1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Routines to identify caches on Intel CPU. 4 * 5 * Changes: 6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4) 7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. 8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/cpu.h> 14 #include <linux/cpuhotplug.h> 15 #include <linux/sched.h> 16 #include <linux/capability.h> 17 #include <linux/sysfs.h> 18 #include <linux/pci.h> 19 #include <linux/stop_machine.h> 20 21 #include <asm/cpufeature.h> 22 #include <asm/cacheinfo.h> 23 #include <asm/amd_nb.h> 24 #include <asm/smp.h> 25 #include <asm/mtrr.h> 26 #include <asm/tlbflush.h> 27 28 #include "cpu.h" 29 30 #define LVL_1_INST 1 31 #define LVL_1_DATA 2 32 #define LVL_2 3 33 #define LVL_3 4 34 #define LVL_TRACE 5 35 36 /* Shared last level cache maps */ 37 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 38 39 /* Shared L2 cache maps */ 40 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map); 41 42 /* Kernel controls MTRR and/or PAT MSRs. */ 43 unsigned int memory_caching_control __ro_after_init; 44 45 struct _cache_table { 46 unsigned char descriptor; 47 char cache_type; 48 short size; 49 }; 50 51 #define MB(x) ((x) * 1024) 52 53 /* All the cache descriptor types we care about (no TLB or 54 trace cache entries) */ 55 56 static const struct _cache_table cache_table[] = 57 { 58 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ 59 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ 60 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ 61 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ 62 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ 63 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ 64 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ 65 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ 66 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 67 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 68 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 69 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 70 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ 71 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ 72 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 73 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 74 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ 75 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 76 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 77 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 78 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ 79 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ 80 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ 81 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ 82 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ 83 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ 84 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ 85 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ 86 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ 87 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 88 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ 89 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 90 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ 91 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ 92 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ 93 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 94 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 95 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 96 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 97 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ 98 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ 99 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ 100 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ 101 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ 102 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 103 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 104 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 105 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 106 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ 107 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ 108 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ 109 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ 110 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ 111 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ 112 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ 113 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ 114 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ 115 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ 116 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ 117 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ 118 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ 119 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ 120 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 121 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ 122 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 123 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ 124 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ 125 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 126 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 127 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ 128 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ 129 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ 130 { 0x00, 0, 0} 131 }; 132 133 134 enum _cache_type { 135 CTYPE_NULL = 0, 136 CTYPE_DATA = 1, 137 CTYPE_INST = 2, 138 CTYPE_UNIFIED = 3 139 }; 140 141 union _cpuid4_leaf_eax { 142 struct { 143 enum _cache_type type:5; 144 unsigned int level:3; 145 unsigned int is_self_initializing:1; 146 unsigned int is_fully_associative:1; 147 unsigned int reserved:4; 148 unsigned int num_threads_sharing:12; 149 unsigned int num_cores_on_die:6; 150 } split; 151 u32 full; 152 }; 153 154 union _cpuid4_leaf_ebx { 155 struct { 156 unsigned int coherency_line_size:12; 157 unsigned int physical_line_partition:10; 158 unsigned int ways_of_associativity:10; 159 } split; 160 u32 full; 161 }; 162 163 union _cpuid4_leaf_ecx { 164 struct { 165 unsigned int number_of_sets:32; 166 } split; 167 u32 full; 168 }; 169 170 struct _cpuid4_info_regs { 171 union _cpuid4_leaf_eax eax; 172 union _cpuid4_leaf_ebx ebx; 173 union _cpuid4_leaf_ecx ecx; 174 unsigned int id; 175 unsigned long size; 176 struct amd_northbridge *nb; 177 }; 178 179 static unsigned short num_cache_leaves; 180 181 /* AMD doesn't have CPUID4. Emulate it here to report the same 182 information to the user. This makes some assumptions about the machine: 183 L2 not shared, no SMT etc. that is currently true on AMD CPUs. 184 185 In theory the TLBs could be reported as fake type (they are in "dummy"). 186 Maybe later */ 187 union l1_cache { 188 struct { 189 unsigned line_size:8; 190 unsigned lines_per_tag:8; 191 unsigned assoc:8; 192 unsigned size_in_kb:8; 193 }; 194 unsigned val; 195 }; 196 197 union l2_cache { 198 struct { 199 unsigned line_size:8; 200 unsigned lines_per_tag:4; 201 unsigned assoc:4; 202 unsigned size_in_kb:16; 203 }; 204 unsigned val; 205 }; 206 207 union l3_cache { 208 struct { 209 unsigned line_size:8; 210 unsigned lines_per_tag:4; 211 unsigned assoc:4; 212 unsigned res:2; 213 unsigned size_encoded:14; 214 }; 215 unsigned val; 216 }; 217 218 static const unsigned short assocs[] = { 219 [1] = 1, 220 [2] = 2, 221 [4] = 4, 222 [6] = 8, 223 [8] = 16, 224 [0xa] = 32, 225 [0xb] = 48, 226 [0xc] = 64, 227 [0xd] = 96, 228 [0xe] = 128, 229 [0xf] = 0xffff /* fully associative - no way to show this currently */ 230 }; 231 232 static const unsigned char levels[] = { 1, 1, 2, 3 }; 233 static const unsigned char types[] = { 1, 2, 3, 3 }; 234 235 static const enum cache_type cache_type_map[] = { 236 [CTYPE_NULL] = CACHE_TYPE_NOCACHE, 237 [CTYPE_DATA] = CACHE_TYPE_DATA, 238 [CTYPE_INST] = CACHE_TYPE_INST, 239 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, 240 }; 241 242 static void 243 amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, 244 union _cpuid4_leaf_ebx *ebx, 245 union _cpuid4_leaf_ecx *ecx) 246 { 247 unsigned dummy; 248 unsigned line_size, lines_per_tag, assoc, size_in_kb; 249 union l1_cache l1i, l1d; 250 union l2_cache l2; 251 union l3_cache l3; 252 union l1_cache *l1 = &l1d; 253 254 eax->full = 0; 255 ebx->full = 0; 256 ecx->full = 0; 257 258 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); 259 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); 260 261 switch (leaf) { 262 case 1: 263 l1 = &l1i; 264 fallthrough; 265 case 0: 266 if (!l1->val) 267 return; 268 assoc = assocs[l1->assoc]; 269 line_size = l1->line_size; 270 lines_per_tag = l1->lines_per_tag; 271 size_in_kb = l1->size_in_kb; 272 break; 273 case 2: 274 if (!l2.val) 275 return; 276 assoc = assocs[l2.assoc]; 277 line_size = l2.line_size; 278 lines_per_tag = l2.lines_per_tag; 279 /* cpu_data has errata corrections for K7 applied */ 280 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); 281 break; 282 case 3: 283 if (!l3.val) 284 return; 285 assoc = assocs[l3.assoc]; 286 line_size = l3.line_size; 287 lines_per_tag = l3.lines_per_tag; 288 size_in_kb = l3.size_encoded * 512; 289 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { 290 size_in_kb = size_in_kb >> 1; 291 assoc = assoc >> 1; 292 } 293 break; 294 default: 295 return; 296 } 297 298 eax->split.is_self_initializing = 1; 299 eax->split.type = types[leaf]; 300 eax->split.level = levels[leaf]; 301 eax->split.num_threads_sharing = 0; 302 eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1; 303 304 305 if (assoc == 0xffff) 306 eax->split.is_fully_associative = 1; 307 ebx->split.coherency_line_size = line_size - 1; 308 ebx->split.ways_of_associativity = assoc - 1; 309 ebx->split.physical_line_partition = lines_per_tag - 1; 310 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / 311 (ebx->split.ways_of_associativity + 1) - 1; 312 } 313 314 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) 315 316 /* 317 * L3 cache descriptors 318 */ 319 static void amd_calc_l3_indices(struct amd_northbridge *nb) 320 { 321 struct amd_l3_cache *l3 = &nb->l3_cache; 322 unsigned int sc0, sc1, sc2, sc3; 323 u32 val = 0; 324 325 pci_read_config_dword(nb->misc, 0x1C4, &val); 326 327 /* calculate subcache sizes */ 328 l3->subcaches[0] = sc0 = !(val & BIT(0)); 329 l3->subcaches[1] = sc1 = !(val & BIT(4)); 330 331 if (boot_cpu_data.x86 == 0x15) { 332 l3->subcaches[0] = sc0 += !(val & BIT(1)); 333 l3->subcaches[1] = sc1 += !(val & BIT(5)); 334 } 335 336 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); 337 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); 338 339 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; 340 } 341 342 /* 343 * check whether a slot used for disabling an L3 index is occupied. 344 * @l3: L3 cache descriptor 345 * @slot: slot number (0..1) 346 * 347 * @returns: the disabled index if used or negative value if slot free. 348 */ 349 static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) 350 { 351 unsigned int reg = 0; 352 353 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); 354 355 /* check whether this slot is activated already */ 356 if (reg & (3UL << 30)) 357 return reg & 0xfff; 358 359 return -1; 360 } 361 362 static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, 363 unsigned int slot) 364 { 365 int index; 366 struct amd_northbridge *nb = this_leaf->priv; 367 368 index = amd_get_l3_disable_slot(nb, slot); 369 if (index >= 0) 370 return sprintf(buf, "%d\n", index); 371 372 return sprintf(buf, "FREE\n"); 373 } 374 375 #define SHOW_CACHE_DISABLE(slot) \ 376 static ssize_t \ 377 cache_disable_##slot##_show(struct device *dev, \ 378 struct device_attribute *attr, char *buf) \ 379 { \ 380 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 381 return show_cache_disable(this_leaf, buf, slot); \ 382 } 383 SHOW_CACHE_DISABLE(0) 384 SHOW_CACHE_DISABLE(1) 385 386 static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, 387 unsigned slot, unsigned long idx) 388 { 389 int i; 390 391 idx |= BIT(30); 392 393 /* 394 * disable index in all 4 subcaches 395 */ 396 for (i = 0; i < 4; i++) { 397 u32 reg = idx | (i << 20); 398 399 if (!nb->l3_cache.subcaches[i]) 400 continue; 401 402 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 403 404 /* 405 * We need to WBINVD on a core on the node containing the L3 406 * cache which indices we disable therefore a simple wbinvd() 407 * is not sufficient. 408 */ 409 wbinvd_on_cpu(cpu); 410 411 reg |= BIT(31); 412 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 413 } 414 } 415 416 /* 417 * disable a L3 cache index by using a disable-slot 418 * 419 * @l3: L3 cache descriptor 420 * @cpu: A CPU on the node containing the L3 cache 421 * @slot: slot number (0..1) 422 * @index: index to disable 423 * 424 * @return: 0 on success, error status on failure 425 */ 426 static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, 427 unsigned slot, unsigned long index) 428 { 429 int ret = 0; 430 431 /* check if @slot is already used or the index is already disabled */ 432 ret = amd_get_l3_disable_slot(nb, slot); 433 if (ret >= 0) 434 return -EEXIST; 435 436 if (index > nb->l3_cache.indices) 437 return -EINVAL; 438 439 /* check whether the other slot has disabled the same index already */ 440 if (index == amd_get_l3_disable_slot(nb, !slot)) 441 return -EEXIST; 442 443 amd_l3_disable_index(nb, cpu, slot, index); 444 445 return 0; 446 } 447 448 static ssize_t store_cache_disable(struct cacheinfo *this_leaf, 449 const char *buf, size_t count, 450 unsigned int slot) 451 { 452 unsigned long val = 0; 453 int cpu, err = 0; 454 struct amd_northbridge *nb = this_leaf->priv; 455 456 if (!capable(CAP_SYS_ADMIN)) 457 return -EPERM; 458 459 cpu = cpumask_first(&this_leaf->shared_cpu_map); 460 461 if (kstrtoul(buf, 10, &val) < 0) 462 return -EINVAL; 463 464 err = amd_set_l3_disable_slot(nb, cpu, slot, val); 465 if (err) { 466 if (err == -EEXIST) 467 pr_warn("L3 slot %d in use/index already disabled!\n", 468 slot); 469 return err; 470 } 471 return count; 472 } 473 474 #define STORE_CACHE_DISABLE(slot) \ 475 static ssize_t \ 476 cache_disable_##slot##_store(struct device *dev, \ 477 struct device_attribute *attr, \ 478 const char *buf, size_t count) \ 479 { \ 480 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 481 return store_cache_disable(this_leaf, buf, count, slot); \ 482 } 483 STORE_CACHE_DISABLE(0) 484 STORE_CACHE_DISABLE(1) 485 486 static ssize_t subcaches_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488 { 489 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 490 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 491 492 return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); 493 } 494 495 static ssize_t subcaches_store(struct device *dev, 496 struct device_attribute *attr, 497 const char *buf, size_t count) 498 { 499 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 500 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 501 unsigned long val; 502 503 if (!capable(CAP_SYS_ADMIN)) 504 return -EPERM; 505 506 if (kstrtoul(buf, 16, &val) < 0) 507 return -EINVAL; 508 509 if (amd_set_subcaches(cpu, val)) 510 return -EINVAL; 511 512 return count; 513 } 514 515 static DEVICE_ATTR_RW(cache_disable_0); 516 static DEVICE_ATTR_RW(cache_disable_1); 517 static DEVICE_ATTR_RW(subcaches); 518 519 static umode_t 520 cache_private_attrs_is_visible(struct kobject *kobj, 521 struct attribute *attr, int unused) 522 { 523 struct device *dev = kobj_to_dev(kobj); 524 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 525 umode_t mode = attr->mode; 526 527 if (!this_leaf->priv) 528 return 0; 529 530 if ((attr == &dev_attr_subcaches.attr) && 531 amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 532 return mode; 533 534 if ((attr == &dev_attr_cache_disable_0.attr || 535 attr == &dev_attr_cache_disable_1.attr) && 536 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 537 return mode; 538 539 return 0; 540 } 541 542 static struct attribute_group cache_private_group = { 543 .is_visible = cache_private_attrs_is_visible, 544 }; 545 546 static void init_amd_l3_attrs(void) 547 { 548 int n = 1; 549 static struct attribute **amd_l3_attrs; 550 551 if (amd_l3_attrs) /* already initialized */ 552 return; 553 554 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 555 n += 2; 556 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 557 n += 1; 558 559 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); 560 if (!amd_l3_attrs) 561 return; 562 563 n = 0; 564 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { 565 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; 566 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; 567 } 568 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 569 amd_l3_attrs[n++] = &dev_attr_subcaches.attr; 570 571 cache_private_group.attrs = amd_l3_attrs; 572 } 573 574 const struct attribute_group * 575 cache_get_priv_group(struct cacheinfo *this_leaf) 576 { 577 struct amd_northbridge *nb = this_leaf->priv; 578 579 if (this_leaf->level < 3 || !nb) 580 return NULL; 581 582 if (nb && nb->l3_cache.indices) 583 init_amd_l3_attrs(); 584 585 return &cache_private_group; 586 } 587 588 static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) 589 { 590 int node; 591 592 /* only for L3, and not in virtualized environments */ 593 if (index < 3) 594 return; 595 596 node = topology_die_id(smp_processor_id()); 597 this_leaf->nb = node_to_amd_nb(node); 598 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) 599 amd_calc_l3_indices(this_leaf->nb); 600 } 601 #else 602 #define amd_init_l3_cache(x, y) 603 #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ 604 605 static int 606 cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) 607 { 608 union _cpuid4_leaf_eax eax; 609 union _cpuid4_leaf_ebx ebx; 610 union _cpuid4_leaf_ecx ecx; 611 unsigned edx; 612 613 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 614 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) 615 cpuid_count(0x8000001d, index, &eax.full, 616 &ebx.full, &ecx.full, &edx); 617 else 618 amd_cpuid4(index, &eax, &ebx, &ecx); 619 amd_init_l3_cache(this_leaf, index); 620 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 621 cpuid_count(0x8000001d, index, &eax.full, 622 &ebx.full, &ecx.full, &edx); 623 amd_init_l3_cache(this_leaf, index); 624 } else { 625 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); 626 } 627 628 if (eax.split.type == CTYPE_NULL) 629 return -EIO; /* better error ? */ 630 631 this_leaf->eax = eax; 632 this_leaf->ebx = ebx; 633 this_leaf->ecx = ecx; 634 this_leaf->size = (ecx.split.number_of_sets + 1) * 635 (ebx.split.coherency_line_size + 1) * 636 (ebx.split.physical_line_partition + 1) * 637 (ebx.split.ways_of_associativity + 1); 638 return 0; 639 } 640 641 static int find_num_cache_leaves(struct cpuinfo_x86 *c) 642 { 643 unsigned int eax, ebx, ecx, edx, op; 644 union _cpuid4_leaf_eax cache_eax; 645 int i = -1; 646 647 if (c->x86_vendor == X86_VENDOR_AMD || 648 c->x86_vendor == X86_VENDOR_HYGON) 649 op = 0x8000001d; 650 else 651 op = 4; 652 653 do { 654 ++i; 655 /* Do cpuid(op) loop to find out num_cache_leaves */ 656 cpuid_count(op, i, &eax, &ebx, &ecx, &edx); 657 cache_eax.full = eax; 658 } while (cache_eax.split.type != CTYPE_NULL); 659 return i; 660 } 661 662 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu) 663 { 664 /* 665 * We may have multiple LLCs if L3 caches exist, so check if we 666 * have an L3 cache by looking at the L3 cache CPUID leaf. 667 */ 668 if (!cpuid_edx(0x80000006)) 669 return; 670 671 if (c->x86 < 0x17) { 672 /* LLC is at the node level. */ 673 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id; 674 } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { 675 /* 676 * LLC is at the core complex level. 677 * Core complex ID is ApicId[3] for these processors. 678 */ 679 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 680 } else { 681 /* 682 * LLC ID is calculated from the number of threads sharing the 683 * cache. 684 * */ 685 u32 eax, ebx, ecx, edx, num_sharing_cache = 0; 686 u32 llc_index = find_num_cache_leaves(c) - 1; 687 688 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); 689 if (eax) 690 num_sharing_cache = ((eax >> 14) & 0xfff) + 1; 691 692 if (num_sharing_cache) { 693 int bits = get_count_order(num_sharing_cache); 694 695 per_cpu(cpu_llc_id, cpu) = c->apicid >> bits; 696 } 697 } 698 } 699 700 void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c, int cpu) 701 { 702 /* 703 * We may have multiple LLCs if L3 caches exist, so check if we 704 * have an L3 cache by looking at the L3 cache CPUID leaf. 705 */ 706 if (!cpuid_edx(0x80000006)) 707 return; 708 709 /* 710 * LLC is at the core complex level. 711 * Core complex ID is ApicId[3] for these processors. 712 */ 713 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 714 } 715 716 void init_amd_cacheinfo(struct cpuinfo_x86 *c) 717 { 718 719 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 720 num_cache_leaves = find_num_cache_leaves(c); 721 } else if (c->extended_cpuid_level >= 0x80000006) { 722 if (cpuid_edx(0x80000006) & 0xf000) 723 num_cache_leaves = 4; 724 else 725 num_cache_leaves = 3; 726 } 727 } 728 729 void init_hygon_cacheinfo(struct cpuinfo_x86 *c) 730 { 731 num_cache_leaves = find_num_cache_leaves(c); 732 } 733 734 void init_intel_cacheinfo(struct cpuinfo_x86 *c) 735 { 736 /* Cache sizes */ 737 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; 738 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ 739 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ 740 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; 741 #ifdef CONFIG_SMP 742 unsigned int cpu = c->cpu_index; 743 #endif 744 745 if (c->cpuid_level > 3) { 746 static int is_initialized; 747 748 if (is_initialized == 0) { 749 /* Init num_cache_leaves from boot CPU */ 750 num_cache_leaves = find_num_cache_leaves(c); 751 is_initialized++; 752 } 753 754 /* 755 * Whenever possible use cpuid(4), deterministic cache 756 * parameters cpuid leaf to find the cache details 757 */ 758 for (i = 0; i < num_cache_leaves; i++) { 759 struct _cpuid4_info_regs this_leaf = {}; 760 int retval; 761 762 retval = cpuid4_cache_lookup_regs(i, &this_leaf); 763 if (retval < 0) 764 continue; 765 766 switch (this_leaf.eax.split.level) { 767 case 1: 768 if (this_leaf.eax.split.type == CTYPE_DATA) 769 new_l1d = this_leaf.size/1024; 770 else if (this_leaf.eax.split.type == CTYPE_INST) 771 new_l1i = this_leaf.size/1024; 772 break; 773 case 2: 774 new_l2 = this_leaf.size/1024; 775 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 776 index_msb = get_count_order(num_threads_sharing); 777 l2_id = c->apicid & ~((1 << index_msb) - 1); 778 break; 779 case 3: 780 new_l3 = this_leaf.size/1024; 781 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 782 index_msb = get_count_order(num_threads_sharing); 783 l3_id = c->apicid & ~((1 << index_msb) - 1); 784 break; 785 default: 786 break; 787 } 788 } 789 } 790 /* 791 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for 792 * trace cache 793 */ 794 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { 795 /* supports eax=2 call */ 796 int j, n; 797 unsigned int regs[4]; 798 unsigned char *dp = (unsigned char *)regs; 799 int only_trace = 0; 800 801 if (num_cache_leaves != 0 && c->x86 == 15) 802 only_trace = 1; 803 804 /* Number of times to iterate */ 805 n = cpuid_eax(2) & 0xFF; 806 807 for (i = 0 ; i < n ; i++) { 808 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 809 810 /* If bit 31 is set, this is an unknown format */ 811 for (j = 0 ; j < 3 ; j++) 812 if (regs[j] & (1 << 31)) 813 regs[j] = 0; 814 815 /* Byte 0 is level count, not a descriptor */ 816 for (j = 1 ; j < 16 ; j++) { 817 unsigned char des = dp[j]; 818 unsigned char k = 0; 819 820 /* look up this descriptor in the table */ 821 while (cache_table[k].descriptor != 0) { 822 if (cache_table[k].descriptor == des) { 823 if (only_trace && cache_table[k].cache_type != LVL_TRACE) 824 break; 825 switch (cache_table[k].cache_type) { 826 case LVL_1_INST: 827 l1i += cache_table[k].size; 828 break; 829 case LVL_1_DATA: 830 l1d += cache_table[k].size; 831 break; 832 case LVL_2: 833 l2 += cache_table[k].size; 834 break; 835 case LVL_3: 836 l3 += cache_table[k].size; 837 break; 838 case LVL_TRACE: 839 trace += cache_table[k].size; 840 break; 841 } 842 843 break; 844 } 845 846 k++; 847 } 848 } 849 } 850 } 851 852 if (new_l1d) 853 l1d = new_l1d; 854 855 if (new_l1i) 856 l1i = new_l1i; 857 858 if (new_l2) { 859 l2 = new_l2; 860 #ifdef CONFIG_SMP 861 per_cpu(cpu_llc_id, cpu) = l2_id; 862 per_cpu(cpu_l2c_id, cpu) = l2_id; 863 #endif 864 } 865 866 if (new_l3) { 867 l3 = new_l3; 868 #ifdef CONFIG_SMP 869 per_cpu(cpu_llc_id, cpu) = l3_id; 870 #endif 871 } 872 873 #ifdef CONFIG_SMP 874 /* 875 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in 876 * turns means that the only possibility is SMT (as indicated in 877 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know 878 * that SMT shares all caches, we can unconditionally set cpu_llc_id to 879 * c->phys_proc_id. 880 */ 881 if (per_cpu(cpu_llc_id, cpu) == BAD_APICID) 882 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; 883 #endif 884 885 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); 886 887 if (!l2) 888 cpu_detect_cache_sizes(c); 889 } 890 891 static int __cache_amd_cpumap_setup(unsigned int cpu, int index, 892 struct _cpuid4_info_regs *base) 893 { 894 struct cpu_cacheinfo *this_cpu_ci; 895 struct cacheinfo *this_leaf; 896 int i, sibling; 897 898 /* 899 * For L3, always use the pre-calculated cpu_llc_shared_mask 900 * to derive shared_cpu_map. 901 */ 902 if (index == 3) { 903 for_each_cpu(i, cpu_llc_shared_mask(cpu)) { 904 this_cpu_ci = get_cpu_cacheinfo(i); 905 if (!this_cpu_ci->info_list) 906 continue; 907 this_leaf = this_cpu_ci->info_list + index; 908 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { 909 if (!cpu_online(sibling)) 910 continue; 911 cpumask_set_cpu(sibling, 912 &this_leaf->shared_cpu_map); 913 } 914 } 915 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 916 unsigned int apicid, nshared, first, last; 917 918 nshared = base->eax.split.num_threads_sharing + 1; 919 apicid = cpu_data(cpu).apicid; 920 first = apicid - (apicid % nshared); 921 last = first + nshared - 1; 922 923 for_each_online_cpu(i) { 924 this_cpu_ci = get_cpu_cacheinfo(i); 925 if (!this_cpu_ci->info_list) 926 continue; 927 928 apicid = cpu_data(i).apicid; 929 if ((apicid < first) || (apicid > last)) 930 continue; 931 932 this_leaf = this_cpu_ci->info_list + index; 933 934 for_each_online_cpu(sibling) { 935 apicid = cpu_data(sibling).apicid; 936 if ((apicid < first) || (apicid > last)) 937 continue; 938 cpumask_set_cpu(sibling, 939 &this_leaf->shared_cpu_map); 940 } 941 } 942 } else 943 return 0; 944 945 return 1; 946 } 947 948 static void __cache_cpumap_setup(unsigned int cpu, int index, 949 struct _cpuid4_info_regs *base) 950 { 951 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 952 struct cacheinfo *this_leaf, *sibling_leaf; 953 unsigned long num_threads_sharing; 954 int index_msb, i; 955 struct cpuinfo_x86 *c = &cpu_data(cpu); 956 957 if (c->x86_vendor == X86_VENDOR_AMD || 958 c->x86_vendor == X86_VENDOR_HYGON) { 959 if (__cache_amd_cpumap_setup(cpu, index, base)) 960 return; 961 } 962 963 this_leaf = this_cpu_ci->info_list + index; 964 num_threads_sharing = 1 + base->eax.split.num_threads_sharing; 965 966 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 967 if (num_threads_sharing == 1) 968 return; 969 970 index_msb = get_count_order(num_threads_sharing); 971 972 for_each_online_cpu(i) 973 if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { 974 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 975 976 if (i == cpu || !sib_cpu_ci->info_list) 977 continue;/* skip if itself or no cacheinfo */ 978 sibling_leaf = sib_cpu_ci->info_list + index; 979 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 980 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); 981 } 982 } 983 984 static void ci_leaf_init(struct cacheinfo *this_leaf, 985 struct _cpuid4_info_regs *base) 986 { 987 this_leaf->id = base->id; 988 this_leaf->attributes = CACHE_ID; 989 this_leaf->level = base->eax.split.level; 990 this_leaf->type = cache_type_map[base->eax.split.type]; 991 this_leaf->coherency_line_size = 992 base->ebx.split.coherency_line_size + 1; 993 this_leaf->ways_of_associativity = 994 base->ebx.split.ways_of_associativity + 1; 995 this_leaf->size = base->size; 996 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; 997 this_leaf->physical_line_partition = 998 base->ebx.split.physical_line_partition + 1; 999 this_leaf->priv = base->nb; 1000 } 1001 1002 int init_cache_level(unsigned int cpu) 1003 { 1004 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 1005 1006 if (!num_cache_leaves) 1007 return -ENOENT; 1008 if (!this_cpu_ci) 1009 return -EINVAL; 1010 this_cpu_ci->num_levels = 3; 1011 this_cpu_ci->num_leaves = num_cache_leaves; 1012 return 0; 1013 } 1014 1015 /* 1016 * The max shared threads number comes from CPUID.4:EAX[25-14] with input 1017 * ECX as cache index. Then right shift apicid by the number's order to get 1018 * cache id for this cache node. 1019 */ 1020 static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) 1021 { 1022 struct cpuinfo_x86 *c = &cpu_data(cpu); 1023 unsigned long num_threads_sharing; 1024 int index_msb; 1025 1026 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; 1027 index_msb = get_count_order(num_threads_sharing); 1028 id4_regs->id = c->apicid >> index_msb; 1029 } 1030 1031 int populate_cache_leaves(unsigned int cpu) 1032 { 1033 unsigned int idx, ret; 1034 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 1035 struct cacheinfo *this_leaf = this_cpu_ci->info_list; 1036 struct _cpuid4_info_regs id4_regs = {}; 1037 1038 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { 1039 ret = cpuid4_cache_lookup_regs(idx, &id4_regs); 1040 if (ret) 1041 return ret; 1042 get_cache_id(cpu, &id4_regs); 1043 ci_leaf_init(this_leaf++, &id4_regs); 1044 __cache_cpumap_setup(cpu, idx, &id4_regs); 1045 } 1046 this_cpu_ci->cpu_map_populated = true; 1047 1048 return 0; 1049 } 1050 1051 /* 1052 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR. 1053 * 1054 * Since we are disabling the cache don't allow any interrupts, 1055 * they would run extremely slow and would only increase the pain. 1056 * 1057 * The caller must ensure that local interrupts are disabled and 1058 * are reenabled after cache_enable() has been called. 1059 */ 1060 static unsigned long saved_cr4; 1061 static DEFINE_RAW_SPINLOCK(cache_disable_lock); 1062 1063 void cache_disable(void) __acquires(cache_disable_lock) 1064 { 1065 unsigned long cr0; 1066 1067 /* 1068 * Note that this is not ideal 1069 * since the cache is only flushed/disabled for this CPU while the 1070 * MTRRs are changed, but changing this requires more invasive 1071 * changes to the way the kernel boots 1072 */ 1073 1074 raw_spin_lock(&cache_disable_lock); 1075 1076 /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */ 1077 cr0 = read_cr0() | X86_CR0_CD; 1078 write_cr0(cr0); 1079 1080 /* 1081 * Cache flushing is the most time-consuming step when programming 1082 * the MTRRs. Fortunately, as per the Intel Software Development 1083 * Manual, we can skip it if the processor supports cache self- 1084 * snooping. 1085 */ 1086 if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) 1087 wbinvd(); 1088 1089 /* Save value of CR4 and clear Page Global Enable (bit 7) */ 1090 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1091 saved_cr4 = __read_cr4(); 1092 __write_cr4(saved_cr4 & ~X86_CR4_PGE); 1093 } 1094 1095 /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */ 1096 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1097 flush_tlb_local(); 1098 1099 if (cpu_feature_enabled(X86_FEATURE_MTRR)) 1100 mtrr_disable(); 1101 1102 /* Again, only flush caches if we have to. */ 1103 if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) 1104 wbinvd(); 1105 } 1106 1107 void cache_enable(void) __releases(cache_disable_lock) 1108 { 1109 /* Flush TLBs (no need to flush caches - they are disabled) */ 1110 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1111 flush_tlb_local(); 1112 1113 if (cpu_feature_enabled(X86_FEATURE_MTRR)) 1114 mtrr_enable(); 1115 1116 /* Enable caches */ 1117 write_cr0(read_cr0() & ~X86_CR0_CD); 1118 1119 /* Restore value of CR4 */ 1120 if (cpu_feature_enabled(X86_FEATURE_PGE)) 1121 __write_cr4(saved_cr4); 1122 1123 raw_spin_unlock(&cache_disable_lock); 1124 } 1125 1126 static void cache_cpu_init(void) 1127 { 1128 unsigned long flags; 1129 1130 local_irq_save(flags); 1131 cache_disable(); 1132 1133 if (memory_caching_control & CACHE_MTRR) 1134 mtrr_generic_set_state(); 1135 1136 if (memory_caching_control & CACHE_PAT) 1137 pat_cpu_init(); 1138 1139 cache_enable(); 1140 local_irq_restore(flags); 1141 } 1142 1143 static bool cache_aps_delayed_init = true; 1144 1145 void set_cache_aps_delayed_init(bool val) 1146 { 1147 cache_aps_delayed_init = val; 1148 } 1149 1150 bool get_cache_aps_delayed_init(void) 1151 { 1152 return cache_aps_delayed_init; 1153 } 1154 1155 static int cache_rendezvous_handler(void *unused) 1156 { 1157 if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id())) 1158 cache_cpu_init(); 1159 1160 return 0; 1161 } 1162 1163 void __init cache_bp_init(void) 1164 { 1165 mtrr_bp_init(); 1166 pat_bp_init(); 1167 1168 if (memory_caching_control) 1169 cache_cpu_init(); 1170 } 1171 1172 void cache_bp_restore(void) 1173 { 1174 if (memory_caching_control) 1175 cache_cpu_init(); 1176 } 1177 1178 static int cache_ap_init(unsigned int cpu) 1179 { 1180 if (!memory_caching_control || get_cache_aps_delayed_init()) 1181 return 0; 1182 1183 /* 1184 * Ideally we should hold mtrr_mutex here to avoid MTRR entries 1185 * changed, but this routine will be called in CPU boot time, 1186 * holding the lock breaks it. 1187 * 1188 * This routine is called in two cases: 1189 * 1190 * 1. very early time of software resume, when there absolutely 1191 * isn't MTRR entry changes; 1192 * 1193 * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug 1194 * lock to prevent MTRR entry changes 1195 */ 1196 stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL, 1197 cpu_callout_mask); 1198 1199 return 0; 1200 } 1201 1202 /* 1203 * Delayed cache initialization for all AP's 1204 */ 1205 void cache_aps_init(void) 1206 { 1207 if (!memory_caching_control || !get_cache_aps_delayed_init()) 1208 return; 1209 1210 stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask); 1211 set_cache_aps_delayed_init(false); 1212 } 1213 1214 static int __init cache_ap_register(void) 1215 { 1216 cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING, 1217 "x86/cachectrl:starting", 1218 cache_ap_init, NULL); 1219 return 0; 1220 } 1221 core_initcall(cache_ap_register); 1222