1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Routines to identify caches on Intel CPU. 4 * 5 * Changes: 6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4) 7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. 8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/cpu.h> 14 #include <linux/sched.h> 15 #include <linux/capability.h> 16 #include <linux/sysfs.h> 17 #include <linux/pci.h> 18 19 #include <asm/cpufeature.h> 20 #include <asm/amd_nb.h> 21 #include <asm/smp.h> 22 23 #include "cpu.h" 24 25 #define LVL_1_INST 1 26 #define LVL_1_DATA 2 27 #define LVL_2 3 28 #define LVL_3 4 29 #define LVL_TRACE 5 30 31 struct _cache_table { 32 unsigned char descriptor; 33 char cache_type; 34 short size; 35 }; 36 37 #define MB(x) ((x) * 1024) 38 39 /* All the cache descriptor types we care about (no TLB or 40 trace cache entries) */ 41 42 static const struct _cache_table cache_table[] = 43 { 44 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ 45 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ 46 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ 47 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ 48 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ 49 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ 50 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ 51 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ 52 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 53 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 54 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 55 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 56 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ 57 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ 58 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 59 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 60 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ 61 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 62 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 63 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 64 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ 65 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ 66 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ 67 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ 68 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ 69 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ 70 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ 71 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ 72 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ 73 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 74 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ 75 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 76 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ 77 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ 78 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ 79 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 80 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 81 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 82 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 83 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ 84 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ 85 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ 86 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ 87 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ 88 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 89 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 90 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 91 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 92 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ 93 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ 94 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ 95 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ 96 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ 97 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ 98 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ 99 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ 100 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ 101 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ 102 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ 103 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ 104 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ 105 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ 106 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 107 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ 108 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 109 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ 110 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ 111 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 112 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 113 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ 114 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ 115 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ 116 { 0x00, 0, 0} 117 }; 118 119 120 enum _cache_type { 121 CTYPE_NULL = 0, 122 CTYPE_DATA = 1, 123 CTYPE_INST = 2, 124 CTYPE_UNIFIED = 3 125 }; 126 127 union _cpuid4_leaf_eax { 128 struct { 129 enum _cache_type type:5; 130 unsigned int level:3; 131 unsigned int is_self_initializing:1; 132 unsigned int is_fully_associative:1; 133 unsigned int reserved:4; 134 unsigned int num_threads_sharing:12; 135 unsigned int num_cores_on_die:6; 136 } split; 137 u32 full; 138 }; 139 140 union _cpuid4_leaf_ebx { 141 struct { 142 unsigned int coherency_line_size:12; 143 unsigned int physical_line_partition:10; 144 unsigned int ways_of_associativity:10; 145 } split; 146 u32 full; 147 }; 148 149 union _cpuid4_leaf_ecx { 150 struct { 151 unsigned int number_of_sets:32; 152 } split; 153 u32 full; 154 }; 155 156 struct _cpuid4_info_regs { 157 union _cpuid4_leaf_eax eax; 158 union _cpuid4_leaf_ebx ebx; 159 union _cpuid4_leaf_ecx ecx; 160 unsigned int id; 161 unsigned long size; 162 struct amd_northbridge *nb; 163 }; 164 165 static unsigned short num_cache_leaves; 166 167 /* AMD doesn't have CPUID4. Emulate it here to report the same 168 information to the user. This makes some assumptions about the machine: 169 L2 not shared, no SMT etc. that is currently true on AMD CPUs. 170 171 In theory the TLBs could be reported as fake type (they are in "dummy"). 172 Maybe later */ 173 union l1_cache { 174 struct { 175 unsigned line_size:8; 176 unsigned lines_per_tag:8; 177 unsigned assoc:8; 178 unsigned size_in_kb:8; 179 }; 180 unsigned val; 181 }; 182 183 union l2_cache { 184 struct { 185 unsigned line_size:8; 186 unsigned lines_per_tag:4; 187 unsigned assoc:4; 188 unsigned size_in_kb:16; 189 }; 190 unsigned val; 191 }; 192 193 union l3_cache { 194 struct { 195 unsigned line_size:8; 196 unsigned lines_per_tag:4; 197 unsigned assoc:4; 198 unsigned res:2; 199 unsigned size_encoded:14; 200 }; 201 unsigned val; 202 }; 203 204 static const unsigned short assocs[] = { 205 [1] = 1, 206 [2] = 2, 207 [4] = 4, 208 [6] = 8, 209 [8] = 16, 210 [0xa] = 32, 211 [0xb] = 48, 212 [0xc] = 64, 213 [0xd] = 96, 214 [0xe] = 128, 215 [0xf] = 0xffff /* fully associative - no way to show this currently */ 216 }; 217 218 static const unsigned char levels[] = { 1, 1, 2, 3 }; 219 static const unsigned char types[] = { 1, 2, 3, 3 }; 220 221 static const enum cache_type cache_type_map[] = { 222 [CTYPE_NULL] = CACHE_TYPE_NOCACHE, 223 [CTYPE_DATA] = CACHE_TYPE_DATA, 224 [CTYPE_INST] = CACHE_TYPE_INST, 225 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, 226 }; 227 228 static void 229 amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, 230 union _cpuid4_leaf_ebx *ebx, 231 union _cpuid4_leaf_ecx *ecx) 232 { 233 unsigned dummy; 234 unsigned line_size, lines_per_tag, assoc, size_in_kb; 235 union l1_cache l1i, l1d; 236 union l2_cache l2; 237 union l3_cache l3; 238 union l1_cache *l1 = &l1d; 239 240 eax->full = 0; 241 ebx->full = 0; 242 ecx->full = 0; 243 244 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); 245 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); 246 247 switch (leaf) { 248 case 1: 249 l1 = &l1i; 250 case 0: 251 if (!l1->val) 252 return; 253 assoc = assocs[l1->assoc]; 254 line_size = l1->line_size; 255 lines_per_tag = l1->lines_per_tag; 256 size_in_kb = l1->size_in_kb; 257 break; 258 case 2: 259 if (!l2.val) 260 return; 261 assoc = assocs[l2.assoc]; 262 line_size = l2.line_size; 263 lines_per_tag = l2.lines_per_tag; 264 /* cpu_data has errata corrections for K7 applied */ 265 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); 266 break; 267 case 3: 268 if (!l3.val) 269 return; 270 assoc = assocs[l3.assoc]; 271 line_size = l3.line_size; 272 lines_per_tag = l3.lines_per_tag; 273 size_in_kb = l3.size_encoded * 512; 274 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { 275 size_in_kb = size_in_kb >> 1; 276 assoc = assoc >> 1; 277 } 278 break; 279 default: 280 return; 281 } 282 283 eax->split.is_self_initializing = 1; 284 eax->split.type = types[leaf]; 285 eax->split.level = levels[leaf]; 286 eax->split.num_threads_sharing = 0; 287 eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1; 288 289 290 if (assoc == 0xffff) 291 eax->split.is_fully_associative = 1; 292 ebx->split.coherency_line_size = line_size - 1; 293 ebx->split.ways_of_associativity = assoc - 1; 294 ebx->split.physical_line_partition = lines_per_tag - 1; 295 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / 296 (ebx->split.ways_of_associativity + 1) - 1; 297 } 298 299 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) 300 301 /* 302 * L3 cache descriptors 303 */ 304 static void amd_calc_l3_indices(struct amd_northbridge *nb) 305 { 306 struct amd_l3_cache *l3 = &nb->l3_cache; 307 unsigned int sc0, sc1, sc2, sc3; 308 u32 val = 0; 309 310 pci_read_config_dword(nb->misc, 0x1C4, &val); 311 312 /* calculate subcache sizes */ 313 l3->subcaches[0] = sc0 = !(val & BIT(0)); 314 l3->subcaches[1] = sc1 = !(val & BIT(4)); 315 316 if (boot_cpu_data.x86 == 0x15) { 317 l3->subcaches[0] = sc0 += !(val & BIT(1)); 318 l3->subcaches[1] = sc1 += !(val & BIT(5)); 319 } 320 321 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); 322 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); 323 324 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; 325 } 326 327 /* 328 * check whether a slot used for disabling an L3 index is occupied. 329 * @l3: L3 cache descriptor 330 * @slot: slot number (0..1) 331 * 332 * @returns: the disabled index if used or negative value if slot free. 333 */ 334 static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) 335 { 336 unsigned int reg = 0; 337 338 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); 339 340 /* check whether this slot is activated already */ 341 if (reg & (3UL << 30)) 342 return reg & 0xfff; 343 344 return -1; 345 } 346 347 static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, 348 unsigned int slot) 349 { 350 int index; 351 struct amd_northbridge *nb = this_leaf->priv; 352 353 index = amd_get_l3_disable_slot(nb, slot); 354 if (index >= 0) 355 return sprintf(buf, "%d\n", index); 356 357 return sprintf(buf, "FREE\n"); 358 } 359 360 #define SHOW_CACHE_DISABLE(slot) \ 361 static ssize_t \ 362 cache_disable_##slot##_show(struct device *dev, \ 363 struct device_attribute *attr, char *buf) \ 364 { \ 365 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 366 return show_cache_disable(this_leaf, buf, slot); \ 367 } 368 SHOW_CACHE_DISABLE(0) 369 SHOW_CACHE_DISABLE(1) 370 371 static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, 372 unsigned slot, unsigned long idx) 373 { 374 int i; 375 376 idx |= BIT(30); 377 378 /* 379 * disable index in all 4 subcaches 380 */ 381 for (i = 0; i < 4; i++) { 382 u32 reg = idx | (i << 20); 383 384 if (!nb->l3_cache.subcaches[i]) 385 continue; 386 387 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 388 389 /* 390 * We need to WBINVD on a core on the node containing the L3 391 * cache which indices we disable therefore a simple wbinvd() 392 * is not sufficient. 393 */ 394 wbinvd_on_cpu(cpu); 395 396 reg |= BIT(31); 397 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 398 } 399 } 400 401 /* 402 * disable a L3 cache index by using a disable-slot 403 * 404 * @l3: L3 cache descriptor 405 * @cpu: A CPU on the node containing the L3 cache 406 * @slot: slot number (0..1) 407 * @index: index to disable 408 * 409 * @return: 0 on success, error status on failure 410 */ 411 static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, 412 unsigned slot, unsigned long index) 413 { 414 int ret = 0; 415 416 /* check if @slot is already used or the index is already disabled */ 417 ret = amd_get_l3_disable_slot(nb, slot); 418 if (ret >= 0) 419 return -EEXIST; 420 421 if (index > nb->l3_cache.indices) 422 return -EINVAL; 423 424 /* check whether the other slot has disabled the same index already */ 425 if (index == amd_get_l3_disable_slot(nb, !slot)) 426 return -EEXIST; 427 428 amd_l3_disable_index(nb, cpu, slot, index); 429 430 return 0; 431 } 432 433 static ssize_t store_cache_disable(struct cacheinfo *this_leaf, 434 const char *buf, size_t count, 435 unsigned int slot) 436 { 437 unsigned long val = 0; 438 int cpu, err = 0; 439 struct amd_northbridge *nb = this_leaf->priv; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EPERM; 443 444 cpu = cpumask_first(&this_leaf->shared_cpu_map); 445 446 if (kstrtoul(buf, 10, &val) < 0) 447 return -EINVAL; 448 449 err = amd_set_l3_disable_slot(nb, cpu, slot, val); 450 if (err) { 451 if (err == -EEXIST) 452 pr_warn("L3 slot %d in use/index already disabled!\n", 453 slot); 454 return err; 455 } 456 return count; 457 } 458 459 #define STORE_CACHE_DISABLE(slot) \ 460 static ssize_t \ 461 cache_disable_##slot##_store(struct device *dev, \ 462 struct device_attribute *attr, \ 463 const char *buf, size_t count) \ 464 { \ 465 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 466 return store_cache_disable(this_leaf, buf, count, slot); \ 467 } 468 STORE_CACHE_DISABLE(0) 469 STORE_CACHE_DISABLE(1) 470 471 static ssize_t subcaches_show(struct device *dev, 472 struct device_attribute *attr, char *buf) 473 { 474 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 475 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 476 477 return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); 478 } 479 480 static ssize_t subcaches_store(struct device *dev, 481 struct device_attribute *attr, 482 const char *buf, size_t count) 483 { 484 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 485 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 486 unsigned long val; 487 488 if (!capable(CAP_SYS_ADMIN)) 489 return -EPERM; 490 491 if (kstrtoul(buf, 16, &val) < 0) 492 return -EINVAL; 493 494 if (amd_set_subcaches(cpu, val)) 495 return -EINVAL; 496 497 return count; 498 } 499 500 static DEVICE_ATTR_RW(cache_disable_0); 501 static DEVICE_ATTR_RW(cache_disable_1); 502 static DEVICE_ATTR_RW(subcaches); 503 504 static umode_t 505 cache_private_attrs_is_visible(struct kobject *kobj, 506 struct attribute *attr, int unused) 507 { 508 struct device *dev = kobj_to_dev(kobj); 509 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 510 umode_t mode = attr->mode; 511 512 if (!this_leaf->priv) 513 return 0; 514 515 if ((attr == &dev_attr_subcaches.attr) && 516 amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 517 return mode; 518 519 if ((attr == &dev_attr_cache_disable_0.attr || 520 attr == &dev_attr_cache_disable_1.attr) && 521 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 522 return mode; 523 524 return 0; 525 } 526 527 static struct attribute_group cache_private_group = { 528 .is_visible = cache_private_attrs_is_visible, 529 }; 530 531 static void init_amd_l3_attrs(void) 532 { 533 int n = 1; 534 static struct attribute **amd_l3_attrs; 535 536 if (amd_l3_attrs) /* already initialized */ 537 return; 538 539 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 540 n += 2; 541 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 542 n += 1; 543 544 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); 545 if (!amd_l3_attrs) 546 return; 547 548 n = 0; 549 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { 550 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; 551 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; 552 } 553 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 554 amd_l3_attrs[n++] = &dev_attr_subcaches.attr; 555 556 cache_private_group.attrs = amd_l3_attrs; 557 } 558 559 const struct attribute_group * 560 cache_get_priv_group(struct cacheinfo *this_leaf) 561 { 562 struct amd_northbridge *nb = this_leaf->priv; 563 564 if (this_leaf->level < 3 || !nb) 565 return NULL; 566 567 if (nb && nb->l3_cache.indices) 568 init_amd_l3_attrs(); 569 570 return &cache_private_group; 571 } 572 573 static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) 574 { 575 int node; 576 577 /* only for L3, and not in virtualized environments */ 578 if (index < 3) 579 return; 580 581 node = amd_get_nb_id(smp_processor_id()); 582 this_leaf->nb = node_to_amd_nb(node); 583 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) 584 amd_calc_l3_indices(this_leaf->nb); 585 } 586 #else 587 #define amd_init_l3_cache(x, y) 588 #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ 589 590 static int 591 cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) 592 { 593 union _cpuid4_leaf_eax eax; 594 union _cpuid4_leaf_ebx ebx; 595 union _cpuid4_leaf_ecx ecx; 596 unsigned edx; 597 598 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 599 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) 600 cpuid_count(0x8000001d, index, &eax.full, 601 &ebx.full, &ecx.full, &edx); 602 else 603 amd_cpuid4(index, &eax, &ebx, &ecx); 604 amd_init_l3_cache(this_leaf, index); 605 } else { 606 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); 607 } 608 609 if (eax.split.type == CTYPE_NULL) 610 return -EIO; /* better error ? */ 611 612 this_leaf->eax = eax; 613 this_leaf->ebx = ebx; 614 this_leaf->ecx = ecx; 615 this_leaf->size = (ecx.split.number_of_sets + 1) * 616 (ebx.split.coherency_line_size + 1) * 617 (ebx.split.physical_line_partition + 1) * 618 (ebx.split.ways_of_associativity + 1); 619 return 0; 620 } 621 622 static int find_num_cache_leaves(struct cpuinfo_x86 *c) 623 { 624 unsigned int eax, ebx, ecx, edx, op; 625 union _cpuid4_leaf_eax cache_eax; 626 int i = -1; 627 628 if (c->x86_vendor == X86_VENDOR_AMD) 629 op = 0x8000001d; 630 else 631 op = 4; 632 633 do { 634 ++i; 635 /* Do cpuid(op) loop to find out num_cache_leaves */ 636 cpuid_count(op, i, &eax, &ebx, &ecx, &edx); 637 cache_eax.full = eax; 638 } while (cache_eax.split.type != CTYPE_NULL); 639 return i; 640 } 641 642 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu, u8 node_id) 643 { 644 /* 645 * We may have multiple LLCs if L3 caches exist, so check if we 646 * have an L3 cache by looking at the L3 cache CPUID leaf. 647 */ 648 if (!cpuid_edx(0x80000006)) 649 return; 650 651 if (c->x86 < 0x17) { 652 /* LLC is at the node level. */ 653 per_cpu(cpu_llc_id, cpu) = node_id; 654 } else if (c->x86 == 0x17 && 655 c->x86_model >= 0 && c->x86_model <= 0x1F) { 656 /* 657 * LLC is at the core complex level. 658 * Core complex ID is ApicId[3] for these processors. 659 */ 660 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 661 } else { 662 /* 663 * LLC ID is calculated from the number of threads sharing the 664 * cache. 665 * */ 666 u32 eax, ebx, ecx, edx, num_sharing_cache = 0; 667 u32 llc_index = find_num_cache_leaves(c) - 1; 668 669 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); 670 if (eax) 671 num_sharing_cache = ((eax >> 14) & 0xfff) + 1; 672 673 if (num_sharing_cache) { 674 int bits = get_count_order(num_sharing_cache) - 1; 675 676 per_cpu(cpu_llc_id, cpu) = c->apicid >> bits; 677 } 678 } 679 } 680 681 void init_amd_cacheinfo(struct cpuinfo_x86 *c) 682 { 683 684 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 685 num_cache_leaves = find_num_cache_leaves(c); 686 } else if (c->extended_cpuid_level >= 0x80000006) { 687 if (cpuid_edx(0x80000006) & 0xf000) 688 num_cache_leaves = 4; 689 else 690 num_cache_leaves = 3; 691 } 692 } 693 694 void init_intel_cacheinfo(struct cpuinfo_x86 *c) 695 { 696 /* Cache sizes */ 697 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; 698 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ 699 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ 700 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; 701 #ifdef CONFIG_SMP 702 unsigned int cpu = c->cpu_index; 703 #endif 704 705 if (c->cpuid_level > 3) { 706 static int is_initialized; 707 708 if (is_initialized == 0) { 709 /* Init num_cache_leaves from boot CPU */ 710 num_cache_leaves = find_num_cache_leaves(c); 711 is_initialized++; 712 } 713 714 /* 715 * Whenever possible use cpuid(4), deterministic cache 716 * parameters cpuid leaf to find the cache details 717 */ 718 for (i = 0; i < num_cache_leaves; i++) { 719 struct _cpuid4_info_regs this_leaf = {}; 720 int retval; 721 722 retval = cpuid4_cache_lookup_regs(i, &this_leaf); 723 if (retval < 0) 724 continue; 725 726 switch (this_leaf.eax.split.level) { 727 case 1: 728 if (this_leaf.eax.split.type == CTYPE_DATA) 729 new_l1d = this_leaf.size/1024; 730 else if (this_leaf.eax.split.type == CTYPE_INST) 731 new_l1i = this_leaf.size/1024; 732 break; 733 case 2: 734 new_l2 = this_leaf.size/1024; 735 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 736 index_msb = get_count_order(num_threads_sharing); 737 l2_id = c->apicid & ~((1 << index_msb) - 1); 738 break; 739 case 3: 740 new_l3 = this_leaf.size/1024; 741 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 742 index_msb = get_count_order(num_threads_sharing); 743 l3_id = c->apicid & ~((1 << index_msb) - 1); 744 break; 745 default: 746 break; 747 } 748 } 749 } 750 /* 751 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for 752 * trace cache 753 */ 754 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { 755 /* supports eax=2 call */ 756 int j, n; 757 unsigned int regs[4]; 758 unsigned char *dp = (unsigned char *)regs; 759 int only_trace = 0; 760 761 if (num_cache_leaves != 0 && c->x86 == 15) 762 only_trace = 1; 763 764 /* Number of times to iterate */ 765 n = cpuid_eax(2) & 0xFF; 766 767 for (i = 0 ; i < n ; i++) { 768 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 769 770 /* If bit 31 is set, this is an unknown format */ 771 for (j = 0 ; j < 3 ; j++) 772 if (regs[j] & (1 << 31)) 773 regs[j] = 0; 774 775 /* Byte 0 is level count, not a descriptor */ 776 for (j = 1 ; j < 16 ; j++) { 777 unsigned char des = dp[j]; 778 unsigned char k = 0; 779 780 /* look up this descriptor in the table */ 781 while (cache_table[k].descriptor != 0) { 782 if (cache_table[k].descriptor == des) { 783 if (only_trace && cache_table[k].cache_type != LVL_TRACE) 784 break; 785 switch (cache_table[k].cache_type) { 786 case LVL_1_INST: 787 l1i += cache_table[k].size; 788 break; 789 case LVL_1_DATA: 790 l1d += cache_table[k].size; 791 break; 792 case LVL_2: 793 l2 += cache_table[k].size; 794 break; 795 case LVL_3: 796 l3 += cache_table[k].size; 797 break; 798 case LVL_TRACE: 799 trace += cache_table[k].size; 800 break; 801 } 802 803 break; 804 } 805 806 k++; 807 } 808 } 809 } 810 } 811 812 if (new_l1d) 813 l1d = new_l1d; 814 815 if (new_l1i) 816 l1i = new_l1i; 817 818 if (new_l2) { 819 l2 = new_l2; 820 #ifdef CONFIG_SMP 821 per_cpu(cpu_llc_id, cpu) = l2_id; 822 #endif 823 } 824 825 if (new_l3) { 826 l3 = new_l3; 827 #ifdef CONFIG_SMP 828 per_cpu(cpu_llc_id, cpu) = l3_id; 829 #endif 830 } 831 832 #ifdef CONFIG_SMP 833 /* 834 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in 835 * turns means that the only possibility is SMT (as indicated in 836 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know 837 * that SMT shares all caches, we can unconditionally set cpu_llc_id to 838 * c->phys_proc_id. 839 */ 840 if (per_cpu(cpu_llc_id, cpu) == BAD_APICID) 841 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; 842 #endif 843 844 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); 845 846 if (!l2) 847 cpu_detect_cache_sizes(c); 848 } 849 850 static int __cache_amd_cpumap_setup(unsigned int cpu, int index, 851 struct _cpuid4_info_regs *base) 852 { 853 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 854 struct cacheinfo *this_leaf; 855 int i, sibling; 856 857 /* 858 * For L3, always use the pre-calculated cpu_llc_shared_mask 859 * to derive shared_cpu_map. 860 */ 861 if (index == 3) { 862 for_each_cpu(i, cpu_llc_shared_mask(cpu)) { 863 this_cpu_ci = get_cpu_cacheinfo(i); 864 if (!this_cpu_ci->info_list) 865 continue; 866 this_leaf = this_cpu_ci->info_list + index; 867 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { 868 if (!cpu_online(sibling)) 869 continue; 870 cpumask_set_cpu(sibling, 871 &this_leaf->shared_cpu_map); 872 } 873 } 874 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 875 unsigned int apicid, nshared, first, last; 876 877 nshared = base->eax.split.num_threads_sharing + 1; 878 apicid = cpu_data(cpu).apicid; 879 first = apicid - (apicid % nshared); 880 last = first + nshared - 1; 881 882 for_each_online_cpu(i) { 883 this_cpu_ci = get_cpu_cacheinfo(i); 884 if (!this_cpu_ci->info_list) 885 continue; 886 887 apicid = cpu_data(i).apicid; 888 if ((apicid < first) || (apicid > last)) 889 continue; 890 891 this_leaf = this_cpu_ci->info_list + index; 892 893 for_each_online_cpu(sibling) { 894 apicid = cpu_data(sibling).apicid; 895 if ((apicid < first) || (apicid > last)) 896 continue; 897 cpumask_set_cpu(sibling, 898 &this_leaf->shared_cpu_map); 899 } 900 } 901 } else 902 return 0; 903 904 return 1; 905 } 906 907 static void __cache_cpumap_setup(unsigned int cpu, int index, 908 struct _cpuid4_info_regs *base) 909 { 910 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 911 struct cacheinfo *this_leaf, *sibling_leaf; 912 unsigned long num_threads_sharing; 913 int index_msb, i; 914 struct cpuinfo_x86 *c = &cpu_data(cpu); 915 916 if (c->x86_vendor == X86_VENDOR_AMD) { 917 if (__cache_amd_cpumap_setup(cpu, index, base)) 918 return; 919 } 920 921 this_leaf = this_cpu_ci->info_list + index; 922 num_threads_sharing = 1 + base->eax.split.num_threads_sharing; 923 924 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 925 if (num_threads_sharing == 1) 926 return; 927 928 index_msb = get_count_order(num_threads_sharing); 929 930 for_each_online_cpu(i) 931 if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { 932 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 933 934 if (i == cpu || !sib_cpu_ci->info_list) 935 continue;/* skip if itself or no cacheinfo */ 936 sibling_leaf = sib_cpu_ci->info_list + index; 937 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 938 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); 939 } 940 } 941 942 static void ci_leaf_init(struct cacheinfo *this_leaf, 943 struct _cpuid4_info_regs *base) 944 { 945 this_leaf->id = base->id; 946 this_leaf->attributes = CACHE_ID; 947 this_leaf->level = base->eax.split.level; 948 this_leaf->type = cache_type_map[base->eax.split.type]; 949 this_leaf->coherency_line_size = 950 base->ebx.split.coherency_line_size + 1; 951 this_leaf->ways_of_associativity = 952 base->ebx.split.ways_of_associativity + 1; 953 this_leaf->size = base->size; 954 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; 955 this_leaf->physical_line_partition = 956 base->ebx.split.physical_line_partition + 1; 957 this_leaf->priv = base->nb; 958 } 959 960 static int __init_cache_level(unsigned int cpu) 961 { 962 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 963 964 if (!num_cache_leaves) 965 return -ENOENT; 966 if (!this_cpu_ci) 967 return -EINVAL; 968 this_cpu_ci->num_levels = 3; 969 this_cpu_ci->num_leaves = num_cache_leaves; 970 return 0; 971 } 972 973 /* 974 * The max shared threads number comes from CPUID.4:EAX[25-14] with input 975 * ECX as cache index. Then right shift apicid by the number's order to get 976 * cache id for this cache node. 977 */ 978 static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) 979 { 980 struct cpuinfo_x86 *c = &cpu_data(cpu); 981 unsigned long num_threads_sharing; 982 int index_msb; 983 984 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; 985 index_msb = get_count_order(num_threads_sharing); 986 id4_regs->id = c->apicid >> index_msb; 987 } 988 989 static int __populate_cache_leaves(unsigned int cpu) 990 { 991 unsigned int idx, ret; 992 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 993 struct cacheinfo *this_leaf = this_cpu_ci->info_list; 994 struct _cpuid4_info_regs id4_regs = {}; 995 996 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { 997 ret = cpuid4_cache_lookup_regs(idx, &id4_regs); 998 if (ret) 999 return ret; 1000 get_cache_id(cpu, &id4_regs); 1001 ci_leaf_init(this_leaf++, &id4_regs); 1002 __cache_cpumap_setup(cpu, idx, &id4_regs); 1003 } 1004 this_cpu_ci->cpu_map_populated = true; 1005 1006 return 0; 1007 } 1008 1009 DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level) 1010 DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves) 1011