xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 151f4e2b)
1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
3 
4 #include <linux/memblock.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/io.h>
21 #include <linux/syscore_ops.h>
22 
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
39 #include <asm/apic.h>
40 #include <asm/desc.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mtrr.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
45 #include <asm/asm.h>
46 #include <asm/bugs.h>
47 #include <asm/cpu.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 #include <asm/pat.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
55 
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
58 #endif
59 
60 #include "cpu.h"
61 
62 u32 elf_hwcap2 __read_mostly;
63 
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68 
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71 
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75 
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78 
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87 
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91 	cpu_detect_cache_sizes(c);
92 #else
93 	/* Not much we can do here... */
94 	/* Check if at least it has cpuid */
95 	if (c->cpuid_level == -1) {
96 		/* No cpuid. It must be an ancient CPU */
97 		if (c->x86 == 4)
98 			strcpy(c->x86_model_id, "486");
99 		else if (c->x86 == 3)
100 			strcpy(c->x86_model_id, "386");
101 	}
102 #endif
103 }
104 
105 static const struct cpu_dev default_cpu = {
106 	.c_init		= default_init,
107 	.c_vendor	= "Unknown",
108 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
109 };
110 
111 static const struct cpu_dev *this_cpu = &default_cpu;
112 
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115 	/*
116 	 * We need valid kernel segments for data and code in long mode too
117 	 * IRET will check the segment types  kkeil 2000/10/28
118 	 * Also sysret mandates a special GDT layout
119 	 *
120 	 * TLS descriptors are currently at a different place compared to i386.
121 	 * Hopefully nobody expects them at a fixed place (Wine?)
122 	 */
123 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134 	/*
135 	 * Segments used for calling PnP BIOS have byte granularity.
136 	 * They code segments and data segments have fixed 64k limits,
137 	 * the transfer segment sizes are set at run time.
138 	 */
139 	/* 32-bit code */
140 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141 	/* 16-bit code */
142 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143 	/* 16-bit data */
144 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145 	/* 16-bit data */
146 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
147 	/* 16-bit data */
148 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
149 	/*
150 	 * The APM segments have byte granularity and their bases
151 	 * are set at run time.  All have 64k limits.
152 	 */
153 	/* 32-bit code */
154 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155 	/* 16-bit code */
156 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157 	/* data */
158 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159 
160 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 	GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166 
167 static int __init x86_mpx_setup(char *s)
168 {
169 	/* require an exact match without trailing characters */
170 	if (strlen(s))
171 		return 0;
172 
173 	/* do not emit a message if the feature is not present */
174 	if (!boot_cpu_has(X86_FEATURE_MPX))
175 		return 1;
176 
177 	setup_clear_cpu_cap(X86_FEATURE_MPX);
178 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
179 	return 1;
180 }
181 __setup("nompx", x86_mpx_setup);
182 
183 #ifdef CONFIG_X86_64
184 static int __init x86_nopcid_setup(char *s)
185 {
186 	/* nopcid doesn't accept parameters */
187 	if (s)
188 		return -EINVAL;
189 
190 	/* do not emit a message if the feature is not present */
191 	if (!boot_cpu_has(X86_FEATURE_PCID))
192 		return 0;
193 
194 	setup_clear_cpu_cap(X86_FEATURE_PCID);
195 	pr_info("nopcid: PCID feature disabled\n");
196 	return 0;
197 }
198 early_param("nopcid", x86_nopcid_setup);
199 #endif
200 
201 static int __init x86_noinvpcid_setup(char *s)
202 {
203 	/* noinvpcid doesn't accept parameters */
204 	if (s)
205 		return -EINVAL;
206 
207 	/* do not emit a message if the feature is not present */
208 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
209 		return 0;
210 
211 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212 	pr_info("noinvpcid: INVPCID feature disabled\n");
213 	return 0;
214 }
215 early_param("noinvpcid", x86_noinvpcid_setup);
216 
217 #ifdef CONFIG_X86_32
218 static int cachesize_override = -1;
219 static int disable_x86_serial_nr = 1;
220 
221 static int __init cachesize_setup(char *str)
222 {
223 	get_option(&str, &cachesize_override);
224 	return 1;
225 }
226 __setup("cachesize=", cachesize_setup);
227 
228 static int __init x86_sep_setup(char *s)
229 {
230 	setup_clear_cpu_cap(X86_FEATURE_SEP);
231 	return 1;
232 }
233 __setup("nosep", x86_sep_setup);
234 
235 /* Standard macro to see if a specific flag is changeable */
236 static inline int flag_is_changeable_p(u32 flag)
237 {
238 	u32 f1, f2;
239 
240 	/*
241 	 * Cyrix and IDT cpus allow disabling of CPUID
242 	 * so the code below may return different results
243 	 * when it is executed before and after enabling
244 	 * the CPUID. Add "volatile" to not allow gcc to
245 	 * optimize the subsequent calls to this function.
246 	 */
247 	asm volatile ("pushfl		\n\t"
248 		      "pushfl		\n\t"
249 		      "popl %0		\n\t"
250 		      "movl %0, %1	\n\t"
251 		      "xorl %2, %0	\n\t"
252 		      "pushl %0		\n\t"
253 		      "popfl		\n\t"
254 		      "pushfl		\n\t"
255 		      "popl %0		\n\t"
256 		      "popfl		\n\t"
257 
258 		      : "=&r" (f1), "=&r" (f2)
259 		      : "ir" (flag));
260 
261 	return ((f1^f2) & flag) != 0;
262 }
263 
264 /* Probe for the CPUID instruction */
265 int have_cpuid_p(void)
266 {
267 	return flag_is_changeable_p(X86_EFLAGS_ID);
268 }
269 
270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272 	unsigned long lo, hi;
273 
274 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275 		return;
276 
277 	/* Disable processor serial number: */
278 
279 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280 	lo |= 0x200000;
281 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282 
283 	pr_notice("CPU serial number disabled.\n");
284 	clear_cpu_cap(c, X86_FEATURE_PN);
285 
286 	/* Disabling the serial number may affect the cpuid level */
287 	c->cpuid_level = cpuid_eax(0);
288 }
289 
290 static int __init x86_serial_nr_setup(char *s)
291 {
292 	disable_x86_serial_nr = 0;
293 	return 1;
294 }
295 __setup("serialnumber", x86_serial_nr_setup);
296 #else
297 static inline int flag_is_changeable_p(u32 flag)
298 {
299 	return 1;
300 }
301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302 {
303 }
304 #endif
305 
306 static __init int setup_disable_smep(char *arg)
307 {
308 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
309 	/* Check for things that depend on SMEP being enabled: */
310 	check_mpx_erratum(&boot_cpu_data);
311 	return 1;
312 }
313 __setup("nosmep", setup_disable_smep);
314 
315 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
316 {
317 	if (cpu_has(c, X86_FEATURE_SMEP))
318 		cr4_set_bits(X86_CR4_SMEP);
319 }
320 
321 static __init int setup_disable_smap(char *arg)
322 {
323 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
324 	return 1;
325 }
326 __setup("nosmap", setup_disable_smap);
327 
328 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329 {
330 	unsigned long eflags = native_save_fl();
331 
332 	/* This should have been cleared long ago */
333 	BUG_ON(eflags & X86_EFLAGS_AC);
334 
335 	if (cpu_has(c, X86_FEATURE_SMAP)) {
336 #ifdef CONFIG_X86_SMAP
337 		cr4_set_bits(X86_CR4_SMAP);
338 #else
339 		cr4_clear_bits(X86_CR4_SMAP);
340 #endif
341 	}
342 }
343 
344 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345 {
346 	/* Check the boot processor, plus build option for UMIP. */
347 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348 		goto out;
349 
350 	/* Check the current processor's cpuid bits. */
351 	if (!cpu_has(c, X86_FEATURE_UMIP))
352 		goto out;
353 
354 	cr4_set_bits(X86_CR4_UMIP);
355 
356 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
357 
358 	return;
359 
360 out:
361 	/*
362 	 * Make sure UMIP is disabled in case it was enabled in a
363 	 * previous boot (e.g., via kexec).
364 	 */
365 	cr4_clear_bits(X86_CR4_UMIP);
366 }
367 
368 /*
369  * Protection Keys are not available in 32-bit mode.
370  */
371 static bool pku_disabled;
372 
373 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374 {
375 	struct pkru_state *pk;
376 
377 	/* check the boot processor, plus compile options for PKU: */
378 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
379 		return;
380 	/* checks the actual processor's cpuid bits: */
381 	if (!cpu_has(c, X86_FEATURE_PKU))
382 		return;
383 	if (pku_disabled)
384 		return;
385 
386 	cr4_set_bits(X86_CR4_PKE);
387 	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
388 	if (pk)
389 		pk->pkru = init_pkru_value;
390 	/*
391 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
392 	 * cpuid bit to be set.  We need to ensure that we
393 	 * update that bit in this CPU's "cpu_info".
394 	 */
395 	get_cpu_cap(c);
396 }
397 
398 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
399 static __init int setup_disable_pku(char *arg)
400 {
401 	/*
402 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
403 	 * runtime checks are against OSPKE so clearing the
404 	 * bit does nothing.
405 	 *
406 	 * This way, we will see "pku" in cpuinfo, but not
407 	 * "ospke", which is exactly what we want.  It shows
408 	 * that the CPU has PKU, but the OS has not enabled it.
409 	 * This happens to be exactly how a system would look
410 	 * if we disabled the config option.
411 	 */
412 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
413 	pku_disabled = true;
414 	return 1;
415 }
416 __setup("nopku", setup_disable_pku);
417 #endif /* CONFIG_X86_64 */
418 
419 /*
420  * Some CPU features depend on higher CPUID levels, which may not always
421  * be available due to CPUID level capping or broken virtualization
422  * software.  Add those features to this table to auto-disable them.
423  */
424 struct cpuid_dependent_feature {
425 	u32 feature;
426 	u32 level;
427 };
428 
429 static const struct cpuid_dependent_feature
430 cpuid_dependent_features[] = {
431 	{ X86_FEATURE_MWAIT,		0x00000005 },
432 	{ X86_FEATURE_DCA,		0x00000009 },
433 	{ X86_FEATURE_XSAVE,		0x0000000d },
434 	{ 0, 0 }
435 };
436 
437 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
438 {
439 	const struct cpuid_dependent_feature *df;
440 
441 	for (df = cpuid_dependent_features; df->feature; df++) {
442 
443 		if (!cpu_has(c, df->feature))
444 			continue;
445 		/*
446 		 * Note: cpuid_level is set to -1 if unavailable, but
447 		 * extended_extended_level is set to 0 if unavailable
448 		 * and the legitimate extended levels are all negative
449 		 * when signed; hence the weird messing around with
450 		 * signs here...
451 		 */
452 		if (!((s32)df->level < 0 ?
453 		     (u32)df->level > (u32)c->extended_cpuid_level :
454 		     (s32)df->level > (s32)c->cpuid_level))
455 			continue;
456 
457 		clear_cpu_cap(c, df->feature);
458 		if (!warn)
459 			continue;
460 
461 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
462 			x86_cap_flag(df->feature), df->level);
463 	}
464 }
465 
466 /*
467  * Naming convention should be: <Name> [(<Codename>)]
468  * This table only is used unless init_<vendor>() below doesn't set it;
469  * in particular, if CPUID levels 0x80000002..4 are supported, this
470  * isn't used
471  */
472 
473 /* Look up CPU names by table lookup. */
474 static const char *table_lookup_model(struct cpuinfo_x86 *c)
475 {
476 #ifdef CONFIG_X86_32
477 	const struct legacy_cpu_model_info *info;
478 
479 	if (c->x86_model >= 16)
480 		return NULL;	/* Range check */
481 
482 	if (!this_cpu)
483 		return NULL;
484 
485 	info = this_cpu->legacy_models;
486 
487 	while (info->family) {
488 		if (info->family == c->x86)
489 			return info->model_names[c->x86_model];
490 		info++;
491 	}
492 #endif
493 	return NULL;		/* Not found */
494 }
495 
496 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
497 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
498 
499 void load_percpu_segment(int cpu)
500 {
501 #ifdef CONFIG_X86_32
502 	loadsegment(fs, __KERNEL_PERCPU);
503 #else
504 	__loadsegment_simple(gs, 0);
505 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
506 #endif
507 	load_stack_canary_segment();
508 }
509 
510 #ifdef CONFIG_X86_32
511 /* The 32-bit entry code needs to find cpu_entry_area. */
512 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
513 #endif
514 
515 /* Load the original GDT from the per-cpu structure */
516 void load_direct_gdt(int cpu)
517 {
518 	struct desc_ptr gdt_descr;
519 
520 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
521 	gdt_descr.size = GDT_SIZE - 1;
522 	load_gdt(&gdt_descr);
523 }
524 EXPORT_SYMBOL_GPL(load_direct_gdt);
525 
526 /* Load a fixmap remapping of the per-cpu GDT */
527 void load_fixmap_gdt(int cpu)
528 {
529 	struct desc_ptr gdt_descr;
530 
531 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
532 	gdt_descr.size = GDT_SIZE - 1;
533 	load_gdt(&gdt_descr);
534 }
535 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
536 
537 /*
538  * Current gdt points %fs at the "master" per-cpu area: after this,
539  * it's on the real one.
540  */
541 void switch_to_new_gdt(int cpu)
542 {
543 	/* Load the original GDT */
544 	load_direct_gdt(cpu);
545 	/* Reload the per-cpu base */
546 	load_percpu_segment(cpu);
547 }
548 
549 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
550 
551 static void get_model_name(struct cpuinfo_x86 *c)
552 {
553 	unsigned int *v;
554 	char *p, *q, *s;
555 
556 	if (c->extended_cpuid_level < 0x80000004)
557 		return;
558 
559 	v = (unsigned int *)c->x86_model_id;
560 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
561 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
562 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
563 	c->x86_model_id[48] = 0;
564 
565 	/* Trim whitespace */
566 	p = q = s = &c->x86_model_id[0];
567 
568 	while (*p == ' ')
569 		p++;
570 
571 	while (*p) {
572 		/* Note the last non-whitespace index */
573 		if (!isspace(*p))
574 			s = q;
575 
576 		*q++ = *p++;
577 	}
578 
579 	*(s + 1) = '\0';
580 }
581 
582 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
583 {
584 	unsigned int eax, ebx, ecx, edx;
585 
586 	c->x86_max_cores = 1;
587 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
588 		return;
589 
590 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
591 	if (eax & 0x1f)
592 		c->x86_max_cores = (eax >> 26) + 1;
593 }
594 
595 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
596 {
597 	unsigned int n, dummy, ebx, ecx, edx, l2size;
598 
599 	n = c->extended_cpuid_level;
600 
601 	if (n >= 0x80000005) {
602 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
603 		c->x86_cache_size = (ecx>>24) + (edx>>24);
604 #ifdef CONFIG_X86_64
605 		/* On K8 L1 TLB is inclusive, so don't count it */
606 		c->x86_tlbsize = 0;
607 #endif
608 	}
609 
610 	if (n < 0x80000006)	/* Some chips just has a large L1. */
611 		return;
612 
613 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
614 	l2size = ecx >> 16;
615 
616 #ifdef CONFIG_X86_64
617 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
618 #else
619 	/* do processor-specific cache resizing */
620 	if (this_cpu->legacy_cache_size)
621 		l2size = this_cpu->legacy_cache_size(c, l2size);
622 
623 	/* Allow user to override all this if necessary. */
624 	if (cachesize_override != -1)
625 		l2size = cachesize_override;
626 
627 	if (l2size == 0)
628 		return;		/* Again, no L2 cache is possible */
629 #endif
630 
631 	c->x86_cache_size = l2size;
632 }
633 
634 u16 __read_mostly tlb_lli_4k[NR_INFO];
635 u16 __read_mostly tlb_lli_2m[NR_INFO];
636 u16 __read_mostly tlb_lli_4m[NR_INFO];
637 u16 __read_mostly tlb_lld_4k[NR_INFO];
638 u16 __read_mostly tlb_lld_2m[NR_INFO];
639 u16 __read_mostly tlb_lld_4m[NR_INFO];
640 u16 __read_mostly tlb_lld_1g[NR_INFO];
641 
642 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
643 {
644 	if (this_cpu->c_detect_tlb)
645 		this_cpu->c_detect_tlb(c);
646 
647 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
648 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
649 		tlb_lli_4m[ENTRIES]);
650 
651 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
652 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
653 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
654 }
655 
656 int detect_ht_early(struct cpuinfo_x86 *c)
657 {
658 #ifdef CONFIG_SMP
659 	u32 eax, ebx, ecx, edx;
660 
661 	if (!cpu_has(c, X86_FEATURE_HT))
662 		return -1;
663 
664 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
665 		return -1;
666 
667 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
668 		return -1;
669 
670 	cpuid(1, &eax, &ebx, &ecx, &edx);
671 
672 	smp_num_siblings = (ebx & 0xff0000) >> 16;
673 	if (smp_num_siblings == 1)
674 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
675 #endif
676 	return 0;
677 }
678 
679 void detect_ht(struct cpuinfo_x86 *c)
680 {
681 #ifdef CONFIG_SMP
682 	int index_msb, core_bits;
683 
684 	if (detect_ht_early(c) < 0)
685 		return;
686 
687 	index_msb = get_count_order(smp_num_siblings);
688 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
689 
690 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
691 
692 	index_msb = get_count_order(smp_num_siblings);
693 
694 	core_bits = get_count_order(c->x86_max_cores);
695 
696 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
697 				       ((1 << core_bits) - 1);
698 #endif
699 }
700 
701 static void get_cpu_vendor(struct cpuinfo_x86 *c)
702 {
703 	char *v = c->x86_vendor_id;
704 	int i;
705 
706 	for (i = 0; i < X86_VENDOR_NUM; i++) {
707 		if (!cpu_devs[i])
708 			break;
709 
710 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
711 		    (cpu_devs[i]->c_ident[1] &&
712 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
713 
714 			this_cpu = cpu_devs[i];
715 			c->x86_vendor = this_cpu->c_x86_vendor;
716 			return;
717 		}
718 	}
719 
720 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
721 		    "CPU: Your system may be unstable.\n", v);
722 
723 	c->x86_vendor = X86_VENDOR_UNKNOWN;
724 	this_cpu = &default_cpu;
725 }
726 
727 void cpu_detect(struct cpuinfo_x86 *c)
728 {
729 	/* Get vendor name */
730 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
731 	      (unsigned int *)&c->x86_vendor_id[0],
732 	      (unsigned int *)&c->x86_vendor_id[8],
733 	      (unsigned int *)&c->x86_vendor_id[4]);
734 
735 	c->x86 = 4;
736 	/* Intel-defined flags: level 0x00000001 */
737 	if (c->cpuid_level >= 0x00000001) {
738 		u32 junk, tfms, cap0, misc;
739 
740 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
741 		c->x86		= x86_family(tfms);
742 		c->x86_model	= x86_model(tfms);
743 		c->x86_stepping	= x86_stepping(tfms);
744 
745 		if (cap0 & (1<<19)) {
746 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
747 			c->x86_cache_alignment = c->x86_clflush_size;
748 		}
749 	}
750 }
751 
752 static void apply_forced_caps(struct cpuinfo_x86 *c)
753 {
754 	int i;
755 
756 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
757 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
758 		c->x86_capability[i] |= cpu_caps_set[i];
759 	}
760 }
761 
762 static void init_speculation_control(struct cpuinfo_x86 *c)
763 {
764 	/*
765 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
766 	 * and they also have a different bit for STIBP support. Also,
767 	 * a hypervisor might have set the individual AMD bits even on
768 	 * Intel CPUs, for finer-grained selection of what's available.
769 	 */
770 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
771 		set_cpu_cap(c, X86_FEATURE_IBRS);
772 		set_cpu_cap(c, X86_FEATURE_IBPB);
773 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
774 	}
775 
776 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
777 		set_cpu_cap(c, X86_FEATURE_STIBP);
778 
779 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
780 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
781 		set_cpu_cap(c, X86_FEATURE_SSBD);
782 
783 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
784 		set_cpu_cap(c, X86_FEATURE_IBRS);
785 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
786 	}
787 
788 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
789 		set_cpu_cap(c, X86_FEATURE_IBPB);
790 
791 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
792 		set_cpu_cap(c, X86_FEATURE_STIBP);
793 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
794 	}
795 
796 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
797 		set_cpu_cap(c, X86_FEATURE_SSBD);
798 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
799 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
800 	}
801 }
802 
803 void get_cpu_cap(struct cpuinfo_x86 *c)
804 {
805 	u32 eax, ebx, ecx, edx;
806 
807 	/* Intel-defined flags: level 0x00000001 */
808 	if (c->cpuid_level >= 0x00000001) {
809 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
810 
811 		c->x86_capability[CPUID_1_ECX] = ecx;
812 		c->x86_capability[CPUID_1_EDX] = edx;
813 	}
814 
815 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
816 	if (c->cpuid_level >= 0x00000006)
817 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
818 
819 	/* Additional Intel-defined flags: level 0x00000007 */
820 	if (c->cpuid_level >= 0x00000007) {
821 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
822 		c->x86_capability[CPUID_7_0_EBX] = ebx;
823 		c->x86_capability[CPUID_7_ECX] = ecx;
824 		c->x86_capability[CPUID_7_EDX] = edx;
825 	}
826 
827 	/* Extended state features: level 0x0000000d */
828 	if (c->cpuid_level >= 0x0000000d) {
829 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
830 
831 		c->x86_capability[CPUID_D_1_EAX] = eax;
832 	}
833 
834 	/* Additional Intel-defined flags: level 0x0000000F */
835 	if (c->cpuid_level >= 0x0000000F) {
836 
837 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
838 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
839 		c->x86_capability[CPUID_F_0_EDX] = edx;
840 
841 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
842 			/* will be overridden if occupancy monitoring exists */
843 			c->x86_cache_max_rmid = ebx;
844 
845 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
846 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
847 			c->x86_capability[CPUID_F_1_EDX] = edx;
848 
849 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
850 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
851 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
852 				c->x86_cache_max_rmid = ecx;
853 				c->x86_cache_occ_scale = ebx;
854 			}
855 		} else {
856 			c->x86_cache_max_rmid = -1;
857 			c->x86_cache_occ_scale = -1;
858 		}
859 	}
860 
861 	/* AMD-defined flags: level 0x80000001 */
862 	eax = cpuid_eax(0x80000000);
863 	c->extended_cpuid_level = eax;
864 
865 	if ((eax & 0xffff0000) == 0x80000000) {
866 		if (eax >= 0x80000001) {
867 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
868 
869 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
870 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
871 		}
872 	}
873 
874 	if (c->extended_cpuid_level >= 0x80000007) {
875 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
876 
877 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
878 		c->x86_power = edx;
879 	}
880 
881 	if (c->extended_cpuid_level >= 0x80000008) {
882 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
883 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
884 	}
885 
886 	if (c->extended_cpuid_level >= 0x8000000a)
887 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
888 
889 	init_scattered_cpuid_features(c);
890 	init_speculation_control(c);
891 
892 	/*
893 	 * Clear/Set all flags overridden by options, after probe.
894 	 * This needs to happen each time we re-probe, which may happen
895 	 * several times during CPU initialization.
896 	 */
897 	apply_forced_caps(c);
898 }
899 
900 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
901 {
902 	u32 eax, ebx, ecx, edx;
903 
904 	if (c->extended_cpuid_level >= 0x80000008) {
905 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
906 
907 		c->x86_virt_bits = (eax >> 8) & 0xff;
908 		c->x86_phys_bits = eax & 0xff;
909 	}
910 #ifdef CONFIG_X86_32
911 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
912 		c->x86_phys_bits = 36;
913 #endif
914 	c->x86_cache_bits = c->x86_phys_bits;
915 }
916 
917 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
918 {
919 #ifdef CONFIG_X86_32
920 	int i;
921 
922 	/*
923 	 * First of all, decide if this is a 486 or higher
924 	 * It's a 486 if we can modify the AC flag
925 	 */
926 	if (flag_is_changeable_p(X86_EFLAGS_AC))
927 		c->x86 = 4;
928 	else
929 		c->x86 = 3;
930 
931 	for (i = 0; i < X86_VENDOR_NUM; i++)
932 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
933 			c->x86_vendor_id[0] = 0;
934 			cpu_devs[i]->c_identify(c);
935 			if (c->x86_vendor_id[0]) {
936 				get_cpu_vendor(c);
937 				break;
938 			}
939 		}
940 #endif
941 }
942 
943 #define NO_SPECULATION	BIT(0)
944 #define NO_MELTDOWN	BIT(1)
945 #define NO_SSB		BIT(2)
946 #define NO_L1TF		BIT(3)
947 #define NO_MDS		BIT(4)
948 #define MSBDS_ONLY	BIT(5)
949 
950 #define VULNWL(_vendor, _family, _model, _whitelist)	\
951 	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
952 
953 #define VULNWL_INTEL(model, whitelist)		\
954 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
955 
956 #define VULNWL_AMD(family, whitelist)		\
957 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
958 
959 #define VULNWL_HYGON(family, whitelist)		\
960 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
961 
962 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
963 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
964 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
965 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
966 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
967 
968 	/* Intel Family 6 */
969 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION),
970 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION),
971 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION),
972 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION),
973 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION),
974 
975 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY),
976 	VULNWL_INTEL(ATOM_SILVERMONT_X,		NO_SSB | NO_L1TF | MSBDS_ONLY),
977 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY),
978 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY),
979 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY),
980 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY),
981 
982 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
983 
984 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY),
985 
986 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF),
987 	VULNWL_INTEL(ATOM_GOLDMONT_X,		NO_MDS | NO_L1TF),
988 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF),
989 
990 	/* AMD Family 0xf - 0x12 */
991 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
992 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
993 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
994 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
995 
996 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
997 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS),
998 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS),
999 	{}
1000 };
1001 
1002 static bool __init cpu_matches(unsigned long which)
1003 {
1004 	const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1005 
1006 	return m && !!(m->driver_data & which);
1007 }
1008 
1009 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1010 {
1011 	u64 ia32_cap = 0;
1012 
1013 	if (cpu_matches(NO_SPECULATION))
1014 		return;
1015 
1016 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1017 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1018 
1019 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1020 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1021 
1022 	if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1023 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1024 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1025 
1026 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1027 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1028 
1029 	if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1030 		setup_force_cpu_bug(X86_BUG_MDS);
1031 		if (cpu_matches(MSBDS_ONLY))
1032 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1033 	}
1034 
1035 	if (cpu_matches(NO_MELTDOWN))
1036 		return;
1037 
1038 	/* Rogue Data Cache Load? No! */
1039 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1040 		return;
1041 
1042 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1043 
1044 	if (cpu_matches(NO_L1TF))
1045 		return;
1046 
1047 	setup_force_cpu_bug(X86_BUG_L1TF);
1048 }
1049 
1050 /*
1051  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1052  * unfortunately, that's not true in practice because of early VIA
1053  * chips and (more importantly) broken virtualizers that are not easy
1054  * to detect. In the latter case it doesn't even *fail* reliably, so
1055  * probing for it doesn't even work. Disable it completely on 32-bit
1056  * unless we can find a reliable way to detect all the broken cases.
1057  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1058  */
1059 static void detect_nopl(void)
1060 {
1061 #ifdef CONFIG_X86_32
1062 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1063 #else
1064 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1065 #endif
1066 }
1067 
1068 /*
1069  * Do minimum CPU detection early.
1070  * Fields really needed: vendor, cpuid_level, family, model, mask,
1071  * cache alignment.
1072  * The others are not touched to avoid unwanted side effects.
1073  *
1074  * WARNING: this function is only called on the boot CPU.  Don't add code
1075  * here that is supposed to run on all CPUs.
1076  */
1077 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1078 {
1079 #ifdef CONFIG_X86_64
1080 	c->x86_clflush_size = 64;
1081 	c->x86_phys_bits = 36;
1082 	c->x86_virt_bits = 48;
1083 #else
1084 	c->x86_clflush_size = 32;
1085 	c->x86_phys_bits = 32;
1086 	c->x86_virt_bits = 32;
1087 #endif
1088 	c->x86_cache_alignment = c->x86_clflush_size;
1089 
1090 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1091 	c->extended_cpuid_level = 0;
1092 
1093 	if (!have_cpuid_p())
1094 		identify_cpu_without_cpuid(c);
1095 
1096 	/* cyrix could have cpuid enabled via c_identify()*/
1097 	if (have_cpuid_p()) {
1098 		cpu_detect(c);
1099 		get_cpu_vendor(c);
1100 		get_cpu_cap(c);
1101 		get_cpu_address_sizes(c);
1102 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1103 
1104 		if (this_cpu->c_early_init)
1105 			this_cpu->c_early_init(c);
1106 
1107 		c->cpu_index = 0;
1108 		filter_cpuid_features(c, false);
1109 
1110 		if (this_cpu->c_bsp_init)
1111 			this_cpu->c_bsp_init(c);
1112 	} else {
1113 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1114 	}
1115 
1116 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1117 
1118 	cpu_set_bug_bits(c);
1119 
1120 	fpu__init_system(c);
1121 
1122 #ifdef CONFIG_X86_32
1123 	/*
1124 	 * Regardless of whether PCID is enumerated, the SDM says
1125 	 * that it can't be enabled in 32-bit mode.
1126 	 */
1127 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1128 #endif
1129 
1130 	/*
1131 	 * Later in the boot process pgtable_l5_enabled() relies on
1132 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1133 	 * enabled by this point we need to clear the feature bit to avoid
1134 	 * false-positives at the later stage.
1135 	 *
1136 	 * pgtable_l5_enabled() can be false here for several reasons:
1137 	 *  - 5-level paging is disabled compile-time;
1138 	 *  - it's 32-bit kernel;
1139 	 *  - machine doesn't support 5-level paging;
1140 	 *  - user specified 'no5lvl' in kernel command line.
1141 	 */
1142 	if (!pgtable_l5_enabled())
1143 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1144 
1145 	detect_nopl();
1146 }
1147 
1148 void __init early_cpu_init(void)
1149 {
1150 	const struct cpu_dev *const *cdev;
1151 	int count = 0;
1152 
1153 #ifdef CONFIG_PROCESSOR_SELECT
1154 	pr_info("KERNEL supported cpus:\n");
1155 #endif
1156 
1157 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1158 		const struct cpu_dev *cpudev = *cdev;
1159 
1160 		if (count >= X86_VENDOR_NUM)
1161 			break;
1162 		cpu_devs[count] = cpudev;
1163 		count++;
1164 
1165 #ifdef CONFIG_PROCESSOR_SELECT
1166 		{
1167 			unsigned int j;
1168 
1169 			for (j = 0; j < 2; j++) {
1170 				if (!cpudev->c_ident[j])
1171 					continue;
1172 				pr_info("  %s %s\n", cpudev->c_vendor,
1173 					cpudev->c_ident[j]);
1174 			}
1175 		}
1176 #endif
1177 	}
1178 	early_identify_cpu(&boot_cpu_data);
1179 }
1180 
1181 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1182 {
1183 #ifdef CONFIG_X86_64
1184 	/*
1185 	 * Empirically, writing zero to a segment selector on AMD does
1186 	 * not clear the base, whereas writing zero to a segment
1187 	 * selector on Intel does clear the base.  Intel's behavior
1188 	 * allows slightly faster context switches in the common case
1189 	 * where GS is unused by the prev and next threads.
1190 	 *
1191 	 * Since neither vendor documents this anywhere that I can see,
1192 	 * detect it directly instead of hardcoding the choice by
1193 	 * vendor.
1194 	 *
1195 	 * I've designated AMD's behavior as the "bug" because it's
1196 	 * counterintuitive and less friendly.
1197 	 */
1198 
1199 	unsigned long old_base, tmp;
1200 	rdmsrl(MSR_FS_BASE, old_base);
1201 	wrmsrl(MSR_FS_BASE, 1);
1202 	loadsegment(fs, 0);
1203 	rdmsrl(MSR_FS_BASE, tmp);
1204 	if (tmp != 0)
1205 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1206 	wrmsrl(MSR_FS_BASE, old_base);
1207 #endif
1208 }
1209 
1210 static void generic_identify(struct cpuinfo_x86 *c)
1211 {
1212 	c->extended_cpuid_level = 0;
1213 
1214 	if (!have_cpuid_p())
1215 		identify_cpu_without_cpuid(c);
1216 
1217 	/* cyrix could have cpuid enabled via c_identify()*/
1218 	if (!have_cpuid_p())
1219 		return;
1220 
1221 	cpu_detect(c);
1222 
1223 	get_cpu_vendor(c);
1224 
1225 	get_cpu_cap(c);
1226 
1227 	get_cpu_address_sizes(c);
1228 
1229 	if (c->cpuid_level >= 0x00000001) {
1230 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1231 #ifdef CONFIG_X86_32
1232 # ifdef CONFIG_SMP
1233 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1234 # else
1235 		c->apicid = c->initial_apicid;
1236 # endif
1237 #endif
1238 		c->phys_proc_id = c->initial_apicid;
1239 	}
1240 
1241 	get_model_name(c); /* Default name */
1242 
1243 	detect_null_seg_behavior(c);
1244 
1245 	/*
1246 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1247 	 * systems that run Linux at CPL > 0 may or may not have the
1248 	 * issue, but, even if they have the issue, there's absolutely
1249 	 * nothing we can do about it because we can't use the real IRET
1250 	 * instruction.
1251 	 *
1252 	 * NB: For the time being, only 32-bit kernels support
1253 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1254 	 * whether to apply espfix using paravirt hooks.  If any
1255 	 * non-paravirt system ever shows up that does *not* have the
1256 	 * ESPFIX issue, we can change this.
1257 	 */
1258 #ifdef CONFIG_X86_32
1259 # ifdef CONFIG_PARAVIRT_XXL
1260 	do {
1261 		extern void native_iret(void);
1262 		if (pv_ops.cpu.iret == native_iret)
1263 			set_cpu_bug(c, X86_BUG_ESPFIX);
1264 	} while (0);
1265 # else
1266 	set_cpu_bug(c, X86_BUG_ESPFIX);
1267 # endif
1268 #endif
1269 }
1270 
1271 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1272 {
1273 	/*
1274 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1275 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1276 	 * in case CQM bits really aren't there in this CPU.
1277 	 */
1278 	if (c != &boot_cpu_data) {
1279 		boot_cpu_data.x86_cache_max_rmid =
1280 			min(boot_cpu_data.x86_cache_max_rmid,
1281 			    c->x86_cache_max_rmid);
1282 	}
1283 }
1284 
1285 /*
1286  * Validate that ACPI/mptables have the same information about the
1287  * effective APIC id and update the package map.
1288  */
1289 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1290 {
1291 #ifdef CONFIG_SMP
1292 	unsigned int apicid, cpu = smp_processor_id();
1293 
1294 	apicid = apic->cpu_present_to_apicid(cpu);
1295 
1296 	if (apicid != c->apicid) {
1297 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1298 		       cpu, apicid, c->initial_apicid);
1299 	}
1300 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1301 #else
1302 	c->logical_proc_id = 0;
1303 #endif
1304 }
1305 
1306 /*
1307  * This does the hard work of actually picking apart the CPU stuff...
1308  */
1309 static void identify_cpu(struct cpuinfo_x86 *c)
1310 {
1311 	int i;
1312 
1313 	c->loops_per_jiffy = loops_per_jiffy;
1314 	c->x86_cache_size = 0;
1315 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1316 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1317 	c->x86_vendor_id[0] = '\0'; /* Unset */
1318 	c->x86_model_id[0] = '\0';  /* Unset */
1319 	c->x86_max_cores = 1;
1320 	c->x86_coreid_bits = 0;
1321 	c->cu_id = 0xff;
1322 #ifdef CONFIG_X86_64
1323 	c->x86_clflush_size = 64;
1324 	c->x86_phys_bits = 36;
1325 	c->x86_virt_bits = 48;
1326 #else
1327 	c->cpuid_level = -1;	/* CPUID not detected */
1328 	c->x86_clflush_size = 32;
1329 	c->x86_phys_bits = 32;
1330 	c->x86_virt_bits = 32;
1331 #endif
1332 	c->x86_cache_alignment = c->x86_clflush_size;
1333 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1334 
1335 	generic_identify(c);
1336 
1337 	if (this_cpu->c_identify)
1338 		this_cpu->c_identify(c);
1339 
1340 	/* Clear/Set all flags overridden by options, after probe */
1341 	apply_forced_caps(c);
1342 
1343 #ifdef CONFIG_X86_64
1344 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1345 #endif
1346 
1347 	/*
1348 	 * Vendor-specific initialization.  In this section we
1349 	 * canonicalize the feature flags, meaning if there are
1350 	 * features a certain CPU supports which CPUID doesn't
1351 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1352 	 * we handle them here.
1353 	 *
1354 	 * At the end of this section, c->x86_capability better
1355 	 * indicate the features this CPU genuinely supports!
1356 	 */
1357 	if (this_cpu->c_init)
1358 		this_cpu->c_init(c);
1359 
1360 	/* Disable the PN if appropriate */
1361 	squash_the_stupid_serial_number(c);
1362 
1363 	/* Set up SMEP/SMAP/UMIP */
1364 	setup_smep(c);
1365 	setup_smap(c);
1366 	setup_umip(c);
1367 
1368 	/*
1369 	 * The vendor-specific functions might have changed features.
1370 	 * Now we do "generic changes."
1371 	 */
1372 
1373 	/* Filter out anything that depends on CPUID levels we don't have */
1374 	filter_cpuid_features(c, true);
1375 
1376 	/* If the model name is still unset, do table lookup. */
1377 	if (!c->x86_model_id[0]) {
1378 		const char *p;
1379 		p = table_lookup_model(c);
1380 		if (p)
1381 			strcpy(c->x86_model_id, p);
1382 		else
1383 			/* Last resort... */
1384 			sprintf(c->x86_model_id, "%02x/%02x",
1385 				c->x86, c->x86_model);
1386 	}
1387 
1388 #ifdef CONFIG_X86_64
1389 	detect_ht(c);
1390 #endif
1391 
1392 	x86_init_rdrand(c);
1393 	x86_init_cache_qos(c);
1394 	setup_pku(c);
1395 
1396 	/*
1397 	 * Clear/Set all flags overridden by options, need do it
1398 	 * before following smp all cpus cap AND.
1399 	 */
1400 	apply_forced_caps(c);
1401 
1402 	/*
1403 	 * On SMP, boot_cpu_data holds the common feature set between
1404 	 * all CPUs; so make sure that we indicate which features are
1405 	 * common between the CPUs.  The first time this routine gets
1406 	 * executed, c == &boot_cpu_data.
1407 	 */
1408 	if (c != &boot_cpu_data) {
1409 		/* AND the already accumulated flags with these */
1410 		for (i = 0; i < NCAPINTS; i++)
1411 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1412 
1413 		/* OR, i.e. replicate the bug flags */
1414 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1415 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1416 	}
1417 
1418 	/* Init Machine Check Exception if available. */
1419 	mcheck_cpu_init(c);
1420 
1421 	select_idle_routine(c);
1422 
1423 #ifdef CONFIG_NUMA
1424 	numa_add_cpu(smp_processor_id());
1425 #endif
1426 }
1427 
1428 /*
1429  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1430  * on 32-bit kernels:
1431  */
1432 #ifdef CONFIG_X86_32
1433 void enable_sep_cpu(void)
1434 {
1435 	struct tss_struct *tss;
1436 	int cpu;
1437 
1438 	if (!boot_cpu_has(X86_FEATURE_SEP))
1439 		return;
1440 
1441 	cpu = get_cpu();
1442 	tss = &per_cpu(cpu_tss_rw, cpu);
1443 
1444 	/*
1445 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1446 	 * see the big comment in struct x86_hw_tss's definition.
1447 	 */
1448 
1449 	tss->x86_tss.ss1 = __KERNEL_CS;
1450 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1451 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1452 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1453 
1454 	put_cpu();
1455 }
1456 #endif
1457 
1458 void __init identify_boot_cpu(void)
1459 {
1460 	identify_cpu(&boot_cpu_data);
1461 #ifdef CONFIG_X86_32
1462 	sysenter_setup();
1463 	enable_sep_cpu();
1464 #endif
1465 	cpu_detect_tlb(&boot_cpu_data);
1466 }
1467 
1468 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1469 {
1470 	BUG_ON(c == &boot_cpu_data);
1471 	identify_cpu(c);
1472 #ifdef CONFIG_X86_32
1473 	enable_sep_cpu();
1474 #endif
1475 	mtrr_ap_init();
1476 	validate_apic_and_package_id(c);
1477 	x86_spec_ctrl_setup_ap();
1478 }
1479 
1480 static __init int setup_noclflush(char *arg)
1481 {
1482 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1483 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1484 	return 1;
1485 }
1486 __setup("noclflush", setup_noclflush);
1487 
1488 void print_cpu_info(struct cpuinfo_x86 *c)
1489 {
1490 	const char *vendor = NULL;
1491 
1492 	if (c->x86_vendor < X86_VENDOR_NUM) {
1493 		vendor = this_cpu->c_vendor;
1494 	} else {
1495 		if (c->cpuid_level >= 0)
1496 			vendor = c->x86_vendor_id;
1497 	}
1498 
1499 	if (vendor && !strstr(c->x86_model_id, vendor))
1500 		pr_cont("%s ", vendor);
1501 
1502 	if (c->x86_model_id[0])
1503 		pr_cont("%s", c->x86_model_id);
1504 	else
1505 		pr_cont("%d86", c->x86);
1506 
1507 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1508 
1509 	if (c->x86_stepping || c->cpuid_level >= 0)
1510 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1511 	else
1512 		pr_cont(")\n");
1513 }
1514 
1515 /*
1516  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1517  * But we need to keep a dummy __setup around otherwise it would
1518  * show up as an environment variable for init.
1519  */
1520 static __init int setup_clearcpuid(char *arg)
1521 {
1522 	return 1;
1523 }
1524 __setup("clearcpuid=", setup_clearcpuid);
1525 
1526 #ifdef CONFIG_X86_64
1527 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1528 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1529 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1530 
1531 /*
1532  * The following percpu variables are hot.  Align current_task to
1533  * cacheline size such that they fall in the same cacheline.
1534  */
1535 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1536 	&init_task;
1537 EXPORT_PER_CPU_SYMBOL(current_task);
1538 
1539 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1540 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1541 
1542 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1543 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1544 
1545 /* May not be marked __init: used by software suspend */
1546 void syscall_init(void)
1547 {
1548 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1549 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1550 
1551 #ifdef CONFIG_IA32_EMULATION
1552 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1553 	/*
1554 	 * This only works on Intel CPUs.
1555 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1556 	 * This does not cause SYSENTER to jump to the wrong location, because
1557 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1558 	 */
1559 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1560 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1561 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1562 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1563 #else
1564 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1565 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1566 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1567 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1568 #endif
1569 
1570 	/* Flags to clear on syscall */
1571 	wrmsrl(MSR_SYSCALL_MASK,
1572 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1573 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1574 }
1575 
1576 DEFINE_PER_CPU(int, debug_stack_usage);
1577 DEFINE_PER_CPU(u32, debug_idt_ctr);
1578 
1579 void debug_stack_set_zero(void)
1580 {
1581 	this_cpu_inc(debug_idt_ctr);
1582 	load_current_idt();
1583 }
1584 NOKPROBE_SYMBOL(debug_stack_set_zero);
1585 
1586 void debug_stack_reset(void)
1587 {
1588 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1589 		return;
1590 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1591 		load_current_idt();
1592 }
1593 NOKPROBE_SYMBOL(debug_stack_reset);
1594 
1595 #else	/* CONFIG_X86_64 */
1596 
1597 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1598 EXPORT_PER_CPU_SYMBOL(current_task);
1599 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1600 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1601 
1602 /*
1603  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1604  * the top of the kernel stack.  Use an extra percpu variable to track the
1605  * top of the kernel stack directly.
1606  */
1607 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1608 	(unsigned long)&init_thread_union + THREAD_SIZE;
1609 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1610 
1611 #ifdef CONFIG_STACKPROTECTOR
1612 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1613 #endif
1614 
1615 #endif	/* CONFIG_X86_64 */
1616 
1617 /*
1618  * Clear all 6 debug registers:
1619  */
1620 static void clear_all_debug_regs(void)
1621 {
1622 	int i;
1623 
1624 	for (i = 0; i < 8; i++) {
1625 		/* Ignore db4, db5 */
1626 		if ((i == 4) || (i == 5))
1627 			continue;
1628 
1629 		set_debugreg(0, i);
1630 	}
1631 }
1632 
1633 #ifdef CONFIG_KGDB
1634 /*
1635  * Restore debug regs if using kgdbwait and you have a kernel debugger
1636  * connection established.
1637  */
1638 static void dbg_restore_debug_regs(void)
1639 {
1640 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1641 		arch_kgdb_ops.correct_hw_break();
1642 }
1643 #else /* ! CONFIG_KGDB */
1644 #define dbg_restore_debug_regs()
1645 #endif /* ! CONFIG_KGDB */
1646 
1647 static void wait_for_master_cpu(int cpu)
1648 {
1649 #ifdef CONFIG_SMP
1650 	/*
1651 	 * wait for ACK from master CPU before continuing
1652 	 * with AP initialization
1653 	 */
1654 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1655 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1656 		cpu_relax();
1657 #endif
1658 }
1659 
1660 #ifdef CONFIG_X86_64
1661 static void setup_getcpu(int cpu)
1662 {
1663 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1664 	struct desc_struct d = { };
1665 
1666 	if (boot_cpu_has(X86_FEATURE_RDTSCP))
1667 		write_rdtscp_aux(cpudata);
1668 
1669 	/* Store CPU and node number in limit. */
1670 	d.limit0 = cpudata;
1671 	d.limit1 = cpudata >> 16;
1672 
1673 	d.type = 5;		/* RO data, expand down, accessed */
1674 	d.dpl = 3;		/* Visible to user code */
1675 	d.s = 1;		/* Not a system segment */
1676 	d.p = 1;		/* Present */
1677 	d.d = 1;		/* 32-bit */
1678 
1679 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1680 }
1681 #endif
1682 
1683 /*
1684  * cpu_init() initializes state that is per-CPU. Some data is already
1685  * initialized (naturally) in the bootstrap process, such as the GDT
1686  * and IDT. We reload them nevertheless, this function acts as a
1687  * 'CPU state barrier', nothing should get across.
1688  */
1689 #ifdef CONFIG_X86_64
1690 
1691 void cpu_init(void)
1692 {
1693 	int cpu = raw_smp_processor_id();
1694 	struct task_struct *me;
1695 	struct tss_struct *t;
1696 	int i;
1697 
1698 	wait_for_master_cpu(cpu);
1699 
1700 	/*
1701 	 * Initialize the CR4 shadow before doing anything that could
1702 	 * try to read it.
1703 	 */
1704 	cr4_init_shadow();
1705 
1706 	if (cpu)
1707 		load_ucode_ap();
1708 
1709 	t = &per_cpu(cpu_tss_rw, cpu);
1710 
1711 #ifdef CONFIG_NUMA
1712 	if (this_cpu_read(numa_node) == 0 &&
1713 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1714 		set_numa_node(early_cpu_to_node(cpu));
1715 #endif
1716 	setup_getcpu(cpu);
1717 
1718 	me = current;
1719 
1720 	pr_debug("Initializing CPU#%d\n", cpu);
1721 
1722 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1723 
1724 	/*
1725 	 * Initialize the per-CPU GDT with the boot GDT,
1726 	 * and set up the GDT descriptor:
1727 	 */
1728 
1729 	switch_to_new_gdt(cpu);
1730 	loadsegment(fs, 0);
1731 
1732 	load_current_idt();
1733 
1734 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1735 	syscall_init();
1736 
1737 	wrmsrl(MSR_FS_BASE, 0);
1738 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1739 	barrier();
1740 
1741 	x86_configure_nx();
1742 	x2apic_setup();
1743 
1744 	/*
1745 	 * set up and load the per-CPU TSS
1746 	 */
1747 	if (!t->x86_tss.ist[0]) {
1748 		t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1749 		t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1750 		t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1751 		t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1752 	}
1753 
1754 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1755 
1756 	/*
1757 	 * <= is required because the CPU will access up to
1758 	 * 8 bits beyond the end of the IO permission bitmap.
1759 	 */
1760 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1761 		t->io_bitmap[i] = ~0UL;
1762 
1763 	mmgrab(&init_mm);
1764 	me->active_mm = &init_mm;
1765 	BUG_ON(me->mm);
1766 	initialize_tlbstate_and_flush();
1767 	enter_lazy_tlb(&init_mm, me);
1768 
1769 	/*
1770 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1771 	 * regardless of what task is running.
1772 	 */
1773 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1774 	load_TR_desc();
1775 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1776 
1777 	load_mm_ldt(&init_mm);
1778 
1779 	clear_all_debug_regs();
1780 	dbg_restore_debug_regs();
1781 
1782 	fpu__init_cpu();
1783 
1784 	if (is_uv_system())
1785 		uv_cpu_init();
1786 
1787 	load_fixmap_gdt(cpu);
1788 }
1789 
1790 #else
1791 
1792 void cpu_init(void)
1793 {
1794 	int cpu = smp_processor_id();
1795 	struct task_struct *curr = current;
1796 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1797 
1798 	wait_for_master_cpu(cpu);
1799 
1800 	/*
1801 	 * Initialize the CR4 shadow before doing anything that could
1802 	 * try to read it.
1803 	 */
1804 	cr4_init_shadow();
1805 
1806 	show_ucode_info_early();
1807 
1808 	pr_info("Initializing CPU#%d\n", cpu);
1809 
1810 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1811 	    boot_cpu_has(X86_FEATURE_TSC) ||
1812 	    boot_cpu_has(X86_FEATURE_DE))
1813 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1814 
1815 	load_current_idt();
1816 	switch_to_new_gdt(cpu);
1817 
1818 	/*
1819 	 * Set up and load the per-CPU TSS and LDT
1820 	 */
1821 	mmgrab(&init_mm);
1822 	curr->active_mm = &init_mm;
1823 	BUG_ON(curr->mm);
1824 	initialize_tlbstate_and_flush();
1825 	enter_lazy_tlb(&init_mm, curr);
1826 
1827 	/*
1828 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1829 	 * regardless of what task is running.
1830 	 */
1831 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1832 	load_TR_desc();
1833 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1834 
1835 	load_mm_ldt(&init_mm);
1836 
1837 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1838 
1839 #ifdef CONFIG_DOUBLEFAULT
1840 	/* Set up doublefault TSS pointer in the GDT */
1841 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1842 #endif
1843 
1844 	clear_all_debug_regs();
1845 	dbg_restore_debug_regs();
1846 
1847 	fpu__init_cpu();
1848 
1849 	load_fixmap_gdt(cpu);
1850 }
1851 #endif
1852 
1853 /*
1854  * The microcode loader calls this upon late microcode load to recheck features,
1855  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1856  * hotplug lock.
1857  */
1858 void microcode_check(void)
1859 {
1860 	struct cpuinfo_x86 info;
1861 
1862 	perf_check_microcode();
1863 
1864 	/* Reload CPUID max function as it might've changed. */
1865 	info.cpuid_level = cpuid_eax(0);
1866 
1867 	/*
1868 	 * Copy all capability leafs to pick up the synthetic ones so that
1869 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1870 	 * get overwritten in get_cpu_cap().
1871 	 */
1872 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1873 
1874 	get_cpu_cap(&info);
1875 
1876 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1877 		return;
1878 
1879 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1880 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1881 }
1882