xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 02b4e275)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15 
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/debugreg.h>
24 #include <asm/sections.h>
25 #include <asm/vsyscall.h>
26 #include <linux/topology.h>
27 #include <linux/cpumask.h>
28 #include <asm/pgtable.h>
29 #include <linux/atomic.h>
30 #include <asm/proto.h>
31 #include <asm/setup.h>
32 #include <asm/apic.h>
33 #include <asm/desc.h>
34 #include <asm/i387.h>
35 #include <asm/fpu-internal.h>
36 #include <asm/mtrr.h>
37 #include <linux/numa.h>
38 #include <asm/asm.h>
39 #include <asm/cpu.h>
40 #include <asm/mce.h>
41 #include <asm/msr.h>
42 #include <asm/pat.h>
43 #include <asm/microcode.h>
44 #include <asm/microcode_intel.h>
45 
46 #ifdef CONFIG_X86_LOCAL_APIC
47 #include <asm/uv/uv.h>
48 #endif
49 
50 #include "cpu.h"
51 
52 /* all of these masks are initialized in setup_cpu_local_masks() */
53 cpumask_var_t cpu_initialized_mask;
54 cpumask_var_t cpu_callout_mask;
55 cpumask_var_t cpu_callin_mask;
56 
57 /* representing cpus for which sibling maps can be computed */
58 cpumask_var_t cpu_sibling_setup_mask;
59 
60 /* correctly size the local cpu masks */
61 void __init setup_cpu_local_masks(void)
62 {
63 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
66 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67 }
68 
69 static void default_init(struct cpuinfo_x86 *c)
70 {
71 #ifdef CONFIG_X86_64
72 	cpu_detect_cache_sizes(c);
73 #else
74 	/* Not much we can do here... */
75 	/* Check if at least it has cpuid */
76 	if (c->cpuid_level == -1) {
77 		/* No cpuid. It must be an ancient CPU */
78 		if (c->x86 == 4)
79 			strcpy(c->x86_model_id, "486");
80 		else if (c->x86 == 3)
81 			strcpy(c->x86_model_id, "386");
82 	}
83 #endif
84 }
85 
86 static const struct cpu_dev default_cpu = {
87 	.c_init		= default_init,
88 	.c_vendor	= "Unknown",
89 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
90 };
91 
92 static const struct cpu_dev *this_cpu = &default_cpu;
93 
94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95 #ifdef CONFIG_X86_64
96 	/*
97 	 * We need valid kernel segments for data and code in long mode too
98 	 * IRET will check the segment types  kkeil 2000/10/28
99 	 * Also sysret mandates a special GDT layout
100 	 *
101 	 * TLS descriptors are currently at a different place compared to i386.
102 	 * Hopefully nobody expects them at a fixed place (Wine?)
103 	 */
104 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110 #else
111 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115 	/*
116 	 * Segments used for calling PnP BIOS have byte granularity.
117 	 * They code segments and data segments have fixed 64k limits,
118 	 * the transfer segment sizes are set at run time.
119 	 */
120 	/* 32-bit code */
121 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122 	/* 16-bit code */
123 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124 	/* 16-bit data */
125 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126 	/* 16-bit data */
127 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
128 	/* 16-bit data */
129 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
130 	/*
131 	 * The APM segments have byte granularity and their bases
132 	 * are set at run time.  All have 64k limits.
133 	 */
134 	/* 32-bit code */
135 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136 	/* 16-bit code */
137 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138 	/* data */
139 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140 
141 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	GDT_STACK_CANARY_INIT
144 #endif
145 } };
146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147 
148 static int __init x86_xsave_setup(char *s)
149 {
150 	if (strlen(s))
151 		return 0;
152 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
153 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
155 	setup_clear_cpu_cap(X86_FEATURE_AVX);
156 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
157 	return 1;
158 }
159 __setup("noxsave", x86_xsave_setup);
160 
161 static int __init x86_xsaveopt_setup(char *s)
162 {
163 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
164 	return 1;
165 }
166 __setup("noxsaveopt", x86_xsaveopt_setup);
167 
168 static int __init x86_xsaves_setup(char *s)
169 {
170 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
171 	return 1;
172 }
173 __setup("noxsaves", x86_xsaves_setup);
174 
175 #ifdef CONFIG_X86_32
176 static int cachesize_override = -1;
177 static int disable_x86_serial_nr = 1;
178 
179 static int __init cachesize_setup(char *str)
180 {
181 	get_option(&str, &cachesize_override);
182 	return 1;
183 }
184 __setup("cachesize=", cachesize_setup);
185 
186 static int __init x86_fxsr_setup(char *s)
187 {
188 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
189 	setup_clear_cpu_cap(X86_FEATURE_XMM);
190 	return 1;
191 }
192 __setup("nofxsr", x86_fxsr_setup);
193 
194 static int __init x86_sep_setup(char *s)
195 {
196 	setup_clear_cpu_cap(X86_FEATURE_SEP);
197 	return 1;
198 }
199 __setup("nosep", x86_sep_setup);
200 
201 /* Standard macro to see if a specific flag is changeable */
202 static inline int flag_is_changeable_p(u32 flag)
203 {
204 	u32 f1, f2;
205 
206 	/*
207 	 * Cyrix and IDT cpus allow disabling of CPUID
208 	 * so the code below may return different results
209 	 * when it is executed before and after enabling
210 	 * the CPUID. Add "volatile" to not allow gcc to
211 	 * optimize the subsequent calls to this function.
212 	 */
213 	asm volatile ("pushfl		\n\t"
214 		      "pushfl		\n\t"
215 		      "popl %0		\n\t"
216 		      "movl %0, %1	\n\t"
217 		      "xorl %2, %0	\n\t"
218 		      "pushl %0		\n\t"
219 		      "popfl		\n\t"
220 		      "pushfl		\n\t"
221 		      "popl %0		\n\t"
222 		      "popfl		\n\t"
223 
224 		      : "=&r" (f1), "=&r" (f2)
225 		      : "ir" (flag));
226 
227 	return ((f1^f2) & flag) != 0;
228 }
229 
230 /* Probe for the CPUID instruction */
231 int have_cpuid_p(void)
232 {
233 	return flag_is_changeable_p(X86_EFLAGS_ID);
234 }
235 
236 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
237 {
238 	unsigned long lo, hi;
239 
240 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
241 		return;
242 
243 	/* Disable processor serial number: */
244 
245 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246 	lo |= 0x200000;
247 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
248 
249 	printk(KERN_NOTICE "CPU serial number disabled.\n");
250 	clear_cpu_cap(c, X86_FEATURE_PN);
251 
252 	/* Disabling the serial number may affect the cpuid level */
253 	c->cpuid_level = cpuid_eax(0);
254 }
255 
256 static int __init x86_serial_nr_setup(char *s)
257 {
258 	disable_x86_serial_nr = 0;
259 	return 1;
260 }
261 __setup("serialnumber", x86_serial_nr_setup);
262 #else
263 static inline int flag_is_changeable_p(u32 flag)
264 {
265 	return 1;
266 }
267 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 }
270 #endif
271 
272 static __init int setup_disable_smep(char *arg)
273 {
274 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 	return 1;
276 }
277 __setup("nosmep", setup_disable_smep);
278 
279 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
280 {
281 	if (cpu_has(c, X86_FEATURE_SMEP))
282 		cr4_set_bits(X86_CR4_SMEP);
283 }
284 
285 static __init int setup_disable_smap(char *arg)
286 {
287 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
288 	return 1;
289 }
290 __setup("nosmap", setup_disable_smap);
291 
292 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
293 {
294 	unsigned long eflags;
295 
296 	/* This should have been cleared long ago */
297 	raw_local_save_flags(eflags);
298 	BUG_ON(eflags & X86_EFLAGS_AC);
299 
300 	if (cpu_has(c, X86_FEATURE_SMAP)) {
301 #ifdef CONFIG_X86_SMAP
302 		cr4_set_bits(X86_CR4_SMAP);
303 #else
304 		cr4_clear_bits(X86_CR4_SMAP);
305 #endif
306 	}
307 }
308 
309 /*
310  * Some CPU features depend on higher CPUID levels, which may not always
311  * be available due to CPUID level capping or broken virtualization
312  * software.  Add those features to this table to auto-disable them.
313  */
314 struct cpuid_dependent_feature {
315 	u32 feature;
316 	u32 level;
317 };
318 
319 static const struct cpuid_dependent_feature
320 cpuid_dependent_features[] = {
321 	{ X86_FEATURE_MWAIT,		0x00000005 },
322 	{ X86_FEATURE_DCA,		0x00000009 },
323 	{ X86_FEATURE_XSAVE,		0x0000000d },
324 	{ 0, 0 }
325 };
326 
327 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
328 {
329 	const struct cpuid_dependent_feature *df;
330 
331 	for (df = cpuid_dependent_features; df->feature; df++) {
332 
333 		if (!cpu_has(c, df->feature))
334 			continue;
335 		/*
336 		 * Note: cpuid_level is set to -1 if unavailable, but
337 		 * extended_extended_level is set to 0 if unavailable
338 		 * and the legitimate extended levels are all negative
339 		 * when signed; hence the weird messing around with
340 		 * signs here...
341 		 */
342 		if (!((s32)df->level < 0 ?
343 		     (u32)df->level > (u32)c->extended_cpuid_level :
344 		     (s32)df->level > (s32)c->cpuid_level))
345 			continue;
346 
347 		clear_cpu_cap(c, df->feature);
348 		if (!warn)
349 			continue;
350 
351 		printk(KERN_WARNING
352 		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
353 				x86_cap_flag(df->feature), df->level);
354 	}
355 }
356 
357 /*
358  * Naming convention should be: <Name> [(<Codename>)]
359  * This table only is used unless init_<vendor>() below doesn't set it;
360  * in particular, if CPUID levels 0x80000002..4 are supported, this
361  * isn't used
362  */
363 
364 /* Look up CPU names by table lookup. */
365 static const char *table_lookup_model(struct cpuinfo_x86 *c)
366 {
367 #ifdef CONFIG_X86_32
368 	const struct legacy_cpu_model_info *info;
369 
370 	if (c->x86_model >= 16)
371 		return NULL;	/* Range check */
372 
373 	if (!this_cpu)
374 		return NULL;
375 
376 	info = this_cpu->legacy_models;
377 
378 	while (info->family) {
379 		if (info->family == c->x86)
380 			return info->model_names[c->x86_model];
381 		info++;
382 	}
383 #endif
384 	return NULL;		/* Not found */
385 }
386 
387 __u32 cpu_caps_cleared[NCAPINTS];
388 __u32 cpu_caps_set[NCAPINTS];
389 
390 void load_percpu_segment(int cpu)
391 {
392 #ifdef CONFIG_X86_32
393 	loadsegment(fs, __KERNEL_PERCPU);
394 #else
395 	loadsegment(gs, 0);
396 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
397 #endif
398 	load_stack_canary_segment();
399 }
400 
401 /*
402  * Current gdt points %fs at the "master" per-cpu area: after this,
403  * it's on the real one.
404  */
405 void switch_to_new_gdt(int cpu)
406 {
407 	struct desc_ptr gdt_descr;
408 
409 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
410 	gdt_descr.size = GDT_SIZE - 1;
411 	load_gdt(&gdt_descr);
412 	/* Reload the per-cpu base */
413 
414 	load_percpu_segment(cpu);
415 }
416 
417 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
418 
419 static void get_model_name(struct cpuinfo_x86 *c)
420 {
421 	unsigned int *v;
422 	char *p, *q;
423 
424 	if (c->extended_cpuid_level < 0x80000004)
425 		return;
426 
427 	v = (unsigned int *)c->x86_model_id;
428 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
429 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
430 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
431 	c->x86_model_id[48] = 0;
432 
433 	/*
434 	 * Intel chips right-justify this string for some dumb reason;
435 	 * undo that brain damage:
436 	 */
437 	p = q = &c->x86_model_id[0];
438 	while (*p == ' ')
439 		p++;
440 	if (p != q) {
441 		while (*p)
442 			*q++ = *p++;
443 		while (q <= &c->x86_model_id[48])
444 			*q++ = '\0';	/* Zero-pad the rest */
445 	}
446 }
447 
448 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
449 {
450 	unsigned int n, dummy, ebx, ecx, edx, l2size;
451 
452 	n = c->extended_cpuid_level;
453 
454 	if (n >= 0x80000005) {
455 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
456 		c->x86_cache_size = (ecx>>24) + (edx>>24);
457 #ifdef CONFIG_X86_64
458 		/* On K8 L1 TLB is inclusive, so don't count it */
459 		c->x86_tlbsize = 0;
460 #endif
461 	}
462 
463 	if (n < 0x80000006)	/* Some chips just has a large L1. */
464 		return;
465 
466 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
467 	l2size = ecx >> 16;
468 
469 #ifdef CONFIG_X86_64
470 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
471 #else
472 	/* do processor-specific cache resizing */
473 	if (this_cpu->legacy_cache_size)
474 		l2size = this_cpu->legacy_cache_size(c, l2size);
475 
476 	/* Allow user to override all this if necessary. */
477 	if (cachesize_override != -1)
478 		l2size = cachesize_override;
479 
480 	if (l2size == 0)
481 		return;		/* Again, no L2 cache is possible */
482 #endif
483 
484 	c->x86_cache_size = l2size;
485 }
486 
487 u16 __read_mostly tlb_lli_4k[NR_INFO];
488 u16 __read_mostly tlb_lli_2m[NR_INFO];
489 u16 __read_mostly tlb_lli_4m[NR_INFO];
490 u16 __read_mostly tlb_lld_4k[NR_INFO];
491 u16 __read_mostly tlb_lld_2m[NR_INFO];
492 u16 __read_mostly tlb_lld_4m[NR_INFO];
493 u16 __read_mostly tlb_lld_1g[NR_INFO];
494 
495 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
496 {
497 	if (this_cpu->c_detect_tlb)
498 		this_cpu->c_detect_tlb(c);
499 
500 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
501 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
502 		tlb_lli_4m[ENTRIES]);
503 
504 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
505 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
506 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
507 }
508 
509 void detect_ht(struct cpuinfo_x86 *c)
510 {
511 #ifdef CONFIG_X86_HT
512 	u32 eax, ebx, ecx, edx;
513 	int index_msb, core_bits;
514 	static bool printed;
515 
516 	if (!cpu_has(c, X86_FEATURE_HT))
517 		return;
518 
519 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
520 		goto out;
521 
522 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
523 		return;
524 
525 	cpuid(1, &eax, &ebx, &ecx, &edx);
526 
527 	smp_num_siblings = (ebx & 0xff0000) >> 16;
528 
529 	if (smp_num_siblings == 1) {
530 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
531 		goto out;
532 	}
533 
534 	if (smp_num_siblings <= 1)
535 		goto out;
536 
537 	index_msb = get_count_order(smp_num_siblings);
538 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
539 
540 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
541 
542 	index_msb = get_count_order(smp_num_siblings);
543 
544 	core_bits = get_count_order(c->x86_max_cores);
545 
546 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
547 				       ((1 << core_bits) - 1);
548 
549 out:
550 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
551 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
552 		       c->phys_proc_id);
553 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
554 		       c->cpu_core_id);
555 		printed = 1;
556 	}
557 #endif
558 }
559 
560 static void get_cpu_vendor(struct cpuinfo_x86 *c)
561 {
562 	char *v = c->x86_vendor_id;
563 	int i;
564 
565 	for (i = 0; i < X86_VENDOR_NUM; i++) {
566 		if (!cpu_devs[i])
567 			break;
568 
569 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
570 		    (cpu_devs[i]->c_ident[1] &&
571 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
572 
573 			this_cpu = cpu_devs[i];
574 			c->x86_vendor = this_cpu->c_x86_vendor;
575 			return;
576 		}
577 	}
578 
579 	printk_once(KERN_ERR
580 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
581 			"CPU: Your system may be unstable.\n", v);
582 
583 	c->x86_vendor = X86_VENDOR_UNKNOWN;
584 	this_cpu = &default_cpu;
585 }
586 
587 void cpu_detect(struct cpuinfo_x86 *c)
588 {
589 	/* Get vendor name */
590 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
591 	      (unsigned int *)&c->x86_vendor_id[0],
592 	      (unsigned int *)&c->x86_vendor_id[8],
593 	      (unsigned int *)&c->x86_vendor_id[4]);
594 
595 	c->x86 = 4;
596 	/* Intel-defined flags: level 0x00000001 */
597 	if (c->cpuid_level >= 0x00000001) {
598 		u32 junk, tfms, cap0, misc;
599 
600 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
601 		c->x86 = (tfms >> 8) & 0xf;
602 		c->x86_model = (tfms >> 4) & 0xf;
603 		c->x86_mask = tfms & 0xf;
604 
605 		if (c->x86 == 0xf)
606 			c->x86 += (tfms >> 20) & 0xff;
607 		if (c->x86 >= 0x6)
608 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
609 
610 		if (cap0 & (1<<19)) {
611 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
612 			c->x86_cache_alignment = c->x86_clflush_size;
613 		}
614 	}
615 }
616 
617 void get_cpu_cap(struct cpuinfo_x86 *c)
618 {
619 	u32 tfms, xlvl;
620 	u32 ebx;
621 
622 	/* Intel-defined flags: level 0x00000001 */
623 	if (c->cpuid_level >= 0x00000001) {
624 		u32 capability, excap;
625 
626 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
627 		c->x86_capability[0] = capability;
628 		c->x86_capability[4] = excap;
629 	}
630 
631 	/* Additional Intel-defined flags: level 0x00000007 */
632 	if (c->cpuid_level >= 0x00000007) {
633 		u32 eax, ebx, ecx, edx;
634 
635 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
636 
637 		c->x86_capability[9] = ebx;
638 	}
639 
640 	/* Extended state features: level 0x0000000d */
641 	if (c->cpuid_level >= 0x0000000d) {
642 		u32 eax, ebx, ecx, edx;
643 
644 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
645 
646 		c->x86_capability[10] = eax;
647 	}
648 
649 	/* Additional Intel-defined flags: level 0x0000000F */
650 	if (c->cpuid_level >= 0x0000000F) {
651 		u32 eax, ebx, ecx, edx;
652 
653 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
654 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
655 		c->x86_capability[11] = edx;
656 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
657 			/* will be overridden if occupancy monitoring exists */
658 			c->x86_cache_max_rmid = ebx;
659 
660 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
661 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
662 			c->x86_capability[12] = edx;
663 			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
664 				c->x86_cache_max_rmid = ecx;
665 				c->x86_cache_occ_scale = ebx;
666 			}
667 		} else {
668 			c->x86_cache_max_rmid = -1;
669 			c->x86_cache_occ_scale = -1;
670 		}
671 	}
672 
673 	/* AMD-defined flags: level 0x80000001 */
674 	xlvl = cpuid_eax(0x80000000);
675 	c->extended_cpuid_level = xlvl;
676 
677 	if ((xlvl & 0xffff0000) == 0x80000000) {
678 		if (xlvl >= 0x80000001) {
679 			c->x86_capability[1] = cpuid_edx(0x80000001);
680 			c->x86_capability[6] = cpuid_ecx(0x80000001);
681 		}
682 	}
683 
684 	if (c->extended_cpuid_level >= 0x80000008) {
685 		u32 eax = cpuid_eax(0x80000008);
686 
687 		c->x86_virt_bits = (eax >> 8) & 0xff;
688 		c->x86_phys_bits = eax & 0xff;
689 	}
690 #ifdef CONFIG_X86_32
691 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
692 		c->x86_phys_bits = 36;
693 #endif
694 
695 	if (c->extended_cpuid_level >= 0x80000007)
696 		c->x86_power = cpuid_edx(0x80000007);
697 
698 	init_scattered_cpuid_features(c);
699 }
700 
701 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
702 {
703 #ifdef CONFIG_X86_32
704 	int i;
705 
706 	/*
707 	 * First of all, decide if this is a 486 or higher
708 	 * It's a 486 if we can modify the AC flag
709 	 */
710 	if (flag_is_changeable_p(X86_EFLAGS_AC))
711 		c->x86 = 4;
712 	else
713 		c->x86 = 3;
714 
715 	for (i = 0; i < X86_VENDOR_NUM; i++)
716 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
717 			c->x86_vendor_id[0] = 0;
718 			cpu_devs[i]->c_identify(c);
719 			if (c->x86_vendor_id[0]) {
720 				get_cpu_vendor(c);
721 				break;
722 			}
723 		}
724 #endif
725 }
726 
727 /*
728  * Do minimum CPU detection early.
729  * Fields really needed: vendor, cpuid_level, family, model, mask,
730  * cache alignment.
731  * The others are not touched to avoid unwanted side effects.
732  *
733  * WARNING: this function is only called on the BP.  Don't add code here
734  * that is supposed to run on all CPUs.
735  */
736 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
737 {
738 #ifdef CONFIG_X86_64
739 	c->x86_clflush_size = 64;
740 	c->x86_phys_bits = 36;
741 	c->x86_virt_bits = 48;
742 #else
743 	c->x86_clflush_size = 32;
744 	c->x86_phys_bits = 32;
745 	c->x86_virt_bits = 32;
746 #endif
747 	c->x86_cache_alignment = c->x86_clflush_size;
748 
749 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
750 	c->extended_cpuid_level = 0;
751 
752 	if (!have_cpuid_p())
753 		identify_cpu_without_cpuid(c);
754 
755 	/* cyrix could have cpuid enabled via c_identify()*/
756 	if (!have_cpuid_p())
757 		return;
758 
759 	cpu_detect(c);
760 	get_cpu_vendor(c);
761 	get_cpu_cap(c);
762 	fpu_detect(c);
763 
764 	if (this_cpu->c_early_init)
765 		this_cpu->c_early_init(c);
766 
767 	c->cpu_index = 0;
768 	filter_cpuid_features(c, false);
769 
770 	if (this_cpu->c_bsp_init)
771 		this_cpu->c_bsp_init(c);
772 
773 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
774 }
775 
776 void __init early_cpu_init(void)
777 {
778 	const struct cpu_dev *const *cdev;
779 	int count = 0;
780 
781 #ifdef CONFIG_PROCESSOR_SELECT
782 	printk(KERN_INFO "KERNEL supported cpus:\n");
783 #endif
784 
785 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
786 		const struct cpu_dev *cpudev = *cdev;
787 
788 		if (count >= X86_VENDOR_NUM)
789 			break;
790 		cpu_devs[count] = cpudev;
791 		count++;
792 
793 #ifdef CONFIG_PROCESSOR_SELECT
794 		{
795 			unsigned int j;
796 
797 			for (j = 0; j < 2; j++) {
798 				if (!cpudev->c_ident[j])
799 					continue;
800 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
801 					cpudev->c_ident[j]);
802 			}
803 		}
804 #endif
805 	}
806 	early_identify_cpu(&boot_cpu_data);
807 }
808 
809 /*
810  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
811  * unfortunately, that's not true in practice because of early VIA
812  * chips and (more importantly) broken virtualizers that are not easy
813  * to detect. In the latter case it doesn't even *fail* reliably, so
814  * probing for it doesn't even work. Disable it completely on 32-bit
815  * unless we can find a reliable way to detect all the broken cases.
816  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
817  */
818 static void detect_nopl(struct cpuinfo_x86 *c)
819 {
820 #ifdef CONFIG_X86_32
821 	clear_cpu_cap(c, X86_FEATURE_NOPL);
822 #else
823 	set_cpu_cap(c, X86_FEATURE_NOPL);
824 #endif
825 }
826 
827 static void generic_identify(struct cpuinfo_x86 *c)
828 {
829 	c->extended_cpuid_level = 0;
830 
831 	if (!have_cpuid_p())
832 		identify_cpu_without_cpuid(c);
833 
834 	/* cyrix could have cpuid enabled via c_identify()*/
835 	if (!have_cpuid_p())
836 		return;
837 
838 	cpu_detect(c);
839 
840 	get_cpu_vendor(c);
841 
842 	get_cpu_cap(c);
843 
844 	if (c->cpuid_level >= 0x00000001) {
845 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
846 #ifdef CONFIG_X86_32
847 # ifdef CONFIG_X86_HT
848 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
849 # else
850 		c->apicid = c->initial_apicid;
851 # endif
852 #endif
853 		c->phys_proc_id = c->initial_apicid;
854 	}
855 
856 	get_model_name(c); /* Default name */
857 
858 	detect_nopl(c);
859 }
860 
861 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
862 {
863 	/*
864 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
865 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
866 	 * in case CQM bits really aren't there in this CPU.
867 	 */
868 	if (c != &boot_cpu_data) {
869 		boot_cpu_data.x86_cache_max_rmid =
870 			min(boot_cpu_data.x86_cache_max_rmid,
871 			    c->x86_cache_max_rmid);
872 	}
873 }
874 
875 /*
876  * This does the hard work of actually picking apart the CPU stuff...
877  */
878 static void identify_cpu(struct cpuinfo_x86 *c)
879 {
880 	int i;
881 
882 	c->loops_per_jiffy = loops_per_jiffy;
883 	c->x86_cache_size = -1;
884 	c->x86_vendor = X86_VENDOR_UNKNOWN;
885 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
886 	c->x86_vendor_id[0] = '\0'; /* Unset */
887 	c->x86_model_id[0] = '\0';  /* Unset */
888 	c->x86_max_cores = 1;
889 	c->x86_coreid_bits = 0;
890 #ifdef CONFIG_X86_64
891 	c->x86_clflush_size = 64;
892 	c->x86_phys_bits = 36;
893 	c->x86_virt_bits = 48;
894 #else
895 	c->cpuid_level = -1;	/* CPUID not detected */
896 	c->x86_clflush_size = 32;
897 	c->x86_phys_bits = 32;
898 	c->x86_virt_bits = 32;
899 #endif
900 	c->x86_cache_alignment = c->x86_clflush_size;
901 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
902 
903 	generic_identify(c);
904 
905 	if (this_cpu->c_identify)
906 		this_cpu->c_identify(c);
907 
908 	/* Clear/Set all flags overriden by options, after probe */
909 	for (i = 0; i < NCAPINTS; i++) {
910 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
911 		c->x86_capability[i] |= cpu_caps_set[i];
912 	}
913 
914 #ifdef CONFIG_X86_64
915 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
916 #endif
917 
918 	/*
919 	 * Vendor-specific initialization.  In this section we
920 	 * canonicalize the feature flags, meaning if there are
921 	 * features a certain CPU supports which CPUID doesn't
922 	 * tell us, CPUID claiming incorrect flags, or other bugs,
923 	 * we handle them here.
924 	 *
925 	 * At the end of this section, c->x86_capability better
926 	 * indicate the features this CPU genuinely supports!
927 	 */
928 	if (this_cpu->c_init)
929 		this_cpu->c_init(c);
930 
931 	/* Disable the PN if appropriate */
932 	squash_the_stupid_serial_number(c);
933 
934 	/* Set up SMEP/SMAP */
935 	setup_smep(c);
936 	setup_smap(c);
937 
938 	/*
939 	 * The vendor-specific functions might have changed features.
940 	 * Now we do "generic changes."
941 	 */
942 
943 	/* Filter out anything that depends on CPUID levels we don't have */
944 	filter_cpuid_features(c, true);
945 
946 	/* If the model name is still unset, do table lookup. */
947 	if (!c->x86_model_id[0]) {
948 		const char *p;
949 		p = table_lookup_model(c);
950 		if (p)
951 			strcpy(c->x86_model_id, p);
952 		else
953 			/* Last resort... */
954 			sprintf(c->x86_model_id, "%02x/%02x",
955 				c->x86, c->x86_model);
956 	}
957 
958 #ifdef CONFIG_X86_64
959 	detect_ht(c);
960 #endif
961 
962 	init_hypervisor(c);
963 	x86_init_rdrand(c);
964 	x86_init_cache_qos(c);
965 
966 	/*
967 	 * Clear/Set all flags overriden by options, need do it
968 	 * before following smp all cpus cap AND.
969 	 */
970 	for (i = 0; i < NCAPINTS; i++) {
971 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
972 		c->x86_capability[i] |= cpu_caps_set[i];
973 	}
974 
975 	/*
976 	 * On SMP, boot_cpu_data holds the common feature set between
977 	 * all CPUs; so make sure that we indicate which features are
978 	 * common between the CPUs.  The first time this routine gets
979 	 * executed, c == &boot_cpu_data.
980 	 */
981 	if (c != &boot_cpu_data) {
982 		/* AND the already accumulated flags with these */
983 		for (i = 0; i < NCAPINTS; i++)
984 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
985 
986 		/* OR, i.e. replicate the bug flags */
987 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
988 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
989 	}
990 
991 	/* Init Machine Check Exception if available. */
992 	mcheck_cpu_init(c);
993 
994 	select_idle_routine(c);
995 
996 #ifdef CONFIG_NUMA
997 	numa_add_cpu(smp_processor_id());
998 #endif
999 }
1000 
1001 /*
1002  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1003  * on 32-bit kernels:
1004  */
1005 #ifdef CONFIG_X86_32
1006 void enable_sep_cpu(void)
1007 {
1008 	struct tss_struct *tss;
1009 	int cpu;
1010 
1011 	cpu = get_cpu();
1012 	tss = &per_cpu(cpu_tss, cpu);
1013 
1014 	if (!boot_cpu_has(X86_FEATURE_SEP))
1015 		goto out;
1016 
1017 	/*
1018 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1019 	 * see the big comment in struct x86_hw_tss's definition.
1020 	 */
1021 
1022 	tss->x86_tss.ss1 = __KERNEL_CS;
1023 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1024 
1025 	wrmsr(MSR_IA32_SYSENTER_ESP,
1026 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1027 	      0);
1028 
1029 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)ia32_sysenter_target, 0);
1030 
1031 out:
1032 	put_cpu();
1033 }
1034 #endif
1035 
1036 void __init identify_boot_cpu(void)
1037 {
1038 	identify_cpu(&boot_cpu_data);
1039 	init_amd_e400_c1e_mask();
1040 #ifdef CONFIG_X86_32
1041 	sysenter_setup();
1042 	enable_sep_cpu();
1043 #endif
1044 	cpu_detect_tlb(&boot_cpu_data);
1045 }
1046 
1047 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1048 {
1049 	BUG_ON(c == &boot_cpu_data);
1050 	identify_cpu(c);
1051 #ifdef CONFIG_X86_32
1052 	enable_sep_cpu();
1053 #endif
1054 	mtrr_ap_init();
1055 }
1056 
1057 struct msr_range {
1058 	unsigned	min;
1059 	unsigned	max;
1060 };
1061 
1062 static const struct msr_range msr_range_array[] = {
1063 	{ 0x00000000, 0x00000418},
1064 	{ 0xc0000000, 0xc000040b},
1065 	{ 0xc0010000, 0xc0010142},
1066 	{ 0xc0011000, 0xc001103b},
1067 };
1068 
1069 static void __print_cpu_msr(void)
1070 {
1071 	unsigned index_min, index_max;
1072 	unsigned index;
1073 	u64 val;
1074 	int i;
1075 
1076 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1077 		index_min = msr_range_array[i].min;
1078 		index_max = msr_range_array[i].max;
1079 
1080 		for (index = index_min; index < index_max; index++) {
1081 			if (rdmsrl_safe(index, &val))
1082 				continue;
1083 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1084 		}
1085 	}
1086 }
1087 
1088 static int show_msr;
1089 
1090 static __init int setup_show_msr(char *arg)
1091 {
1092 	int num;
1093 
1094 	get_option(&arg, &num);
1095 
1096 	if (num > 0)
1097 		show_msr = num;
1098 	return 1;
1099 }
1100 __setup("show_msr=", setup_show_msr);
1101 
1102 static __init int setup_noclflush(char *arg)
1103 {
1104 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1105 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1106 	return 1;
1107 }
1108 __setup("noclflush", setup_noclflush);
1109 
1110 void print_cpu_info(struct cpuinfo_x86 *c)
1111 {
1112 	const char *vendor = NULL;
1113 
1114 	if (c->x86_vendor < X86_VENDOR_NUM) {
1115 		vendor = this_cpu->c_vendor;
1116 	} else {
1117 		if (c->cpuid_level >= 0)
1118 			vendor = c->x86_vendor_id;
1119 	}
1120 
1121 	if (vendor && !strstr(c->x86_model_id, vendor))
1122 		printk(KERN_CONT "%s ", vendor);
1123 
1124 	if (c->x86_model_id[0])
1125 		printk(KERN_CONT "%s", strim(c->x86_model_id));
1126 	else
1127 		printk(KERN_CONT "%d86", c->x86);
1128 
1129 	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1130 
1131 	if (c->x86_mask || c->cpuid_level >= 0)
1132 		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1133 	else
1134 		printk(KERN_CONT ")\n");
1135 
1136 	print_cpu_msr(c);
1137 }
1138 
1139 void print_cpu_msr(struct cpuinfo_x86 *c)
1140 {
1141 	if (c->cpu_index < show_msr)
1142 		__print_cpu_msr();
1143 }
1144 
1145 static __init int setup_disablecpuid(char *arg)
1146 {
1147 	int bit;
1148 
1149 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1150 		setup_clear_cpu_cap(bit);
1151 	else
1152 		return 0;
1153 
1154 	return 1;
1155 }
1156 __setup("clearcpuid=", setup_disablecpuid);
1157 
1158 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1159 	(unsigned long)&init_thread_union + THREAD_SIZE;
1160 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1161 
1162 #ifdef CONFIG_X86_64
1163 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1164 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1165 				    (unsigned long) debug_idt_table };
1166 
1167 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1168 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1169 
1170 /*
1171  * The following percpu variables are hot.  Align current_task to
1172  * cacheline size such that they fall in the same cacheline.
1173  */
1174 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1175 	&init_task;
1176 EXPORT_PER_CPU_SYMBOL(current_task);
1177 
1178 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1179 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1180 
1181 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1182 
1183 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1184 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1185 
1186 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187 
1188 /*
1189  * Special IST stacks which the CPU switches to when it calls
1190  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1191  * limit), all of them are 4K, except the debug stack which
1192  * is 8K.
1193  */
1194 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1195 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1196 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1197 };
1198 
1199 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1200 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1201 
1202 /* May not be marked __init: used by software suspend */
1203 void syscall_init(void)
1204 {
1205 	/*
1206 	 * LSTAR and STAR live in a bit strange symbiosis.
1207 	 * They both write to the same internal register. STAR allows to
1208 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1209 	 */
1210 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1211 	wrmsrl(MSR_LSTAR, system_call);
1212 
1213 #ifdef CONFIG_IA32_EMULATION
1214 	wrmsrl(MSR_CSTAR, ia32_cstar_target);
1215 	/*
1216 	 * This only works on Intel CPUs.
1217 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1218 	 * This does not cause SYSENTER to jump to the wrong location, because
1219 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1220 	 */
1221 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1222 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1223 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
1224 #else
1225 	wrmsrl(MSR_CSTAR, ignore_sysret);
1226 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1227 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1228 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1229 #endif
1230 
1231 	/* Flags to clear on syscall */
1232 	wrmsrl(MSR_SYSCALL_MASK,
1233 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1234 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1235 }
1236 
1237 /*
1238  * Copies of the original ist values from the tss are only accessed during
1239  * debugging, no special alignment required.
1240  */
1241 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1242 
1243 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1244 DEFINE_PER_CPU(int, debug_stack_usage);
1245 
1246 int is_debug_stack(unsigned long addr)
1247 {
1248 	return __this_cpu_read(debug_stack_usage) ||
1249 		(addr <= __this_cpu_read(debug_stack_addr) &&
1250 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1251 }
1252 NOKPROBE_SYMBOL(is_debug_stack);
1253 
1254 DEFINE_PER_CPU(u32, debug_idt_ctr);
1255 
1256 void debug_stack_set_zero(void)
1257 {
1258 	this_cpu_inc(debug_idt_ctr);
1259 	load_current_idt();
1260 }
1261 NOKPROBE_SYMBOL(debug_stack_set_zero);
1262 
1263 void debug_stack_reset(void)
1264 {
1265 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1266 		return;
1267 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1268 		load_current_idt();
1269 }
1270 NOKPROBE_SYMBOL(debug_stack_reset);
1271 
1272 #else	/* CONFIG_X86_64 */
1273 
1274 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1275 EXPORT_PER_CPU_SYMBOL(current_task);
1276 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1277 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1278 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1279 
1280 /*
1281  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1282  * the top of the kernel stack.  Use an extra percpu variable to track the
1283  * top of the kernel stack directly.
1284  */
1285 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1286 	(unsigned long)&init_thread_union + THREAD_SIZE;
1287 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1288 
1289 #ifdef CONFIG_CC_STACKPROTECTOR
1290 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1291 #endif
1292 
1293 #endif	/* CONFIG_X86_64 */
1294 
1295 /*
1296  * Clear all 6 debug registers:
1297  */
1298 static void clear_all_debug_regs(void)
1299 {
1300 	int i;
1301 
1302 	for (i = 0; i < 8; i++) {
1303 		/* Ignore db4, db5 */
1304 		if ((i == 4) || (i == 5))
1305 			continue;
1306 
1307 		set_debugreg(0, i);
1308 	}
1309 }
1310 
1311 #ifdef CONFIG_KGDB
1312 /*
1313  * Restore debug regs if using kgdbwait and you have a kernel debugger
1314  * connection established.
1315  */
1316 static void dbg_restore_debug_regs(void)
1317 {
1318 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1319 		arch_kgdb_ops.correct_hw_break();
1320 }
1321 #else /* ! CONFIG_KGDB */
1322 #define dbg_restore_debug_regs()
1323 #endif /* ! CONFIG_KGDB */
1324 
1325 static void wait_for_master_cpu(int cpu)
1326 {
1327 #ifdef CONFIG_SMP
1328 	/*
1329 	 * wait for ACK from master CPU before continuing
1330 	 * with AP initialization
1331 	 */
1332 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1333 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1334 		cpu_relax();
1335 #endif
1336 }
1337 
1338 /*
1339  * cpu_init() initializes state that is per-CPU. Some data is already
1340  * initialized (naturally) in the bootstrap process, such as the GDT
1341  * and IDT. We reload them nevertheless, this function acts as a
1342  * 'CPU state barrier', nothing should get across.
1343  * A lot of state is already set up in PDA init for 64 bit
1344  */
1345 #ifdef CONFIG_X86_64
1346 
1347 void cpu_init(void)
1348 {
1349 	struct orig_ist *oist;
1350 	struct task_struct *me;
1351 	struct tss_struct *t;
1352 	unsigned long v;
1353 	int cpu = stack_smp_processor_id();
1354 	int i;
1355 
1356 	wait_for_master_cpu(cpu);
1357 
1358 	/*
1359 	 * Initialize the CR4 shadow before doing anything that could
1360 	 * try to read it.
1361 	 */
1362 	cr4_init_shadow();
1363 
1364 	/*
1365 	 * Load microcode on this cpu if a valid microcode is available.
1366 	 * This is early microcode loading procedure.
1367 	 */
1368 	load_ucode_ap();
1369 
1370 	t = &per_cpu(cpu_tss, cpu);
1371 	oist = &per_cpu(orig_ist, cpu);
1372 
1373 #ifdef CONFIG_NUMA
1374 	if (this_cpu_read(numa_node) == 0 &&
1375 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1376 		set_numa_node(early_cpu_to_node(cpu));
1377 #endif
1378 
1379 	me = current;
1380 
1381 	pr_debug("Initializing CPU#%d\n", cpu);
1382 
1383 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1384 
1385 	/*
1386 	 * Initialize the per-CPU GDT with the boot GDT,
1387 	 * and set up the GDT descriptor:
1388 	 */
1389 
1390 	switch_to_new_gdt(cpu);
1391 	loadsegment(fs, 0);
1392 
1393 	load_current_idt();
1394 
1395 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1396 	syscall_init();
1397 
1398 	wrmsrl(MSR_FS_BASE, 0);
1399 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1400 	barrier();
1401 
1402 	x86_configure_nx();
1403 	x2apic_setup();
1404 
1405 	/*
1406 	 * set up and load the per-CPU TSS
1407 	 */
1408 	if (!oist->ist[0]) {
1409 		char *estacks = per_cpu(exception_stacks, cpu);
1410 
1411 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1412 			estacks += exception_stack_sizes[v];
1413 			oist->ist[v] = t->x86_tss.ist[v] =
1414 					(unsigned long)estacks;
1415 			if (v == DEBUG_STACK-1)
1416 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1417 		}
1418 	}
1419 
1420 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1421 
1422 	/*
1423 	 * <= is required because the CPU will access up to
1424 	 * 8 bits beyond the end of the IO permission bitmap.
1425 	 */
1426 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1427 		t->io_bitmap[i] = ~0UL;
1428 
1429 	atomic_inc(&init_mm.mm_count);
1430 	me->active_mm = &init_mm;
1431 	BUG_ON(me->mm);
1432 	enter_lazy_tlb(&init_mm, me);
1433 
1434 	load_sp0(t, &current->thread);
1435 	set_tss_desc(cpu, t);
1436 	load_TR_desc();
1437 	load_LDT(&init_mm.context);
1438 
1439 	clear_all_debug_regs();
1440 	dbg_restore_debug_regs();
1441 
1442 	fpu_init();
1443 
1444 	if (is_uv_system())
1445 		uv_cpu_init();
1446 }
1447 
1448 #else
1449 
1450 void cpu_init(void)
1451 {
1452 	int cpu = smp_processor_id();
1453 	struct task_struct *curr = current;
1454 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1455 	struct thread_struct *thread = &curr->thread;
1456 
1457 	wait_for_master_cpu(cpu);
1458 
1459 	/*
1460 	 * Initialize the CR4 shadow before doing anything that could
1461 	 * try to read it.
1462 	 */
1463 	cr4_init_shadow();
1464 
1465 	show_ucode_info_early();
1466 
1467 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1468 
1469 	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1470 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1471 
1472 	load_current_idt();
1473 	switch_to_new_gdt(cpu);
1474 
1475 	/*
1476 	 * Set up and load the per-CPU TSS and LDT
1477 	 */
1478 	atomic_inc(&init_mm.mm_count);
1479 	curr->active_mm = &init_mm;
1480 	BUG_ON(curr->mm);
1481 	enter_lazy_tlb(&init_mm, curr);
1482 
1483 	load_sp0(t, thread);
1484 	set_tss_desc(cpu, t);
1485 	load_TR_desc();
1486 	load_LDT(&init_mm.context);
1487 
1488 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1489 
1490 #ifdef CONFIG_DOUBLEFAULT
1491 	/* Set up doublefault TSS pointer in the GDT */
1492 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1493 #endif
1494 
1495 	clear_all_debug_regs();
1496 	dbg_restore_debug_regs();
1497 
1498 	fpu_init();
1499 }
1500 #endif
1501 
1502 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1503 void warn_pre_alternatives(void)
1504 {
1505 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1506 }
1507 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1508 #endif
1509 
1510 inline bool __static_cpu_has_safe(u16 bit)
1511 {
1512 	return boot_cpu_has(bit);
1513 }
1514 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1515