xref: /openbmc/linux/arch/x86/kernel/cpu/cacheinfo.c (revision 09bae3b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	Routines to identify caches on Intel CPU.
4  *
5  *	Changes:
6  *	Venkatesh Pallipadi	: Adding cache identification through cpuid(4)
7  *	Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8  *	Andi Kleen / Andreas Herrmann	: CPUID4 emulation on AMD.
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/cpu.h>
14 #include <linux/sched.h>
15 #include <linux/capability.h>
16 #include <linux/sysfs.h>
17 #include <linux/pci.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/amd_nb.h>
21 #include <asm/smp.h>
22 
23 #include "cpu.h"
24 
25 #define LVL_1_INST	1
26 #define LVL_1_DATA	2
27 #define LVL_2		3
28 #define LVL_3		4
29 #define LVL_TRACE	5
30 
31 struct _cache_table {
32 	unsigned char descriptor;
33 	char cache_type;
34 	short size;
35 };
36 
37 #define MB(x)	((x) * 1024)
38 
39 /* All the cache descriptor types we care about (no TLB or
40    trace cache entries) */
41 
42 static const struct _cache_table cache_table[] =
43 {
44 	{ 0x06, LVL_1_INST, 8 },	/* 4-way set assoc, 32 byte line size */
45 	{ 0x08, LVL_1_INST, 16 },	/* 4-way set assoc, 32 byte line size */
46 	{ 0x09, LVL_1_INST, 32 },	/* 4-way set assoc, 64 byte line size */
47 	{ 0x0a, LVL_1_DATA, 8 },	/* 2 way set assoc, 32 byte line size */
48 	{ 0x0c, LVL_1_DATA, 16 },	/* 4-way set assoc, 32 byte line size */
49 	{ 0x0d, LVL_1_DATA, 16 },	/* 4-way set assoc, 64 byte line size */
50 	{ 0x0e, LVL_1_DATA, 24 },	/* 6-way set assoc, 64 byte line size */
51 	{ 0x21, LVL_2,      256 },	/* 8-way set assoc, 64 byte line size */
52 	{ 0x22, LVL_3,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
53 	{ 0x23, LVL_3,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
54 	{ 0x25, LVL_3,      MB(2) },	/* 8-way set assoc, sectored cache, 64 byte line size */
55 	{ 0x29, LVL_3,      MB(4) },	/* 8-way set assoc, sectored cache, 64 byte line size */
56 	{ 0x2c, LVL_1_DATA, 32 },	/* 8-way set assoc, 64 byte line size */
57 	{ 0x30, LVL_1_INST, 32 },	/* 8-way set assoc, 64 byte line size */
58 	{ 0x39, LVL_2,      128 },	/* 4-way set assoc, sectored cache, 64 byte line size */
59 	{ 0x3a, LVL_2,      192 },	/* 6-way set assoc, sectored cache, 64 byte line size */
60 	{ 0x3b, LVL_2,      128 },	/* 2-way set assoc, sectored cache, 64 byte line size */
61 	{ 0x3c, LVL_2,      256 },	/* 4-way set assoc, sectored cache, 64 byte line size */
62 	{ 0x3d, LVL_2,      384 },	/* 6-way set assoc, sectored cache, 64 byte line size */
63 	{ 0x3e, LVL_2,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
64 	{ 0x3f, LVL_2,      256 },	/* 2-way set assoc, 64 byte line size */
65 	{ 0x41, LVL_2,      128 },	/* 4-way set assoc, 32 byte line size */
66 	{ 0x42, LVL_2,      256 },	/* 4-way set assoc, 32 byte line size */
67 	{ 0x43, LVL_2,      512 },	/* 4-way set assoc, 32 byte line size */
68 	{ 0x44, LVL_2,      MB(1) },	/* 4-way set assoc, 32 byte line size */
69 	{ 0x45, LVL_2,      MB(2) },	/* 4-way set assoc, 32 byte line size */
70 	{ 0x46, LVL_3,      MB(4) },	/* 4-way set assoc, 64 byte line size */
71 	{ 0x47, LVL_3,      MB(8) },	/* 8-way set assoc, 64 byte line size */
72 	{ 0x48, LVL_2,      MB(3) },	/* 12-way set assoc, 64 byte line size */
73 	{ 0x49, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
74 	{ 0x4a, LVL_3,      MB(6) },	/* 12-way set assoc, 64 byte line size */
75 	{ 0x4b, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
76 	{ 0x4c, LVL_3,      MB(12) },	/* 12-way set assoc, 64 byte line size */
77 	{ 0x4d, LVL_3,      MB(16) },	/* 16-way set assoc, 64 byte line size */
78 	{ 0x4e, LVL_2,      MB(6) },	/* 24-way set assoc, 64 byte line size */
79 	{ 0x60, LVL_1_DATA, 16 },	/* 8-way set assoc, sectored cache, 64 byte line size */
80 	{ 0x66, LVL_1_DATA, 8 },	/* 4-way set assoc, sectored cache, 64 byte line size */
81 	{ 0x67, LVL_1_DATA, 16 },	/* 4-way set assoc, sectored cache, 64 byte line size */
82 	{ 0x68, LVL_1_DATA, 32 },	/* 4-way set assoc, sectored cache, 64 byte line size */
83 	{ 0x70, LVL_TRACE,  12 },	/* 8-way set assoc */
84 	{ 0x71, LVL_TRACE,  16 },	/* 8-way set assoc */
85 	{ 0x72, LVL_TRACE,  32 },	/* 8-way set assoc */
86 	{ 0x73, LVL_TRACE,  64 },	/* 8-way set assoc */
87 	{ 0x78, LVL_2,      MB(1) },	/* 4-way set assoc, 64 byte line size */
88 	{ 0x79, LVL_2,      128 },	/* 8-way set assoc, sectored cache, 64 byte line size */
89 	{ 0x7a, LVL_2,      256 },	/* 8-way set assoc, sectored cache, 64 byte line size */
90 	{ 0x7b, LVL_2,      512 },	/* 8-way set assoc, sectored cache, 64 byte line size */
91 	{ 0x7c, LVL_2,      MB(1) },	/* 8-way set assoc, sectored cache, 64 byte line size */
92 	{ 0x7d, LVL_2,      MB(2) },	/* 8-way set assoc, 64 byte line size */
93 	{ 0x7f, LVL_2,      512 },	/* 2-way set assoc, 64 byte line size */
94 	{ 0x80, LVL_2,      512 },	/* 8-way set assoc, 64 byte line size */
95 	{ 0x82, LVL_2,      256 },	/* 8-way set assoc, 32 byte line size */
96 	{ 0x83, LVL_2,      512 },	/* 8-way set assoc, 32 byte line size */
97 	{ 0x84, LVL_2,      MB(1) },	/* 8-way set assoc, 32 byte line size */
98 	{ 0x85, LVL_2,      MB(2) },	/* 8-way set assoc, 32 byte line size */
99 	{ 0x86, LVL_2,      512 },	/* 4-way set assoc, 64 byte line size */
100 	{ 0x87, LVL_2,      MB(1) },	/* 8-way set assoc, 64 byte line size */
101 	{ 0xd0, LVL_3,      512 },	/* 4-way set assoc, 64 byte line size */
102 	{ 0xd1, LVL_3,      MB(1) },	/* 4-way set assoc, 64 byte line size */
103 	{ 0xd2, LVL_3,      MB(2) },	/* 4-way set assoc, 64 byte line size */
104 	{ 0xd6, LVL_3,      MB(1) },	/* 8-way set assoc, 64 byte line size */
105 	{ 0xd7, LVL_3,      MB(2) },	/* 8-way set assoc, 64 byte line size */
106 	{ 0xd8, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
107 	{ 0xdc, LVL_3,      MB(2) },	/* 12-way set assoc, 64 byte line size */
108 	{ 0xdd, LVL_3,      MB(4) },	/* 12-way set assoc, 64 byte line size */
109 	{ 0xde, LVL_3,      MB(8) },	/* 12-way set assoc, 64 byte line size */
110 	{ 0xe2, LVL_3,      MB(2) },	/* 16-way set assoc, 64 byte line size */
111 	{ 0xe3, LVL_3,      MB(4) },	/* 16-way set assoc, 64 byte line size */
112 	{ 0xe4, LVL_3,      MB(8) },	/* 16-way set assoc, 64 byte line size */
113 	{ 0xea, LVL_3,      MB(12) },	/* 24-way set assoc, 64 byte line size */
114 	{ 0xeb, LVL_3,      MB(18) },	/* 24-way set assoc, 64 byte line size */
115 	{ 0xec, LVL_3,      MB(24) },	/* 24-way set assoc, 64 byte line size */
116 	{ 0x00, 0, 0}
117 };
118 
119 
120 enum _cache_type {
121 	CTYPE_NULL = 0,
122 	CTYPE_DATA = 1,
123 	CTYPE_INST = 2,
124 	CTYPE_UNIFIED = 3
125 };
126 
127 union _cpuid4_leaf_eax {
128 	struct {
129 		enum _cache_type	type:5;
130 		unsigned int		level:3;
131 		unsigned int		is_self_initializing:1;
132 		unsigned int		is_fully_associative:1;
133 		unsigned int		reserved:4;
134 		unsigned int		num_threads_sharing:12;
135 		unsigned int		num_cores_on_die:6;
136 	} split;
137 	u32 full;
138 };
139 
140 union _cpuid4_leaf_ebx {
141 	struct {
142 		unsigned int		coherency_line_size:12;
143 		unsigned int		physical_line_partition:10;
144 		unsigned int		ways_of_associativity:10;
145 	} split;
146 	u32 full;
147 };
148 
149 union _cpuid4_leaf_ecx {
150 	struct {
151 		unsigned int		number_of_sets:32;
152 	} split;
153 	u32 full;
154 };
155 
156 struct _cpuid4_info_regs {
157 	union _cpuid4_leaf_eax eax;
158 	union _cpuid4_leaf_ebx ebx;
159 	union _cpuid4_leaf_ecx ecx;
160 	unsigned int id;
161 	unsigned long size;
162 	struct amd_northbridge *nb;
163 };
164 
165 static unsigned short num_cache_leaves;
166 
167 /* AMD doesn't have CPUID4. Emulate it here to report the same
168    information to the user.  This makes some assumptions about the machine:
169    L2 not shared, no SMT etc. that is currently true on AMD CPUs.
170 
171    In theory the TLBs could be reported as fake type (they are in "dummy").
172    Maybe later */
173 union l1_cache {
174 	struct {
175 		unsigned line_size:8;
176 		unsigned lines_per_tag:8;
177 		unsigned assoc:8;
178 		unsigned size_in_kb:8;
179 	};
180 	unsigned val;
181 };
182 
183 union l2_cache {
184 	struct {
185 		unsigned line_size:8;
186 		unsigned lines_per_tag:4;
187 		unsigned assoc:4;
188 		unsigned size_in_kb:16;
189 	};
190 	unsigned val;
191 };
192 
193 union l3_cache {
194 	struct {
195 		unsigned line_size:8;
196 		unsigned lines_per_tag:4;
197 		unsigned assoc:4;
198 		unsigned res:2;
199 		unsigned size_encoded:14;
200 	};
201 	unsigned val;
202 };
203 
204 static const unsigned short assocs[] = {
205 	[1] = 1,
206 	[2] = 2,
207 	[4] = 4,
208 	[6] = 8,
209 	[8] = 16,
210 	[0xa] = 32,
211 	[0xb] = 48,
212 	[0xc] = 64,
213 	[0xd] = 96,
214 	[0xe] = 128,
215 	[0xf] = 0xffff /* fully associative - no way to show this currently */
216 };
217 
218 static const unsigned char levels[] = { 1, 1, 2, 3 };
219 static const unsigned char types[] = { 1, 2, 3, 3 };
220 
221 static const enum cache_type cache_type_map[] = {
222 	[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
223 	[CTYPE_DATA] = CACHE_TYPE_DATA,
224 	[CTYPE_INST] = CACHE_TYPE_INST,
225 	[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
226 };
227 
228 static void
229 amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
230 		     union _cpuid4_leaf_ebx *ebx,
231 		     union _cpuid4_leaf_ecx *ecx)
232 {
233 	unsigned dummy;
234 	unsigned line_size, lines_per_tag, assoc, size_in_kb;
235 	union l1_cache l1i, l1d;
236 	union l2_cache l2;
237 	union l3_cache l3;
238 	union l1_cache *l1 = &l1d;
239 
240 	eax->full = 0;
241 	ebx->full = 0;
242 	ecx->full = 0;
243 
244 	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
245 	cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
246 
247 	switch (leaf) {
248 	case 1:
249 		l1 = &l1i;
250 	case 0:
251 		if (!l1->val)
252 			return;
253 		assoc = assocs[l1->assoc];
254 		line_size = l1->line_size;
255 		lines_per_tag = l1->lines_per_tag;
256 		size_in_kb = l1->size_in_kb;
257 		break;
258 	case 2:
259 		if (!l2.val)
260 			return;
261 		assoc = assocs[l2.assoc];
262 		line_size = l2.line_size;
263 		lines_per_tag = l2.lines_per_tag;
264 		/* cpu_data has errata corrections for K7 applied */
265 		size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
266 		break;
267 	case 3:
268 		if (!l3.val)
269 			return;
270 		assoc = assocs[l3.assoc];
271 		line_size = l3.line_size;
272 		lines_per_tag = l3.lines_per_tag;
273 		size_in_kb = l3.size_encoded * 512;
274 		if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
275 			size_in_kb = size_in_kb >> 1;
276 			assoc = assoc >> 1;
277 		}
278 		break;
279 	default:
280 		return;
281 	}
282 
283 	eax->split.is_self_initializing = 1;
284 	eax->split.type = types[leaf];
285 	eax->split.level = levels[leaf];
286 	eax->split.num_threads_sharing = 0;
287 	eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
288 
289 
290 	if (assoc == 0xffff)
291 		eax->split.is_fully_associative = 1;
292 	ebx->split.coherency_line_size = line_size - 1;
293 	ebx->split.ways_of_associativity = assoc - 1;
294 	ebx->split.physical_line_partition = lines_per_tag - 1;
295 	ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
296 		(ebx->split.ways_of_associativity + 1) - 1;
297 }
298 
299 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
300 
301 /*
302  * L3 cache descriptors
303  */
304 static void amd_calc_l3_indices(struct amd_northbridge *nb)
305 {
306 	struct amd_l3_cache *l3 = &nb->l3_cache;
307 	unsigned int sc0, sc1, sc2, sc3;
308 	u32 val = 0;
309 
310 	pci_read_config_dword(nb->misc, 0x1C4, &val);
311 
312 	/* calculate subcache sizes */
313 	l3->subcaches[0] = sc0 = !(val & BIT(0));
314 	l3->subcaches[1] = sc1 = !(val & BIT(4));
315 
316 	if (boot_cpu_data.x86 == 0x15) {
317 		l3->subcaches[0] = sc0 += !(val & BIT(1));
318 		l3->subcaches[1] = sc1 += !(val & BIT(5));
319 	}
320 
321 	l3->subcaches[2] = sc2 = !(val & BIT(8))  + !(val & BIT(9));
322 	l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
323 
324 	l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
325 }
326 
327 /*
328  * check whether a slot used for disabling an L3 index is occupied.
329  * @l3: L3 cache descriptor
330  * @slot: slot number (0..1)
331  *
332  * @returns: the disabled index if used or negative value if slot free.
333  */
334 static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
335 {
336 	unsigned int reg = 0;
337 
338 	pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);
339 
340 	/* check whether this slot is activated already */
341 	if (reg & (3UL << 30))
342 		return reg & 0xfff;
343 
344 	return -1;
345 }
346 
347 static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
348 				  unsigned int slot)
349 {
350 	int index;
351 	struct amd_northbridge *nb = this_leaf->priv;
352 
353 	index = amd_get_l3_disable_slot(nb, slot);
354 	if (index >= 0)
355 		return sprintf(buf, "%d\n", index);
356 
357 	return sprintf(buf, "FREE\n");
358 }
359 
360 #define SHOW_CACHE_DISABLE(slot)					\
361 static ssize_t								\
362 cache_disable_##slot##_show(struct device *dev,				\
363 			    struct device_attribute *attr, char *buf)	\
364 {									\
365 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
366 	return show_cache_disable(this_leaf, buf, slot);		\
367 }
368 SHOW_CACHE_DISABLE(0)
369 SHOW_CACHE_DISABLE(1)
370 
371 static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
372 				 unsigned slot, unsigned long idx)
373 {
374 	int i;
375 
376 	idx |= BIT(30);
377 
378 	/*
379 	 *  disable index in all 4 subcaches
380 	 */
381 	for (i = 0; i < 4; i++) {
382 		u32 reg = idx | (i << 20);
383 
384 		if (!nb->l3_cache.subcaches[i])
385 			continue;
386 
387 		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
388 
389 		/*
390 		 * We need to WBINVD on a core on the node containing the L3
391 		 * cache which indices we disable therefore a simple wbinvd()
392 		 * is not sufficient.
393 		 */
394 		wbinvd_on_cpu(cpu);
395 
396 		reg |= BIT(31);
397 		pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
398 	}
399 }
400 
401 /*
402  * disable a L3 cache index by using a disable-slot
403  *
404  * @l3:    L3 cache descriptor
405  * @cpu:   A CPU on the node containing the L3 cache
406  * @slot:  slot number (0..1)
407  * @index: index to disable
408  *
409  * @return: 0 on success, error status on failure
410  */
411 static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
412 			    unsigned slot, unsigned long index)
413 {
414 	int ret = 0;
415 
416 	/*  check if @slot is already used or the index is already disabled */
417 	ret = amd_get_l3_disable_slot(nb, slot);
418 	if (ret >= 0)
419 		return -EEXIST;
420 
421 	if (index > nb->l3_cache.indices)
422 		return -EINVAL;
423 
424 	/* check whether the other slot has disabled the same index already */
425 	if (index == amd_get_l3_disable_slot(nb, !slot))
426 		return -EEXIST;
427 
428 	amd_l3_disable_index(nb, cpu, slot, index);
429 
430 	return 0;
431 }
432 
433 static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
434 				   const char *buf, size_t count,
435 				   unsigned int slot)
436 {
437 	unsigned long val = 0;
438 	int cpu, err = 0;
439 	struct amd_northbridge *nb = this_leaf->priv;
440 
441 	if (!capable(CAP_SYS_ADMIN))
442 		return -EPERM;
443 
444 	cpu = cpumask_first(&this_leaf->shared_cpu_map);
445 
446 	if (kstrtoul(buf, 10, &val) < 0)
447 		return -EINVAL;
448 
449 	err = amd_set_l3_disable_slot(nb, cpu, slot, val);
450 	if (err) {
451 		if (err == -EEXIST)
452 			pr_warn("L3 slot %d in use/index already disabled!\n",
453 				   slot);
454 		return err;
455 	}
456 	return count;
457 }
458 
459 #define STORE_CACHE_DISABLE(slot)					\
460 static ssize_t								\
461 cache_disable_##slot##_store(struct device *dev,			\
462 			     struct device_attribute *attr,		\
463 			     const char *buf, size_t count)		\
464 {									\
465 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);		\
466 	return store_cache_disable(this_leaf, buf, count, slot);	\
467 }
468 STORE_CACHE_DISABLE(0)
469 STORE_CACHE_DISABLE(1)
470 
471 static ssize_t subcaches_show(struct device *dev,
472 			      struct device_attribute *attr, char *buf)
473 {
474 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
475 	int cpu = cpumask_first(&this_leaf->shared_cpu_map);
476 
477 	return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
478 }
479 
480 static ssize_t subcaches_store(struct device *dev,
481 			       struct device_attribute *attr,
482 			       const char *buf, size_t count)
483 {
484 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485 	int cpu = cpumask_first(&this_leaf->shared_cpu_map);
486 	unsigned long val;
487 
488 	if (!capable(CAP_SYS_ADMIN))
489 		return -EPERM;
490 
491 	if (kstrtoul(buf, 16, &val) < 0)
492 		return -EINVAL;
493 
494 	if (amd_set_subcaches(cpu, val))
495 		return -EINVAL;
496 
497 	return count;
498 }
499 
500 static DEVICE_ATTR_RW(cache_disable_0);
501 static DEVICE_ATTR_RW(cache_disable_1);
502 static DEVICE_ATTR_RW(subcaches);
503 
504 static umode_t
505 cache_private_attrs_is_visible(struct kobject *kobj,
506 			       struct attribute *attr, int unused)
507 {
508 	struct device *dev = kobj_to_dev(kobj);
509 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
510 	umode_t mode = attr->mode;
511 
512 	if (!this_leaf->priv)
513 		return 0;
514 
515 	if ((attr == &dev_attr_subcaches.attr) &&
516 	    amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
517 		return mode;
518 
519 	if ((attr == &dev_attr_cache_disable_0.attr ||
520 	     attr == &dev_attr_cache_disable_1.attr) &&
521 	    amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
522 		return mode;
523 
524 	return 0;
525 }
526 
527 static struct attribute_group cache_private_group = {
528 	.is_visible = cache_private_attrs_is_visible,
529 };
530 
531 static void init_amd_l3_attrs(void)
532 {
533 	int n = 1;
534 	static struct attribute **amd_l3_attrs;
535 
536 	if (amd_l3_attrs) /* already initialized */
537 		return;
538 
539 	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
540 		n += 2;
541 	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
542 		n += 1;
543 
544 	amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
545 	if (!amd_l3_attrs)
546 		return;
547 
548 	n = 0;
549 	if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
550 		amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
551 		amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
552 	}
553 	if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
554 		amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
555 
556 	cache_private_group.attrs = amd_l3_attrs;
557 }
558 
559 const struct attribute_group *
560 cache_get_priv_group(struct cacheinfo *this_leaf)
561 {
562 	struct amd_northbridge *nb = this_leaf->priv;
563 
564 	if (this_leaf->level < 3 || !nb)
565 		return NULL;
566 
567 	if (nb && nb->l3_cache.indices)
568 		init_amd_l3_attrs();
569 
570 	return &cache_private_group;
571 }
572 
573 static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
574 {
575 	int node;
576 
577 	/* only for L3, and not in virtualized environments */
578 	if (index < 3)
579 		return;
580 
581 	node = amd_get_nb_id(smp_processor_id());
582 	this_leaf->nb = node_to_amd_nb(node);
583 	if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
584 		amd_calc_l3_indices(this_leaf->nb);
585 }
586 #else
587 #define amd_init_l3_cache(x, y)
588 #endif  /* CONFIG_AMD_NB && CONFIG_SYSFS */
589 
590 static int
591 cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
592 {
593 	union _cpuid4_leaf_eax	eax;
594 	union _cpuid4_leaf_ebx	ebx;
595 	union _cpuid4_leaf_ecx	ecx;
596 	unsigned		edx;
597 
598 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
599 		if (boot_cpu_has(X86_FEATURE_TOPOEXT))
600 			cpuid_count(0x8000001d, index, &eax.full,
601 				    &ebx.full, &ecx.full, &edx);
602 		else
603 			amd_cpuid4(index, &eax, &ebx, &ecx);
604 		amd_init_l3_cache(this_leaf, index);
605 	} else {
606 		cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
607 	}
608 
609 	if (eax.split.type == CTYPE_NULL)
610 		return -EIO; /* better error ? */
611 
612 	this_leaf->eax = eax;
613 	this_leaf->ebx = ebx;
614 	this_leaf->ecx = ecx;
615 	this_leaf->size = (ecx.split.number_of_sets          + 1) *
616 			  (ebx.split.coherency_line_size     + 1) *
617 			  (ebx.split.physical_line_partition + 1) *
618 			  (ebx.split.ways_of_associativity   + 1);
619 	return 0;
620 }
621 
622 static int find_num_cache_leaves(struct cpuinfo_x86 *c)
623 {
624 	unsigned int		eax, ebx, ecx, edx, op;
625 	union _cpuid4_leaf_eax	cache_eax;
626 	int 			i = -1;
627 
628 	if (c->x86_vendor == X86_VENDOR_AMD)
629 		op = 0x8000001d;
630 	else
631 		op = 4;
632 
633 	do {
634 		++i;
635 		/* Do cpuid(op) loop to find out num_cache_leaves */
636 		cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
637 		cache_eax.full = eax;
638 	} while (cache_eax.split.type != CTYPE_NULL);
639 	return i;
640 }
641 
642 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu, u8 node_id)
643 {
644 	/*
645 	 * We may have multiple LLCs if L3 caches exist, so check if we
646 	 * have an L3 cache by looking at the L3 cache CPUID leaf.
647 	 */
648 	if (!cpuid_edx(0x80000006))
649 		return;
650 
651 	if (c->x86 < 0x17) {
652 		/* LLC is at the node level. */
653 		per_cpu(cpu_llc_id, cpu) = node_id;
654 	} else if (c->x86 == 0x17 &&
655 		   c->x86_model >= 0 && c->x86_model <= 0x1F) {
656 		/*
657 		 * LLC is at the core complex level.
658 		 * Core complex ID is ApicId[3] for these processors.
659 		 */
660 		per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
661 	} else {
662 		/*
663 		 * LLC ID is calculated from the number of threads sharing the
664 		 * cache.
665 		 * */
666 		u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
667 		u32 llc_index = find_num_cache_leaves(c) - 1;
668 
669 		cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
670 		if (eax)
671 			num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
672 
673 		if (num_sharing_cache) {
674 			int bits = get_count_order(num_sharing_cache);
675 
676 			per_cpu(cpu_llc_id, cpu) = c->apicid >> bits;
677 		}
678 	}
679 }
680 
681 void init_amd_cacheinfo(struct cpuinfo_x86 *c)
682 {
683 
684 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
685 		num_cache_leaves = find_num_cache_leaves(c);
686 	} else if (c->extended_cpuid_level >= 0x80000006) {
687 		if (cpuid_edx(0x80000006) & 0xf000)
688 			num_cache_leaves = 4;
689 		else
690 			num_cache_leaves = 3;
691 	}
692 }
693 
694 void init_intel_cacheinfo(struct cpuinfo_x86 *c)
695 {
696 	/* Cache sizes */
697 	unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
698 	unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
699 	unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
700 	unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
701 #ifdef CONFIG_SMP
702 	unsigned int cpu = c->cpu_index;
703 #endif
704 
705 	if (c->cpuid_level > 3) {
706 		static int is_initialized;
707 
708 		if (is_initialized == 0) {
709 			/* Init num_cache_leaves from boot CPU */
710 			num_cache_leaves = find_num_cache_leaves(c);
711 			is_initialized++;
712 		}
713 
714 		/*
715 		 * Whenever possible use cpuid(4), deterministic cache
716 		 * parameters cpuid leaf to find the cache details
717 		 */
718 		for (i = 0; i < num_cache_leaves; i++) {
719 			struct _cpuid4_info_regs this_leaf = {};
720 			int retval;
721 
722 			retval = cpuid4_cache_lookup_regs(i, &this_leaf);
723 			if (retval < 0)
724 				continue;
725 
726 			switch (this_leaf.eax.split.level) {
727 			case 1:
728 				if (this_leaf.eax.split.type == CTYPE_DATA)
729 					new_l1d = this_leaf.size/1024;
730 				else if (this_leaf.eax.split.type == CTYPE_INST)
731 					new_l1i = this_leaf.size/1024;
732 				break;
733 			case 2:
734 				new_l2 = this_leaf.size/1024;
735 				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
736 				index_msb = get_count_order(num_threads_sharing);
737 				l2_id = c->apicid & ~((1 << index_msb) - 1);
738 				break;
739 			case 3:
740 				new_l3 = this_leaf.size/1024;
741 				num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
742 				index_msb = get_count_order(num_threads_sharing);
743 				l3_id = c->apicid & ~((1 << index_msb) - 1);
744 				break;
745 			default:
746 				break;
747 			}
748 		}
749 	}
750 	/*
751 	 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
752 	 * trace cache
753 	 */
754 	if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
755 		/* supports eax=2  call */
756 		int j, n;
757 		unsigned int regs[4];
758 		unsigned char *dp = (unsigned char *)regs;
759 		int only_trace = 0;
760 
761 		if (num_cache_leaves != 0 && c->x86 == 15)
762 			only_trace = 1;
763 
764 		/* Number of times to iterate */
765 		n = cpuid_eax(2) & 0xFF;
766 
767 		for (i = 0 ; i < n ; i++) {
768 			cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
769 
770 			/* If bit 31 is set, this is an unknown format */
771 			for (j = 0 ; j < 3 ; j++)
772 				if (regs[j] & (1 << 31))
773 					regs[j] = 0;
774 
775 			/* Byte 0 is level count, not a descriptor */
776 			for (j = 1 ; j < 16 ; j++) {
777 				unsigned char des = dp[j];
778 				unsigned char k = 0;
779 
780 				/* look up this descriptor in the table */
781 				while (cache_table[k].descriptor != 0) {
782 					if (cache_table[k].descriptor == des) {
783 						if (only_trace && cache_table[k].cache_type != LVL_TRACE)
784 							break;
785 						switch (cache_table[k].cache_type) {
786 						case LVL_1_INST:
787 							l1i += cache_table[k].size;
788 							break;
789 						case LVL_1_DATA:
790 							l1d += cache_table[k].size;
791 							break;
792 						case LVL_2:
793 							l2 += cache_table[k].size;
794 							break;
795 						case LVL_3:
796 							l3 += cache_table[k].size;
797 							break;
798 						case LVL_TRACE:
799 							trace += cache_table[k].size;
800 							break;
801 						}
802 
803 						break;
804 					}
805 
806 					k++;
807 				}
808 			}
809 		}
810 	}
811 
812 	if (new_l1d)
813 		l1d = new_l1d;
814 
815 	if (new_l1i)
816 		l1i = new_l1i;
817 
818 	if (new_l2) {
819 		l2 = new_l2;
820 #ifdef CONFIG_SMP
821 		per_cpu(cpu_llc_id, cpu) = l2_id;
822 #endif
823 	}
824 
825 	if (new_l3) {
826 		l3 = new_l3;
827 #ifdef CONFIG_SMP
828 		per_cpu(cpu_llc_id, cpu) = l3_id;
829 #endif
830 	}
831 
832 #ifdef CONFIG_SMP
833 	/*
834 	 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
835 	 * turns means that the only possibility is SMT (as indicated in
836 	 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
837 	 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
838 	 * c->phys_proc_id.
839 	 */
840 	if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
841 		per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
842 #endif
843 
844 	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
845 
846 	if (!l2)
847 		cpu_detect_cache_sizes(c);
848 }
849 
850 static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
851 				    struct _cpuid4_info_regs *base)
852 {
853 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
854 	struct cacheinfo *this_leaf;
855 	int i, sibling;
856 
857 	/*
858 	 * For L3, always use the pre-calculated cpu_llc_shared_mask
859 	 * to derive shared_cpu_map.
860 	 */
861 	if (index == 3) {
862 		for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
863 			this_cpu_ci = get_cpu_cacheinfo(i);
864 			if (!this_cpu_ci->info_list)
865 				continue;
866 			this_leaf = this_cpu_ci->info_list + index;
867 			for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
868 				if (!cpu_online(sibling))
869 					continue;
870 				cpumask_set_cpu(sibling,
871 						&this_leaf->shared_cpu_map);
872 			}
873 		}
874 	} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
875 		unsigned int apicid, nshared, first, last;
876 
877 		nshared = base->eax.split.num_threads_sharing + 1;
878 		apicid = cpu_data(cpu).apicid;
879 		first = apicid - (apicid % nshared);
880 		last = first + nshared - 1;
881 
882 		for_each_online_cpu(i) {
883 			this_cpu_ci = get_cpu_cacheinfo(i);
884 			if (!this_cpu_ci->info_list)
885 				continue;
886 
887 			apicid = cpu_data(i).apicid;
888 			if ((apicid < first) || (apicid > last))
889 				continue;
890 
891 			this_leaf = this_cpu_ci->info_list + index;
892 
893 			for_each_online_cpu(sibling) {
894 				apicid = cpu_data(sibling).apicid;
895 				if ((apicid < first) || (apicid > last))
896 					continue;
897 				cpumask_set_cpu(sibling,
898 						&this_leaf->shared_cpu_map);
899 			}
900 		}
901 	} else
902 		return 0;
903 
904 	return 1;
905 }
906 
907 static void __cache_cpumap_setup(unsigned int cpu, int index,
908 				 struct _cpuid4_info_regs *base)
909 {
910 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
911 	struct cacheinfo *this_leaf, *sibling_leaf;
912 	unsigned long num_threads_sharing;
913 	int index_msb, i;
914 	struct cpuinfo_x86 *c = &cpu_data(cpu);
915 
916 	if (c->x86_vendor == X86_VENDOR_AMD) {
917 		if (__cache_amd_cpumap_setup(cpu, index, base))
918 			return;
919 	}
920 
921 	this_leaf = this_cpu_ci->info_list + index;
922 	num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
923 
924 	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
925 	if (num_threads_sharing == 1)
926 		return;
927 
928 	index_msb = get_count_order(num_threads_sharing);
929 
930 	for_each_online_cpu(i)
931 		if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
932 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
933 
934 			if (i == cpu || !sib_cpu_ci->info_list)
935 				continue;/* skip if itself or no cacheinfo */
936 			sibling_leaf = sib_cpu_ci->info_list + index;
937 			cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
938 			cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
939 		}
940 }
941 
942 static void ci_leaf_init(struct cacheinfo *this_leaf,
943 			 struct _cpuid4_info_regs *base)
944 {
945 	this_leaf->id = base->id;
946 	this_leaf->attributes = CACHE_ID;
947 	this_leaf->level = base->eax.split.level;
948 	this_leaf->type = cache_type_map[base->eax.split.type];
949 	this_leaf->coherency_line_size =
950 				base->ebx.split.coherency_line_size + 1;
951 	this_leaf->ways_of_associativity =
952 				base->ebx.split.ways_of_associativity + 1;
953 	this_leaf->size = base->size;
954 	this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
955 	this_leaf->physical_line_partition =
956 				base->ebx.split.physical_line_partition + 1;
957 	this_leaf->priv = base->nb;
958 }
959 
960 static int __init_cache_level(unsigned int cpu)
961 {
962 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
963 
964 	if (!num_cache_leaves)
965 		return -ENOENT;
966 	if (!this_cpu_ci)
967 		return -EINVAL;
968 	this_cpu_ci->num_levels = 3;
969 	this_cpu_ci->num_leaves = num_cache_leaves;
970 	return 0;
971 }
972 
973 /*
974  * The max shared threads number comes from CPUID.4:EAX[25-14] with input
975  * ECX as cache index. Then right shift apicid by the number's order to get
976  * cache id for this cache node.
977  */
978 static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
979 {
980 	struct cpuinfo_x86 *c = &cpu_data(cpu);
981 	unsigned long num_threads_sharing;
982 	int index_msb;
983 
984 	num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
985 	index_msb = get_count_order(num_threads_sharing);
986 	id4_regs->id = c->apicid >> index_msb;
987 }
988 
989 static int __populate_cache_leaves(unsigned int cpu)
990 {
991 	unsigned int idx, ret;
992 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
993 	struct cacheinfo *this_leaf = this_cpu_ci->info_list;
994 	struct _cpuid4_info_regs id4_regs = {};
995 
996 	for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
997 		ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
998 		if (ret)
999 			return ret;
1000 		get_cache_id(cpu, &id4_regs);
1001 		ci_leaf_init(this_leaf++, &id4_regs);
1002 		__cache_cpumap_setup(cpu, idx, &id4_regs);
1003 	}
1004 	this_cpu_ci->cpu_map_populated = true;
1005 
1006 	return 0;
1007 }
1008 
1009 DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
1010 DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
1011