpu = smp_processor_id();
1489 
1490 	apicid = apic->cpu_present_to_apicid(cpu);
1491 
1492 	if (apicid != c->apicid) {
1493 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1494 		       cpu, apicid, c->initial_apicid);
1495 	}
1496 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1497 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1498 #else
1499 	c->logical_proc_id = 0;
1500 #endif
1501 }
1502 
1503 /*
1504  * This does the hard work of actually picking apart the CPU stuff...
1505  */
1506 static void identify_cpu(struct cpuinfo_x86 *c)
1507 {
1508 	int i;
1509 
1510 	c->loops_per_jiffy = loops_per_jiffy;
1511 	c->x86_cache_size = 0;
1512 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1513 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1514 	c->x86_vendor_id[0] = '\0'; /* Unset */
1515 	c->x86_model_id[0] = '\0';  /* Unset */
1516 	c->x86_max_cores = 1;
1517 	c->x86_coreid_bits = 0;
1518 	c->cu_id = 0xff;
1519 #ifdef CONFIG_X86_64
1520 	c->x86_clflush_size = 64;
1521 	c->x86_phys_bits = 36;
1522 	c->x86_virt_bits = 48;
1523 #else
1524 	c->cpuid_level = -1;	/* CPUID not detected */
1525 	c->x86_clflush_size = 32;
1526 	c->x86_phys_bits = 32;
1527 	c->x86_virt_bits = 32;
1528 #endif
1529 	c->x86_cache_alignment = c->x86_clflush_size;
1530 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1531 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1532 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1533 #endif
1534 
1535 	generic_identify(c);
1536 
1537 	if (this_cpu->c_identify)
1538 		this_cpu->c_identify(c);
1539 
1540 	/* Clear/Set all flags overridden by options, after probe */
1541 	apply_forced_caps(c);
1542 
1543 #ifdef CONFIG_X86_64
1544 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1545 #endif
1546 
1547 	/*
1548 	 * Vendor-specific initialization.  In this section we
1549 	 * canonicalize the feature flags, meaning if there are
1550 	 * features a certain CPU supports which CPUID doesn't
1551 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1552 	 * we handle them here.
1553 	 *
1554 	 * At the end of this section, c->x86_capability better
1555 	 * indicate the features this CPU genuinely supports!
1556 	 */
1557 	if (this_cpu->c_init)
1558 		this_cpu->c_init(c);
1559 
1560 	/* Disable the PN if appropriate */
1561 	squash_the_stupid_serial_number(c);
1562 
1563 	/* Set up SMEP/SMAP/UMIP */
1564 	setup_smep(c);
1565 	setup_smap(c);
1566 	setup_umip(c);
1567 
1568 	/* Enable FSGSBASE instructions if available. */
1569 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1570 		cr4_set_bits(X86_CR4_FSGSBASE);
1571 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1572 	}
1573 
1574 	/*
1575 	 * The vendor-specific functions might have changed features.
1576 	 * Now we do "generic changes."
1577 	 */
1578 
1579 	/* Filter out anything that depends on CPUID levels we don't have */
1580 	filter_cpuid_features(c, true);
1581 
1582 	/* If the model name is still unset, do table lookup. */
1583 	if (!c->x86_model_id[0]) {
1584 		const char *p;
1585 		p = table_lookup_model(c);
1586 		if (p)
1587 			strcpy(c->x86_model_id, p);
1588 		else
1589 			/* Last resort... */
1590 			sprintf(c->x86_model_id, "%02x/%02x",
1591 				c->x86, c->x86_model);
1592 	}
1593 
1594 #ifdef CONFIG_X86_64
1595 	detect_ht(c);
1596 #endif
1597 
1598 	x86_init_rdrand(c);
1599 	setup_pku(c);
1600 
1601 	/*
1602 	 * Clear/Set all flags overridden by options, need do it
1603 	 * before following smp all cpus cap AND.
1604 	 */
1605 	apply_forced_caps(c);
1606 
1607 	/*
1608 	 * On SMP, boot_cpu_data holds the common feature set between
1609 	 * all CPUs; so make sure that we indicate which features are
1610 	 * common between the CPUs.  The first time this routine gets
1611 	 * executed, c == &boot_cpu_data.
1612 	 */
1613 	if (c != &boot_cpu_data) {
1614 		/* AND the already accumulated flags with these */
1615 		for (i = 0; i < NCAPINTS; i++)
1616 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1617 
1618 		/* OR, i.e. replicate the bug flags */
1619 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1620 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1621 	}
1622 
1623 	/* Init Machine Check Exception if available. */
1624 	mcheck_cpu_init(c);
1625 
1626 	select_idle_routine(c);
1627 
1628 #ifdef CONFIG_NUMA
1629 	numa_add_cpu(smp_processor_id());
1630 #endif
1631 }
1632 
1633 /*
1634  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1635  * on 32-bit kernels:
1636  */
1637 #ifdef CONFIG_X86_32
1638 void enable_sep_cpu(void)
1639 {
1640 	struct tss_struct *tss;
1641 	int cpu;
1642 
1643 	if (!boot_cpu_has(X86_FEATURE_SEP))
1644 		return;
1645 
1646 	cpu = get_cpu();
1647 	tss = &per_cpu(cpu_tss_rw, cpu);
1648 
1649 	/*
1650 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1651 	 * see the big comment in struct x86_hw_tss's definition.
1652 	 */
1653 
1654 	tss->x86_tss.ss1 = __KERNEL_CS;
1655 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1656 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1657 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1658 
1659 	put_cpu();
1660 }
1661 #endif
1662 
1663 void __init identify_boot_cpu(void)
1664 {
1665 	identify_cpu(&boot_cpu_data);
1666 #ifdef CONFIG_X86_32
1667 	sysenter_setup();
1668 	enable_sep_cpu();
1669 #endif
1670 	cpu_detect_tlb(&boot_cpu_data);
1671 	setup_cr_pinning();
1672 
1673 	tsx_init();
1674 }
1675 
1676 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1677 {
1678 	BUG_ON(c == &boot_cpu_data);
1679 	identify_cpu(c);
1680 #ifdef CONFIG_X86_32
1681 	enable_sep_cpu();
1682 #endif
1683 	mtrr_ap_init();
1684 	validate_apic_and_package_id(c);
1685 	x86_spec_ctrl_setup_ap();
1686 	update_srbds_msr();
1687 }
1688 
1689 static __init int setup_noclflush(char *arg)
1690 {
1691 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1692 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1693 	return 1;
1694 }
1695 __setup("noclflush", setup_noclflush);
1696 
1697 void print_cpu_info(struct cpuinfo_x86 *c)
1698 {
1699 	const char *vendor = NULL;
1700 
1701 	if (c->x86_vendor < X86_VENDOR_NUM) {
1702 		vendor = this_cpu->c_vendor;
1703 	} else {
1704 		if (c->cpuid_level >= 0)
1705 			vendor = c->x86_vendor_id;
1706 	}
1707 
1708 	if (vendor && !strstr(c->x86_model_id, vendor))
1709 		pr_cont("%s ", vendor);
1710 
1711 	if (c->x86_model_id[0])
1712 		pr_cont("%s", c->x86_model_id);
1713 	else
1714 		pr_cont("%d86", c->x86);
1715 
1716 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1717 
1718 	if (c->x86_stepping || c->cpuid_level >= 0)
1719 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1720 	else
1721 		pr_cont(")\n");
1722 }
1723 
1724 /*
1725  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1726  * function prevents it from becoming an environment variable for init.
1727  */
1728 static __init int setup_clearcpuid(char *arg)
1729 {
1730 	return 1;
1731 }
1732 __setup("clearcpuid=", setup_clearcpuid);
1733 
1734 #ifdef CONFIG_X86_64
1735 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1736 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1737 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1738 
1739 /*
1740  * The following percpu variables are hot.  Align current_task to
1741  * cacheline size such that they fall in the same cacheline.
1742  */
1743 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1744 	&init_task;
1745 EXPORT_PER_CPU_SYMBOL(current_task);
1746 
1747 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1748 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1749 
1750 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1751 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1752 
1753 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1754 
1755 /* May not be marked __init: used by software suspend */
1756 void syscall_init(void)
1757 {
1758 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1759 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1760 
1761 #ifdef CONFIG_IA32_EMULATION
1762 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1763 	/*
1764 	 * This only works on Intel CPUs.
1765 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1766 	 * This does not cause SYSENTER to jump to the wrong location, because
1767 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1768 	 */
1769 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1770 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1771 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1772 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1773 #else
1774 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1775 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1776 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1777 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1778 #endif
1779 
1780 	/*
1781 	 * Flags to clear on syscall; clear as much as possible
1782 	 * to minimize user space-kernel interference.
1783 	 */
1784 	wrmsrl(MSR_SYSCALL_MASK,
1785 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1786 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1787 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1788 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1789 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
1790 }
1791 
1792 #else	/* CONFIG_X86_64 */
1793 
1794 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1795 EXPORT_PER_CPU_SYMBOL(current_task);
1796 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1797 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1798 
1799 /*
1800  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1801  * the top of the kernel stack.  Use an extra percpu variable to track the
1802  * top of the kernel stack directly.
1803  */
1804 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1805 	(unsigned long)&init_thread_union + THREAD_SIZE;
1806 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1807 
1808 #ifdef CONFIG_STACKPROTECTOR
1809 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1810 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1811 #endif
1812 
1813 #endif	/* CONFIG_X86_64 */
1814 
1815 /*
1816  * Clear all 6 debug registers:
1817  */
1818 static void clear_all_debug_regs(void)
1819 {
1820 	int i;
1821 
1822 	for (i = 0; i < 8; i++) {
1823 		/* Ignore db4, db5 */
1824 		if ((i == 4) || (i == 5))
1825 			continue;
1826 
1827 		set_debugreg(0, i);
1828 	}
1829 }
1830 
1831 #ifdef CONFIG_KGDB
1832 /*
1833  * Restore debug regs if using kgdbwait and you have a kernel debugger
1834  * connection established.
1835  */
1836 static void dbg_restore_debug_regs(void)
1837 {
1838 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1839 		arch_kgdb_ops.correct_hw_break();
1840 }
1841 #else /* ! CONFIG_KGDB */
1842 #define dbg_restore_debug_regs()
1843 #endif /* ! CONFIG_KGDB */
1844 
1845 static void wait_for_master_cpu(int cpu)
1846 {
1847 #ifdef CONFIG_SMP
1848 	/*
1849 	 * wait for ACK from master CPU before continuing
1850 	 * with AP initialization
1851 	 */
1852 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1853 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1854 		cpu_relax();
1855 #endif
1856 }
1857 
1858 #ifdef CONFIG_X86_64
1859 static inline void setup_getcpu(int cpu)
1860 {
1861 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1862 	struct desc_struct d = { };
1863 
1864 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1865 		wrmsr(MSR_TSC_AUX, cpudata, 0);
1866 
1867 	/* Store CPU and node number in limit. */
1868 	d.limit0 = cpudata;
1869 	d.limit1 = cpudata >> 16;
1870 
1871 	d.type = 5;		/* RO data, expand down, accessed */
1872 	d.dpl = 3;		/* Visible to user code */
1873 	d.s = 1;		/* Not a system segment */
1874 	d.p = 1;		/* Present */
1875 	d.d = 1;		/* 32-bit */
1876 
1877 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1878 }
1879 
1880 static inline void ucode_cpu_init(int cpu)
1881 {
1882 	if (cpu)
1883 		load_ucode_ap();
1884 }
1885 
1886 static inline void tss_setup_ist(struct tss_struct *tss)
1887 {
1888 	/* Set up the per-CPU TSS IST stacks */
1889 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1890 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1891 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1892 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1893 	/* Only mapped when SEV-ES is active */
1894 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1895 }
1896 
1897 #else /* CONFIG_X86_64 */
1898 
1899 static inline void setup_getcpu(int cpu) { }
1900 
1901 static inline void ucode_cpu_init(int cpu)
1902 {
1903 	show_ucode_info_early();
1904 }
1905 
1906 static inline void tss_setup_ist(struct tss_struct *tss) { }
1907 
1908 #endif /* !CONFIG_X86_64 */
1909 
1910 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1911 {
1912 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1913 
1914 #ifdef CONFIG_X86_IOPL_IOPERM
1915 	tss->io_bitmap.prev_max = 0;
1916 	tss->io_bitmap.prev_sequence = 0;
1917 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1918 	/*
1919 	 * Invalidate the extra array entry past the end of the all
1920 	 * permission bitmap as required by the hardware.
1921 	 */
1922 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1923 #endif
1924 }
1925 
1926 /*
1927  * Setup everything needed to handle exceptions from the IDT, including the IST
1928  * exceptions which use paranoid_entry().
1929  */
1930 void cpu_init_exception_handling(void)
1931 {
1932 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1933 	int cpu = raw_smp_processor_id();
1934 
1935 	/* paranoid_entry() gets the CPU number from the GDT */
1936 	setup_getcpu(cpu);
1937 
1938 	/* IST vectors need TSS to be set up. */
1939 	tss_setup_ist(tss);
1940 	tss_setup_io_bitmap(tss);
1941 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942 
1943 	load_TR_desc();
1944 
1945 	/* Finally load the IDT */
1946 	load_current_idt();
1947 }
1948 
1949 /*
1950  * cpu_init() initializes state that is per-CPU. Some data is already
1951  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1952  * reload it nevertheless, this function acts as a 'CPU state barrier',
1953  * nothing should get across.
1954  */
1955 void cpu_init(void)
1956 {
1957 	struct task_struct *cur = current;
1958 	int cpu = raw_smp_processor_id();
1959 
1960 	wait_for_master_cpu(cpu);
1961 
1962 	ucode_cpu_init(cpu);
1963 
1964 #ifdef CONFIG_NUMA
1965 	if (this_cpu_read(numa_node) == 0 &&
1966 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1967 		set_numa_node(early_cpu_to_node(cpu));
1968 #endif
1969 	pr_debug("Initializing CPU#%d\n", cpu);
1970 
1971 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1972 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1973 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1974 
1975 	/*
1976 	 * Initialize the per-CPU GDT with the boot GDT,
1977 	 * and set up the GDT descriptor:
1978 	 */
1979 	switch_to_new_gdt(cpu);
1980 
1981 	if (IS_ENABLED(CONFIG_X86_64)) {
1982 		loadsegment(fs, 0);
1983 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1984 		syscall_init();
1985 
1986 		wrmsrl(MSR_FS_BASE, 0);
1987 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
1988 		barrier();
1989 
1990 		x2apic_setup();
1991 	}
1992 
1993 	mmgrab(&init_mm);
1994 	cur->active_mm = &init_mm;
1995 	BUG_ON(cur->mm);
1996 	initialize_tlbstate_and_flush();
1997 	enter_lazy_tlb(&init_mm, cur);
1998 
1999 	/*
2000 	 * sp0 points to the entry trampoline stack regardless of what task
2001 	 * is running.
2002 	 */
2003 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2004 
2005 	load_mm_ldt(&init_mm);
2006 
2007 	clear_all_debug_regs();
2008 	dbg_restore_debug_regs();
2009 
2010 	doublefault_init_cpu_tss();
2011 
2012 	fpu__init_cpu();
2013 
2014 	if (is_uv_system())
2015 		uv_cpu_init();
2016 
2017 	load_fixmap_gdt(cpu);
2018 }
2019 
2020 #ifdef CONFIG_SMP
2021 void cpu_init_secondary(void)
2022 {
2023 	/*
2024 	 * Relies on the BP having set-up the IDT tables, which are loaded
2025 	 * on this CPU in cpu_init_exception_handling().
2026 	 */
2027 	cpu_init_exception_handling();
2028 	cpu_init();
2029 }
2030 #endif
2031 
2032 /*
2033  * The microcode loader calls this upon late microcode load to recheck features,
2034  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2035  * hotplug lock.
2036  */
2037 void microcode_check(void)
2038 {
2039 	struct cpuinfo_x86 info;
2040 
2041 	perf_check_microcode();
2042 
2043 	/* Reload CPUID max function as it might've changed. */
2044 	info.cpuid_level = cpuid_eax(0);
2045 
2046 	/*
2047 	 * Copy all capability leafs to pick up the synthetic ones so that
2048 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2049 	 * get overwritten in get_cpu_cap().
2050 	 */
2051 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2052 
2053 	get_cpu_cap(&info);
2054 
2055 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2056 		return;
2057 
2058 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2059 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2060 }
2061 
2062 /*
2063  * Invoked from core CPU hotplug code after hotplug operations
2064  */
2065 void arch_smt_update(void)
2066 {
2067 	/* Handle the speculative execution misfeatures */
2068 	cpu_bugs_smt_update();
2069 	/* Check whether IPI broadcasting can be enabled */
2070 	apic_smt_update();
2071 }
2072