1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Routines to identify caches on Intel CPU. 4 * 5 * Changes: 6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4) 7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. 8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/cpu.h> 14 #include <linux/sched.h> 15 #include <linux/capability.h> 16 #include <linux/sysfs.h> 17 #include <linux/pci.h> 18 19 #include <asm/cpufeature.h> 20 #include <asm/cacheinfo.h> 21 #include <asm/amd_nb.h> 22 #include <asm/smp.h> 23 24 #include "cpu.h" 25 26 #define LVL_1_INST 1 27 #define LVL_1_DATA 2 28 #define LVL_2 3 29 #define LVL_3 4 30 #define LVL_TRACE 5 31 32 struct _cache_table { 33 unsigned char descriptor; 34 char cache_type; 35 short size; 36 }; 37 38 #define MB(x) ((x) * 1024) 39 40 /* All the cache descriptor types we care about (no TLB or 41 trace cache entries) */ 42 43 static const struct _cache_table cache_table[] = 44 { 45 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ 46 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ 47 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ 48 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ 49 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ 50 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ 51 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ 52 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ 53 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 54 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 55 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 56 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 57 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ 58 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ 59 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 60 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 61 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ 62 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 63 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 64 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 65 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ 66 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ 67 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ 68 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ 69 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ 70 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ 71 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ 72 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ 73 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ 74 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 75 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ 76 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 77 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ 78 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ 79 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ 80 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 81 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 82 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 83 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 84 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ 85 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ 86 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ 87 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ 88 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ 89 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 90 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 91 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 92 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 93 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ 94 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ 95 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ 96 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ 97 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ 98 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ 99 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ 100 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ 101 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ 102 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ 103 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ 104 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ 105 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ 106 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ 107 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 108 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ 109 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 110 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ 111 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ 112 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 113 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 114 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ 115 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ 116 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ 117 { 0x00, 0, 0} 118 }; 119 120 121 enum _cache_type { 122 CTYPE_NULL = 0, 123 CTYPE_DATA = 1, 124 CTYPE_INST = 2, 125 CTYPE_UNIFIED = 3 126 }; 127 128 union _cpuid4_leaf_eax { 129 struct { 130 enum _cache_type type:5; 131 unsigned int level:3; 132 unsigned int is_self_initializing:1; 133 unsigned int is_fully_associative:1; 134 unsigned int reserved:4; 135 unsigned int num_threads_sharing:12; 136 unsigned int num_cores_on_die:6; 137 } split; 138 u32 full; 139 }; 140 141 union _cpuid4_leaf_ebx { 142 struct { 143 unsigned int coherency_line_size:12; 144 unsigned int physical_line_partition:10; 145 unsigned int ways_of_associativity:10; 146 } split; 147 u32 full; 148 }; 149 150 union _cpuid4_leaf_ecx { 151 struct { 152 unsigned int number_of_sets:32; 153 } split; 154 u32 full; 155 }; 156 157 struct _cpuid4_info_regs { 158 union _cpuid4_leaf_eax eax; 159 union _cpuid4_leaf_ebx ebx; 160 union _cpuid4_leaf_ecx ecx; 161 unsigned int id; 162 unsigned long size; 163 struct amd_northbridge *nb; 164 }; 165 166 static unsigned short num_cache_leaves; 167 168 /* AMD doesn't have CPUID4. Emulate it here to report the same 169 information to the user. This makes some assumptions about the machine: 170 L2 not shared, no SMT etc. that is currently true on AMD CPUs. 171 172 In theory the TLBs could be reported as fake type (they are in "dummy"). 173 Maybe later */ 174 union l1_cache { 175 struct { 176 unsigned line_size:8; 177 unsigned lines_per_tag:8; 178 unsigned assoc:8; 179 unsigned size_in_kb:8; 180 }; 181 unsigned val; 182 }; 183 184 union l2_cache { 185 struct { 186 unsigned line_size:8; 187 unsigned lines_per_tag:4; 188 unsigned assoc:4; 189 unsigned size_in_kb:16; 190 }; 191 unsigned val; 192 }; 193 194 union l3_cache { 195 struct { 196 unsigned line_size:8; 197 unsigned lines_per_tag:4; 198 unsigned assoc:4; 199 unsigned res:2; 200 unsigned size_encoded:14; 201 }; 202 unsigned val; 203 }; 204 205 static const unsigned short assocs[] = { 206 [1] = 1, 207 [2] = 2, 208 [4] = 4, 209 [6] = 8, 210 [8] = 16, 211 [0xa] = 32, 212 [0xb] = 48, 213 [0xc] = 64, 214 [0xd] = 96, 215 [0xe] = 128, 216 [0xf] = 0xffff /* fully associative - no way to show this currently */ 217 }; 218 219 static const unsigned char levels[] = { 1, 1, 2, 3 }; 220 static const unsigned char types[] = { 1, 2, 3, 3 }; 221 222 static const enum cache_type cache_type_map[] = { 223 [CTYPE_NULL] = CACHE_TYPE_NOCACHE, 224 [CTYPE_DATA] = CACHE_TYPE_DATA, 225 [CTYPE_INST] = CACHE_TYPE_INST, 226 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, 227 }; 228 229 static void 230 amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, 231 union _cpuid4_leaf_ebx *ebx, 232 union _cpuid4_leaf_ecx *ecx) 233 { 234 unsigned dummy; 235 unsigned line_size, lines_per_tag, assoc, size_in_kb; 236 union l1_cache l1i, l1d; 237 union l2_cache l2; 238 union l3_cache l3; 239 union l1_cache *l1 = &l1d; 240 241 eax->full = 0; 242 ebx->full = 0; 243 ecx->full = 0; 244 245 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); 246 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); 247 248 switch (leaf) { 249 case 1: 250 l1 = &l1i; 251 fallthrough; 252 case 0: 253 if (!l1->val) 254 return; 255 assoc = assocs[l1->assoc]; 256 line_size = l1->line_size; 257 lines_per_tag = l1->lines_per_tag; 258 size_in_kb = l1->size_in_kb; 259 break; 260 case 2: 261 if (!l2.val) 262 return; 263 assoc = assocs[l2.assoc]; 264 line_size = l2.line_size; 265 lines_per_tag = l2.lines_per_tag; 266 /* cpu_data has errata corrections for K7 applied */ 267 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); 268 break; 269 case 3: 270 if (!l3.val) 271 return; 272 assoc = assocs[l3.assoc]; 273 line_size = l3.line_size; 274 lines_per_tag = l3.lines_per_tag; 275 size_in_kb = l3.size_encoded * 512; 276 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { 277 size_in_kb = size_in_kb >> 1; 278 assoc = assoc >> 1; 279 } 280 break; 281 default: 282 return; 283 } 284 285 eax->split.is_self_initializing = 1; 286 eax->split.type = types[leaf]; 287 eax->split.level = levels[leaf]; 288 eax->split.num_threads_sharing = 0; 289 eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1; 290 291 292 if (assoc == 0xffff) 293 eax->split.is_fully_associative = 1; 294 ebx->split.coherency_line_size = line_size - 1; 295 ebx->split.ways_of_associativity = assoc - 1; 296 ebx->split.physical_line_partition = lines_per_tag - 1; 297 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / 298 (ebx->split.ways_of_associativity + 1) - 1; 299 } 300 301 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) 302 303 /* 304 * L3 cache descriptors 305 */ 306 static void amd_calc_l3_indices(struct amd_northbridge *nb) 307 { 308 struct amd_l3_cache *l3 = &nb->l3_cache; 309 unsigned int sc0, sc1, sc2, sc3; 310 u32 val = 0; 311 312 pci_read_config_dword(nb->misc, 0x1C4, &val); 313 314 /* calculate subcache sizes */ 315 l3->subcaches[0] = sc0 = !(val & BIT(0)); 316 l3->subcaches[1] = sc1 = !(val & BIT(4)); 317 318 if (boot_cpu_data.x86 == 0x15) { 319 l3->subcaches[0] = sc0 += !(val & BIT(1)); 320 l3->subcaches[1] = sc1 += !(val & BIT(5)); 321 } 322 323 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); 324 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); 325 326 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; 327 } 328 329 /* 330 * check whether a slot used for disabling an L3 index is occupied. 331 * @l3: L3 cache descriptor 332 * @slot: slot number (0..1) 333 * 334 * @returns: the disabled index if used or negative value if slot free. 335 */ 336 static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) 337 { 338 unsigned int reg = 0; 339 340 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); 341 342 /* check whether this slot is activated already */ 343 if (reg & (3UL << 30)) 344 return reg & 0xfff; 345 346 return -1; 347 } 348 349 static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, 350 unsigned int slot) 351 { 352 int index; 353 struct amd_northbridge *nb = this_leaf->priv; 354 355 index = amd_get_l3_disable_slot(nb, slot); 356 if (index >= 0) 357 return sprintf(buf, "%d\n", index); 358 359 return sprintf(buf, "FREE\n"); 360 } 361 362 #define SHOW_CACHE_DISABLE(slot) \ 363 static ssize_t \ 364 cache_disable_##slot##_show(struct device *dev, \ 365 struct device_attribute *attr, char *buf) \ 366 { \ 367 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 368 return show_cache_disable(this_leaf, buf, slot); \ 369 } 370 SHOW_CACHE_DISABLE(0) 371 SHOW_CACHE_DISABLE(1) 372 373 static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, 374 unsigned slot, unsigned long idx) 375 { 376 int i; 377 378 idx |= BIT(30); 379 380 /* 381 * disable index in all 4 subcaches 382 */ 383 for (i = 0; i < 4; i++) { 384 u32 reg = idx | (i << 20); 385 386 if (!nb->l3_cache.subcaches[i]) 387 continue; 388 389 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 390 391 /* 392 * We need to WBINVD on a core on the node containing the L3 393 * cache which indices we disable therefore a simple wbinvd() 394 * is not sufficient. 395 */ 396 wbinvd_on_cpu(cpu); 397 398 reg |= BIT(31); 399 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 400 } 401 } 402 403 /* 404 * disable a L3 cache index by using a disable-slot 405 * 406 * @l3: L3 cache descriptor 407 * @cpu: A CPU on the node containing the L3 cache 408 * @slot: slot number (0..1) 409 * @index: index to disable 410 * 411 * @return: 0 on success, error status on failure 412 */ 413 static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, 414 unsigned slot, unsigned long index) 415 { 416 int ret = 0; 417 418 /* check if @slot is already used or the index is already disabled */ 419 ret = amd_get_l3_disable_slot(nb, slot); 420 if (ret >= 0) 421 return -EEXIST; 422 423 if (index > nb->l3_cache.indices) 424 return -EINVAL; 425 426 /* check whether the other slot has disabled the same index already */ 427 if (index == amd_get_l3_disable_slot(nb, !slot)) 428 return -EEXIST; 429 430 amd_l3_disable_index(nb, cpu, slot, index); 431 432 return 0; 433 } 434 435 static ssize_t store_cache_disable(struct cacheinfo *this_leaf, 436 const char *buf, size_t count, 437 unsigned int slot) 438 { 439 unsigned long val = 0; 440 int cpu, err = 0; 441 struct amd_northbridge *nb = this_leaf->priv; 442 443 if (!capable(CAP_SYS_ADMIN)) 444 return -EPERM; 445 446 cpu = cpumask_first(&this_leaf->shared_cpu_map); 447 448 if (kstrtoul(buf, 10, &val) < 0) 449 return -EINVAL; 450 451 err = amd_set_l3_disable_slot(nb, cpu, slot, val); 452 if (err) { 453 if (err == -EEXIST) 454 pr_warn("L3 slot %d in use/index already disabled!\n", 455 slot); 456 return err; 457 } 458 return count; 459 } 460 461 #define STORE_CACHE_DISABLE(slot) \ 462 static ssize_t \ 463 cache_disable_##slot##_store(struct device *dev, \ 464 struct device_attribute *attr, \ 465 const char *buf, size_t count) \ 466 { \ 467 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 468 return store_cache_disable(this_leaf, buf, count, slot); \ 469 } 470 STORE_CACHE_DISABLE(0) 471 STORE_CACHE_DISABLE(1) 472 473 static ssize_t subcaches_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 477 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 478 479 return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); 480 } 481 482 static ssize_t subcaches_store(struct device *dev, 483 struct device_attribute *attr, 484 const char *buf, size_t count) 485 { 486 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 487 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 488 unsigned long val; 489 490 if (!capable(CAP_SYS_ADMIN)) 491 return -EPERM; 492 493 if (kstrtoul(buf, 16, &val) < 0) 494 return -EINVAL; 495 496 if (amd_set_subcaches(cpu, val)) 497 return -EINVAL; 498 499 return count; 500 } 501 502 static DEVICE_ATTR_RW(cache_disable_0); 503 static DEVICE_ATTR_RW(cache_disable_1); 504 static DEVICE_ATTR_RW(subcaches); 505 506 static umode_t 507 cache_private_attrs_is_visible(struct kobject *kobj, 508 struct attribute *attr, int unused) 509 { 510 struct device *dev = kobj_to_dev(kobj); 511 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 512 umode_t mode = attr->mode; 513 514 if (!this_leaf->priv) 515 return 0; 516 517 if ((attr == &dev_attr_subcaches.attr) && 518 amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 519 return mode; 520 521 if ((attr == &dev_attr_cache_disable_0.attr || 522 attr == &dev_attr_cache_disable_1.attr) && 523 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 524 return mode; 525 526 return 0; 527 } 528 529 static struct attribute_group cache_private_group = { 530 .is_visible = cache_private_attrs_is_visible, 531 }; 532 533 static void init_amd_l3_attrs(void) 534 { 535 int n = 1; 536 static struct attribute **amd_l3_attrs; 537 538 if (amd_l3_attrs) /* already initialized */ 539 return; 540 541 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 542 n += 2; 543 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 544 n += 1; 545 546 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); 547 if (!amd_l3_attrs) 548 return; 549 550 n = 0; 551 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { 552 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; 553 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; 554 } 555 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 556 amd_l3_attrs[n++] = &dev_attr_subcaches.attr; 557 558 cache_private_group.attrs = amd_l3_attrs; 559 } 560 561 const struct attribute_group * 562 cache_get_priv_group(struct cacheinfo *this_leaf) 563 { 564 struct amd_northbridge *nb = this_leaf->priv; 565 566 if (this_leaf->level < 3 || !nb) 567 return NULL; 568 569 if (nb && nb->l3_cache.indices) 570 init_amd_l3_attrs(); 571 572 return &cache_private_group; 573 } 574 575 static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) 576 { 577 int node; 578 579 /* only for L3, and not in virtualized environments */ 580 if (index < 3) 581 return; 582 583 node = topology_die_id(smp_processor_id()); 584 this_leaf->nb = node_to_amd_nb(node); 585 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) 586 amd_calc_l3_indices(this_leaf->nb); 587 } 588 #else 589 #define amd_init_l3_cache(x, y) 590 #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ 591 592 static int 593 cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) 594 { 595 union _cpuid4_leaf_eax eax; 596 union _cpuid4_leaf_ebx ebx; 597 union _cpuid4_leaf_ecx ecx; 598 unsigned edx; 599 600 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 601 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) 602 cpuid_count(0x8000001d, index, &eax.full, 603 &ebx.full, &ecx.full, &edx); 604 else 605 amd_cpuid4(index, &eax, &ebx, &ecx); 606 amd_init_l3_cache(this_leaf, index); 607 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 608 cpuid_count(0x8000001d, index, &eax.full, 609 &ebx.full, &ecx.full, &edx); 610 amd_init_l3_cache(this_leaf, index); 611 } else { 612 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); 613 } 614 615 if (eax.split.type == CTYPE_NULL) 616 return -EIO; /* better error ? */ 617 618 this_leaf->eax = eax; 619 this_leaf->ebx = ebx; 620 this_leaf->ecx = ecx; 621 this_leaf->size = (ecx.split.number_of_sets + 1) * 622 (ebx.split.coherency_line_size + 1) * 623 (ebx.split.physical_line_partition + 1) * 624 (ebx.split.ways_of_associativity + 1); 625 return 0; 626 } 627 628 static int find_num_cache_leaves(struct cpuinfo_x86 *c) 629 { 630 unsigned int eax, ebx, ecx, edx, op; 631 union _cpuid4_leaf_eax cache_eax; 632 int i = -1; 633 634 if (c->x86_vendor == X86_VENDOR_AMD || 635 c->x86_vendor == X86_VENDOR_HYGON) 636 op = 0x8000001d; 637 else 638 op = 4; 639 640 do { 641 ++i; 642 /* Do cpuid(op) loop to find out num_cache_leaves */ 643 cpuid_count(op, i, &eax, &ebx, &ecx, &edx); 644 cache_eax.full = eax; 645 } while (cache_eax.split.type != CTYPE_NULL); 646 return i; 647 } 648 649 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu) 650 { 651 /* 652 * We may have multiple LLCs if L3 caches exist, so check if we 653 * have an L3 cache by looking at the L3 cache CPUID leaf. 654 */ 655 if (!cpuid_edx(0x80000006)) 656 return; 657 658 if (c->x86 < 0x17) { 659 /* LLC is at the node level. */ 660 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id; 661 } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { 662 /* 663 * LLC is at the core complex level. 664 * Core complex ID is ApicId[3] for these processors. 665 */ 666 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 667 } else { 668 /* 669 * LLC ID is calculated from the number of threads sharing the 670 * cache. 671 * */ 672 u32 eax, ebx, ecx, edx, num_sharing_cache = 0; 673 u32 llc_index = find_num_cache_leaves(c) - 1; 674 675 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); 676 if (eax) 677 num_sharing_cache = ((eax >> 14) & 0xfff) + 1; 678 679 if (num_sharing_cache) { 680 int bits = get_count_order(num_sharing_cache); 681 682 per_cpu(cpu_llc_id, cpu) = c->apicid >> bits; 683 } 684 } 685 } 686 687 void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c, int cpu) 688 { 689 /* 690 * We may have multiple LLCs if L3 caches exist, so check if we 691 * have an L3 cache by looking at the L3 cache CPUID leaf. 692 */ 693 if (!cpuid_edx(0x80000006)) 694 return; 695 696 /* 697 * LLC is at the core complex level. 698 * Core complex ID is ApicId[3] for these processors. 699 */ 700 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 701 } 702 703 void init_amd_cacheinfo(struct cpuinfo_x86 *c) 704 { 705 706 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 707 num_cache_leaves = find_num_cache_leaves(c); 708 } else if (c->extended_cpuid_level >= 0x80000006) { 709 if (cpuid_edx(0x80000006) & 0xf000) 710 num_cache_leaves = 4; 711 else 712 num_cache_leaves = 3; 713 } 714 } 715 716 void init_hygon_cacheinfo(struct cpuinfo_x86 *c) 717 { 718 num_cache_leaves = find_num_cache_leaves(c); 719 } 720 721 void init_intel_cacheinfo(struct cpuinfo_x86 *c) 722 { 723 /* Cache sizes */ 724 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; 725 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ 726 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ 727 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; 728 #ifdef CONFIG_SMP 729 unsigned int cpu = c->cpu_index; 730 #endif 731 732 if (c->cpuid_level > 3) { 733 static int is_initialized; 734 735 if (is_initialized == 0) { 736 /* Init num_cache_leaves from boot CPU */ 737 num_cache_leaves = find_num_cache_leaves(c); 738 is_initialized++; 739 } 740 741 /* 742 * Whenever possible use cpuid(4), deterministic cache 743 * parameters cpuid leaf to find the cache details 744 */ 745 for (i = 0; i < num_cache_leaves; i++) { 746 struct _cpuid4_info_regs this_leaf = {}; 747 int retval; 748 749 retval = cpuid4_cache_lookup_regs(i, &this_leaf); 750 if (retval < 0) 751 continue; 752 753 switch (this_leaf.eax.split.level) { 754 case 1: 755 if (this_leaf.eax.split.type == CTYPE_DATA) 756 new_l1d = this_leaf.size/1024; 757 else if (this_leaf.eax.split.type == CTYPE_INST) 758 new_l1i = this_leaf.size/1024; 759 break; 760 case 2: 761 new_l2 = this_leaf.size/1024; 762 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 763 index_msb = get_count_order(num_threads_sharing); 764 l2_id = c->apicid & ~((1 << index_msb) - 1); 765 break; 766 case 3: 767 new_l3 = this_leaf.size/1024; 768 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 769 index_msb = get_count_order(num_threads_sharing); 770 l3_id = c->apicid & ~((1 << index_msb) - 1); 771 break; 772 default: 773 break; 774 } 775 } 776 } 777 /* 778 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for 779 * trace cache 780 */ 781 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { 782 /* supports eax=2 call */ 783 int j, n; 784 unsigned int regs[4]; 785 unsigned char *dp = (unsigned char *)regs; 786 int only_trace = 0; 787 788 if (num_cache_leaves != 0 && c->x86 == 15) 789 only_trace = 1; 790 791 /* Number of times to iterate */ 792 n = cpuid_eax(2) & 0xFF; 793 794 for (i = 0 ; i < n ; i++) { 795 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 796 797 /* If bit 31 is set, this is an unknown format */ 798 for (j = 0 ; j < 3 ; j++) 799 if (regs[j] & (1 << 31)) 800 regs[j] = 0; 801 802 /* Byte 0 is level count, not a descriptor */ 803 for (j = 1 ; j < 16 ; j++) { 804 unsigned char des = dp[j]; 805 unsigned char k = 0; 806 807 /* look up this descriptor in the table */ 808 while (cache_table[k].descriptor != 0) { 809 if (cache_table[k].descriptor == des) { 810 if (only_trace && cache_table[k].cache_type != LVL_TRACE) 811 break; 812 switch (cache_table[k].cache_type) { 813 case LVL_1_INST: 814 l1i += cache_table[k].size; 815 break; 816 case LVL_1_DATA: 817 l1d += cache_table[k].size; 818 break; 819 case LVL_2: 820 l2 += cache_table[k].size; 821 break; 822 case LVL_3: 823 l3 += cache_table[k].size; 824 break; 825 case LVL_TRACE: 826 trace += cache_table[k].size; 827 break; 828 } 829 830 break; 831 } 832 833 k++; 834 } 835 } 836 } 837 } 838 839 if (new_l1d) 840 l1d = new_l1d; 841 842 if (new_l1i) 843 l1i = new_l1i; 844 845 if (new_l2) { 846 l2 = new_l2; 847 #ifdef CONFIG_SMP 848 per_cpu(cpu_llc_id, cpu) = l2_id; 849 #endif 850 } 851 852 if (new_l3) { 853 l3 = new_l3; 854 #ifdef CONFIG_SMP 855 per_cpu(cpu_llc_id, cpu) = l3_id; 856 #endif 857 } 858 859 #ifdef CONFIG_SMP 860 /* 861 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in 862 * turns means that the only possibility is SMT (as indicated in 863 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know 864 * that SMT shares all caches, we can unconditionally set cpu_llc_id to 865 * c->phys_proc_id. 866 */ 867 if (per_cpu(cpu_llc_id, cpu) == BAD_APICID) 868 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; 869 #endif 870 871 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); 872 873 if (!l2) 874 cpu_detect_cache_sizes(c); 875 } 876 877 static int __cache_amd_cpumap_setup(unsigned int cpu, int index, 878 struct _cpuid4_info_regs *base) 879 { 880 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 881 struct cacheinfo *this_leaf; 882 int i, sibling; 883 884 /* 885 * For L3, always use the pre-calculated cpu_llc_shared_mask 886 * to derive shared_cpu_map. 887 */ 888 if (index == 3) { 889 for_each_cpu(i, cpu_llc_shared_mask(cpu)) { 890 this_cpu_ci = get_cpu_cacheinfo(i); 891 if (!this_cpu_ci->info_list) 892 continue; 893 this_leaf = this_cpu_ci->info_list + index; 894 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { 895 if (!cpu_online(sibling)) 896 continue; 897 cpumask_set_cpu(sibling, 898 &this_leaf->shared_cpu_map); 899 } 900 } 901 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 902 unsigned int apicid, nshared, first, last; 903 904 nshared = base->eax.split.num_threads_sharing + 1; 905 apicid = cpu_data(cpu).apicid; 906 first = apicid - (apicid % nshared); 907 last = first + nshared - 1; 908 909 for_each_online_cpu(i) { 910 this_cpu_ci = get_cpu_cacheinfo(i); 911 if (!this_cpu_ci->info_list) 912 continue; 913 914 apicid = cpu_data(i).apicid; 915 if ((apicid < first) || (apicid > last)) 916 continue; 917 918 this_leaf = this_cpu_ci->info_list + index; 919 920 for_each_online_cpu(sibling) { 921 apicid = cpu_data(sibling).apicid; 922 if ((apicid < first) || (apicid > last)) 923 continue; 924 cpumask_set_cpu(sibling, 925 &this_leaf->shared_cpu_map); 926 } 927 } 928 } else 929 return 0; 930 931 return 1; 932 } 933 934 static void __cache_cpumap_setup(unsigned int cpu, int index, 935 struct _cpuid4_info_regs *base) 936 { 937 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 938 struct cacheinfo *this_leaf, *sibling_leaf; 939 unsigned long num_threads_sharing; 940 int index_msb, i; 941 struct cpuinfo_x86 *c = &cpu_data(cpu); 942 943 if (c->x86_vendor == X86_VENDOR_AMD || 944 c->x86_vendor == X86_VENDOR_HYGON) { 945 if (__cache_amd_cpumap_setup(cpu, index, base)) 946 return; 947 } 948 949 this_leaf = this_cpu_ci->info_list + index; 950 num_threads_sharing = 1 + base->eax.split.num_threads_sharing; 951 952 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 953 if (num_threads_sharing == 1) 954 return; 955 956 index_msb = get_count_order(num_threads_sharing); 957 958 for_each_online_cpu(i) 959 if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { 960 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 961 962 if (i == cpu || !sib_cpu_ci->info_list) 963 continue;/* skip if itself or no cacheinfo */ 964 sibling_leaf = sib_cpu_ci->info_list + index; 965 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 966 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); 967 } 968 } 969 970 static void ci_leaf_init(struct cacheinfo *this_leaf, 971 struct _cpuid4_info_regs *base) 972 { 973 this_leaf->id = base->id; 974 this_leaf->attributes = CACHE_ID; 975 this_leaf->level = base->eax.split.level; 976 this_leaf->type = cache_type_map[base->eax.split.type]; 977 this_leaf->coherency_line_size = 978 base->ebx.split.coherency_line_size + 1; 979 this_leaf->ways_of_associativity = 980 base->ebx.split.ways_of_associativity + 1; 981 this_leaf->size = base->size; 982 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; 983 this_leaf->physical_line_partition = 984 base->ebx.split.physical_line_partition + 1; 985 this_leaf->priv = base->nb; 986 } 987 988 static int __init_cache_level(unsigned int cpu) 989 { 990 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 991 992 if (!num_cache_leaves) 993 return -ENOENT; 994 if (!this_cpu_ci) 995 return -EINVAL; 996 this_cpu_ci->num_levels = 3; 997 this_cpu_ci->num_leaves = num_cache_leaves; 998 return 0; 999 } 1000 1001 /* 1002 * The max shared threads number comes from CPUID.4:EAX[25-14] with input 1003 * ECX as cache index. Then right shift apicid by the number's order to get 1004 * cache id for this cache node. 1005 */ 1006 static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) 1007 { 1008 struct cpuinfo_x86 *c = &cpu_data(cpu); 1009 unsigned long num_threads_sharing; 1010 int index_msb; 1011 1012 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; 1013 index_msb = get_count_order(num_threads_sharing); 1014 id4_regs->id = c->apicid >> index_msb; 1015 } 1016 1017 static int __populate_cache_leaves(unsigned int cpu) 1018 { 1019 unsigned int idx, ret; 1020 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 1021 struct cacheinfo *this_leaf = this_cpu_ci->info_list; 1022 struct _cpuid4_info_regs id4_regs = {}; 1023 1024 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { 1025 ret = cpuid4_cache_lookup_regs(idx, &id4_regs); 1026 if (ret) 1027 return ret; 1028 get_cache_id(cpu, &id4_regs); 1029 ci_leaf_init(this_leaf++, &id4_regs); 1030 __cache_cpumap_setup(cpu, idx, &id4_regs); 1031 } 1032 this_cpu_ci->cpu_map_populated = true; 1033 1034 return 0; 1035 } 1036 1037 DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level) 1038 DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves) 1039