xref: /openbmc/linux/arch/x86/kernel/cpu/bugs.c (revision ccc319dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20 
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36 
37 #include "cpu.h"
38 
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 
51 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
52 u64 x86_spec_ctrl_base;
53 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
54 static DEFINE_MUTEX(spec_ctrl_mutex);
55 
56 /*
57  * The vendor and possibly platform specific bits which can be modified in
58  * x86_spec_ctrl_base.
59  */
60 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
61 
62 /*
63  * AMD specific MSR info for Speculative Store Bypass control.
64  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
65  */
66 u64 __ro_after_init x86_amd_ls_cfg_base;
67 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
68 
69 /* Control conditional STIBP in switch_to() */
70 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
71 /* Control conditional IBPB in switch_mm() */
72 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
73 /* Control unconditional IBPB in switch_mm() */
74 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
75 
76 /* Control MDS CPU buffer clear before returning to user space */
77 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
78 EXPORT_SYMBOL_GPL(mds_user_clear);
79 /* Control MDS CPU buffer clear before idling (halt, mwait) */
80 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
81 EXPORT_SYMBOL_GPL(mds_idle_clear);
82 
83 /*
84  * Controls whether l1d flush based mitigations are enabled,
85  * based on hw features and admin setting via boot parameter
86  * defaults to false
87  */
88 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
89 
90 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
91 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
92 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
93 
94 void __init check_bugs(void)
95 {
96 	identify_boot_cpu();
97 
98 	/*
99 	 * identify_boot_cpu() initialized SMT support information, let the
100 	 * core code know.
101 	 */
102 	cpu_smt_check_topology();
103 
104 	if (!IS_ENABLED(CONFIG_SMP)) {
105 		pr_info("CPU: ");
106 		print_cpu_info(&boot_cpu_data);
107 	}
108 
109 	/*
110 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
111 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
112 	 * init code as it is not enumerated and depends on the family.
113 	 */
114 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
115 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
116 
117 	/* Allow STIBP in MSR_SPEC_CTRL if supported */
118 	if (boot_cpu_has(X86_FEATURE_STIBP))
119 		x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
120 
121 	/* Select the proper CPU mitigations before patching alternatives: */
122 	spectre_v1_select_mitigation();
123 	spectre_v2_select_mitigation();
124 	ssb_select_mitigation();
125 	l1tf_select_mitigation();
126 	md_clear_select_mitigation();
127 	srbds_select_mitigation();
128 	l1d_flush_select_mitigation();
129 
130 	arch_smt_update();
131 
132 #ifdef CONFIG_X86_32
133 	/*
134 	 * Check whether we are able to run this kernel safely on SMP.
135 	 *
136 	 * - i386 is no longer supported.
137 	 * - In order to run on anything without a TSC, we need to be
138 	 *   compiled for a i486.
139 	 */
140 	if (boot_cpu_data.x86 < 4)
141 		panic("Kernel requires i486+ for 'invlpg' and other features");
142 
143 	init_utsname()->machine[1] =
144 		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
145 	alternative_instructions();
146 
147 	fpu__init_check_bugs();
148 #else /* CONFIG_X86_64 */
149 	alternative_instructions();
150 
151 	/*
152 	 * Make sure the first 2MB area is not mapped by huge pages
153 	 * There are typically fixed size MTRRs in there and overlapping
154 	 * MTRRs into large pages causes slow downs.
155 	 *
156 	 * Right now we don't do that with gbpages because there seems
157 	 * very little benefit for that case.
158 	 */
159 	if (!direct_gbpages)
160 		set_memory_4k((unsigned long)__va(0), 1);
161 #endif
162 }
163 
164 void
165 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
166 {
167 	u64 msrval, guestval, hostval = x86_spec_ctrl_base;
168 	struct thread_info *ti = current_thread_info();
169 
170 	/* Is MSR_SPEC_CTRL implemented ? */
171 	if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
172 		/*
173 		 * Restrict guest_spec_ctrl to supported values. Clear the
174 		 * modifiable bits in the host base value and or the
175 		 * modifiable bits from the guest value.
176 		 */
177 		guestval = hostval & ~x86_spec_ctrl_mask;
178 		guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
179 
180 		/* SSBD controlled in MSR_SPEC_CTRL */
181 		if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
182 		    static_cpu_has(X86_FEATURE_AMD_SSBD))
183 			hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
184 
185 		/* Conditional STIBP enabled? */
186 		if (static_branch_unlikely(&switch_to_cond_stibp))
187 			hostval |= stibp_tif_to_spec_ctrl(ti->flags);
188 
189 		if (hostval != guestval) {
190 			msrval = setguest ? guestval : hostval;
191 			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 		}
193 	}
194 
195 	/*
196 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 	 */
199 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 		return;
202 
203 	/*
204 	 * If the host has SSBD mitigation enabled, force it in the host's
205 	 * virtual MSR value. If its not permanently enabled, evaluate
206 	 * current's TIF_SSBD thread flag.
207 	 */
208 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 		hostval = SPEC_CTRL_SSBD;
210 	else
211 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212 
213 	/* Sanitize the guest value */
214 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215 
216 	if (hostval != guestval) {
217 		unsigned long tif;
218 
219 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 				 ssbd_spec_ctrl_to_tif(hostval);
221 
222 		speculation_ctrl_update(tif);
223 	}
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226 
227 static void x86_amd_ssb_disable(void)
228 {
229 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230 
231 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236 
237 #undef pr_fmt
238 #define pr_fmt(fmt)	"MDS: " fmt
239 
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243 
244 static const char * const mds_strings[] = {
245 	[MDS_MITIGATION_OFF]	= "Vulnerable",
246 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
247 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249 
250 static void __init mds_select_mitigation(void)
251 {
252 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 		mds_mitigation = MDS_MITIGATION_OFF;
254 		return;
255 	}
256 
257 	if (mds_mitigation == MDS_MITIGATION_FULL) {
258 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 			mds_mitigation = MDS_MITIGATION_VMWERV;
260 
261 		static_branch_enable(&mds_user_clear);
262 
263 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 			cpu_smt_disable(false);
266 	}
267 }
268 
269 static int __init mds_cmdline(char *str)
270 {
271 	if (!boot_cpu_has_bug(X86_BUG_MDS))
272 		return 0;
273 
274 	if (!str)
275 		return -EINVAL;
276 
277 	if (!strcmp(str, "off"))
278 		mds_mitigation = MDS_MITIGATION_OFF;
279 	else if (!strcmp(str, "full"))
280 		mds_mitigation = MDS_MITIGATION_FULL;
281 	else if (!strcmp(str, "full,nosmt")) {
282 		mds_mitigation = MDS_MITIGATION_FULL;
283 		mds_nosmt = true;
284 	}
285 
286 	return 0;
287 }
288 early_param("mds", mds_cmdline);
289 
290 #undef pr_fmt
291 #define pr_fmt(fmt)	"TAA: " fmt
292 
293 enum taa_mitigations {
294 	TAA_MITIGATION_OFF,
295 	TAA_MITIGATION_UCODE_NEEDED,
296 	TAA_MITIGATION_VERW,
297 	TAA_MITIGATION_TSX_DISABLED,
298 };
299 
300 /* Default mitigation for TAA-affected CPUs */
301 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
302 static bool taa_nosmt __ro_after_init;
303 
304 static const char * const taa_strings[] = {
305 	[TAA_MITIGATION_OFF]		= "Vulnerable",
306 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
307 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
308 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
309 };
310 
311 static void __init taa_select_mitigation(void)
312 {
313 	u64 ia32_cap;
314 
315 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
316 		taa_mitigation = TAA_MITIGATION_OFF;
317 		return;
318 	}
319 
320 	/* TSX previously disabled by tsx=off */
321 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
322 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
323 		return;
324 	}
325 
326 	if (cpu_mitigations_off()) {
327 		taa_mitigation = TAA_MITIGATION_OFF;
328 		return;
329 	}
330 
331 	/*
332 	 * TAA mitigation via VERW is turned off if both
333 	 * tsx_async_abort=off and mds=off are specified.
334 	 */
335 	if (taa_mitigation == TAA_MITIGATION_OFF &&
336 	    mds_mitigation == MDS_MITIGATION_OFF)
337 		return;
338 
339 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
340 		taa_mitigation = TAA_MITIGATION_VERW;
341 	else
342 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
343 
344 	/*
345 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
346 	 * A microcode update fixes this behavior to clear CPU buffers. It also
347 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
348 	 * ARCH_CAP_TSX_CTRL_MSR bit.
349 	 *
350 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
351 	 * update is required.
352 	 */
353 	ia32_cap = x86_read_arch_cap_msr();
354 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
355 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
356 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
357 
358 	/*
359 	 * TSX is enabled, select alternate mitigation for TAA which is
360 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
361 	 *
362 	 * For guests that can't determine whether the correct microcode is
363 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
364 	 */
365 	static_branch_enable(&mds_user_clear);
366 
367 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
368 		cpu_smt_disable(false);
369 }
370 
371 static int __init tsx_async_abort_parse_cmdline(char *str)
372 {
373 	if (!boot_cpu_has_bug(X86_BUG_TAA))
374 		return 0;
375 
376 	if (!str)
377 		return -EINVAL;
378 
379 	if (!strcmp(str, "off")) {
380 		taa_mitigation = TAA_MITIGATION_OFF;
381 	} else if (!strcmp(str, "full")) {
382 		taa_mitigation = TAA_MITIGATION_VERW;
383 	} else if (!strcmp(str, "full,nosmt")) {
384 		taa_mitigation = TAA_MITIGATION_VERW;
385 		taa_nosmt = true;
386 	}
387 
388 	return 0;
389 }
390 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
391 
392 #undef pr_fmt
393 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
394 
395 enum mmio_mitigations {
396 	MMIO_MITIGATION_OFF,
397 	MMIO_MITIGATION_UCODE_NEEDED,
398 	MMIO_MITIGATION_VERW,
399 };
400 
401 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
402 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
403 static bool mmio_nosmt __ro_after_init = false;
404 
405 static const char * const mmio_strings[] = {
406 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
407 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
408 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
409 };
410 
411 static void __init mmio_select_mitigation(void)
412 {
413 	u64 ia32_cap;
414 
415 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 	    cpu_mitigations_off()) {
417 		mmio_mitigation = MMIO_MITIGATION_OFF;
418 		return;
419 	}
420 
421 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
422 		return;
423 
424 	ia32_cap = x86_read_arch_cap_msr();
425 
426 	/*
427 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
428 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
429 	 */
430 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
431 					      boot_cpu_has(X86_FEATURE_RTM)))
432 		static_branch_enable(&mds_user_clear);
433 	else
434 		static_branch_enable(&mmio_stale_data_clear);
435 
436 	/*
437 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
438 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
439 	 * is required irrespective of SMT state.
440 	 */
441 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
442 		static_branch_enable(&mds_idle_clear);
443 
444 	/*
445 	 * Check if the system has the right microcode.
446 	 *
447 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
448 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
449 	 * affected systems.
450 	 */
451 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
452 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
453 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
454 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
455 		mmio_mitigation = MMIO_MITIGATION_VERW;
456 	else
457 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
458 
459 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
460 		cpu_smt_disable(false);
461 }
462 
463 static int __init mmio_stale_data_parse_cmdline(char *str)
464 {
465 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
466 		return 0;
467 
468 	if (!str)
469 		return -EINVAL;
470 
471 	if (!strcmp(str, "off")) {
472 		mmio_mitigation = MMIO_MITIGATION_OFF;
473 	} else if (!strcmp(str, "full")) {
474 		mmio_mitigation = MMIO_MITIGATION_VERW;
475 	} else if (!strcmp(str, "full,nosmt")) {
476 		mmio_mitigation = MMIO_MITIGATION_VERW;
477 		mmio_nosmt = true;
478 	}
479 
480 	return 0;
481 }
482 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
483 
484 #undef pr_fmt
485 #define pr_fmt(fmt)     "" fmt
486 
487 static void __init md_clear_update_mitigation(void)
488 {
489 	if (cpu_mitigations_off())
490 		return;
491 
492 	if (!static_key_enabled(&mds_user_clear))
493 		goto out;
494 
495 	/*
496 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
497 	 * mitigation, if necessary.
498 	 */
499 	if (mds_mitigation == MDS_MITIGATION_OFF &&
500 	    boot_cpu_has_bug(X86_BUG_MDS)) {
501 		mds_mitigation = MDS_MITIGATION_FULL;
502 		mds_select_mitigation();
503 	}
504 	if (taa_mitigation == TAA_MITIGATION_OFF &&
505 	    boot_cpu_has_bug(X86_BUG_TAA)) {
506 		taa_mitigation = TAA_MITIGATION_VERW;
507 		taa_select_mitigation();
508 	}
509 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
510 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
511 		mmio_mitigation = MMIO_MITIGATION_VERW;
512 		mmio_select_mitigation();
513 	}
514 out:
515 	if (boot_cpu_has_bug(X86_BUG_MDS))
516 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
517 	if (boot_cpu_has_bug(X86_BUG_TAA))
518 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
519 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
520 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
521 }
522 
523 static void __init md_clear_select_mitigation(void)
524 {
525 	mds_select_mitigation();
526 	taa_select_mitigation();
527 	mmio_select_mitigation();
528 
529 	/*
530 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
531 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
532 	 * mitigation selection is done.
533 	 */
534 	md_clear_update_mitigation();
535 }
536 
537 #undef pr_fmt
538 #define pr_fmt(fmt)	"SRBDS: " fmt
539 
540 enum srbds_mitigations {
541 	SRBDS_MITIGATION_OFF,
542 	SRBDS_MITIGATION_UCODE_NEEDED,
543 	SRBDS_MITIGATION_FULL,
544 	SRBDS_MITIGATION_TSX_OFF,
545 	SRBDS_MITIGATION_HYPERVISOR,
546 };
547 
548 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
549 
550 static const char * const srbds_strings[] = {
551 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
552 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
553 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
554 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
555 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
556 };
557 
558 static bool srbds_off;
559 
560 void update_srbds_msr(void)
561 {
562 	u64 mcu_ctrl;
563 
564 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
565 		return;
566 
567 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
568 		return;
569 
570 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
571 		return;
572 
573 	/*
574 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
575 	 * being disabled and it hasn't received the SRBDS MSR microcode.
576 	 */
577 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
578 		return;
579 
580 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
581 
582 	switch (srbds_mitigation) {
583 	case SRBDS_MITIGATION_OFF:
584 	case SRBDS_MITIGATION_TSX_OFF:
585 		mcu_ctrl |= RNGDS_MITG_DIS;
586 		break;
587 	case SRBDS_MITIGATION_FULL:
588 		mcu_ctrl &= ~RNGDS_MITG_DIS;
589 		break;
590 	default:
591 		break;
592 	}
593 
594 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
595 }
596 
597 static void __init srbds_select_mitigation(void)
598 {
599 	u64 ia32_cap;
600 
601 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
602 		return;
603 
604 	/*
605 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
606 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
607 	 * by Processor MMIO Stale Data vulnerability.
608 	 */
609 	ia32_cap = x86_read_arch_cap_msr();
610 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
611 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
612 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
613 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
614 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
615 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
616 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
617 	else if (cpu_mitigations_off() || srbds_off)
618 		srbds_mitigation = SRBDS_MITIGATION_OFF;
619 
620 	update_srbds_msr();
621 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
622 }
623 
624 static int __init srbds_parse_cmdline(char *str)
625 {
626 	if (!str)
627 		return -EINVAL;
628 
629 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
630 		return 0;
631 
632 	srbds_off = !strcmp(str, "off");
633 	return 0;
634 }
635 early_param("srbds", srbds_parse_cmdline);
636 
637 #undef pr_fmt
638 #define pr_fmt(fmt)     "L1D Flush : " fmt
639 
640 enum l1d_flush_mitigations {
641 	L1D_FLUSH_OFF = 0,
642 	L1D_FLUSH_ON,
643 };
644 
645 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
646 
647 static void __init l1d_flush_select_mitigation(void)
648 {
649 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
650 		return;
651 
652 	static_branch_enable(&switch_mm_cond_l1d_flush);
653 	pr_info("Conditional flush on switch_mm() enabled\n");
654 }
655 
656 static int __init l1d_flush_parse_cmdline(char *str)
657 {
658 	if (!strcmp(str, "on"))
659 		l1d_flush_mitigation = L1D_FLUSH_ON;
660 
661 	return 0;
662 }
663 early_param("l1d_flush", l1d_flush_parse_cmdline);
664 
665 #undef pr_fmt
666 #define pr_fmt(fmt)     "Spectre V1 : " fmt
667 
668 enum spectre_v1_mitigation {
669 	SPECTRE_V1_MITIGATION_NONE,
670 	SPECTRE_V1_MITIGATION_AUTO,
671 };
672 
673 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
674 	SPECTRE_V1_MITIGATION_AUTO;
675 
676 static const char * const spectre_v1_strings[] = {
677 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
678 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
679 };
680 
681 /*
682  * Does SMAP provide full mitigation against speculative kernel access to
683  * userspace?
684  */
685 static bool smap_works_speculatively(void)
686 {
687 	if (!boot_cpu_has(X86_FEATURE_SMAP))
688 		return false;
689 
690 	/*
691 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
692 	 * prevent speculative access to user data in the L1 cache.
693 	 * Consider SMAP to be non-functional as a mitigation on these
694 	 * CPUs.
695 	 */
696 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
697 		return false;
698 
699 	return true;
700 }
701 
702 static void __init spectre_v1_select_mitigation(void)
703 {
704 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
705 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
706 		return;
707 	}
708 
709 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
710 		/*
711 		 * With Spectre v1, a user can speculatively control either
712 		 * path of a conditional swapgs with a user-controlled GS
713 		 * value.  The mitigation is to add lfences to both code paths.
714 		 *
715 		 * If FSGSBASE is enabled, the user can put a kernel address in
716 		 * GS, in which case SMAP provides no protection.
717 		 *
718 		 * If FSGSBASE is disabled, the user can only put a user space
719 		 * address in GS.  That makes an attack harder, but still
720 		 * possible if there's no SMAP protection.
721 		 */
722 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
723 		    !smap_works_speculatively()) {
724 			/*
725 			 * Mitigation can be provided from SWAPGS itself or
726 			 * PTI as the CR3 write in the Meltdown mitigation
727 			 * is serializing.
728 			 *
729 			 * If neither is there, mitigate with an LFENCE to
730 			 * stop speculation through swapgs.
731 			 */
732 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
733 			    !boot_cpu_has(X86_FEATURE_PTI))
734 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
735 
736 			/*
737 			 * Enable lfences in the kernel entry (non-swapgs)
738 			 * paths, to prevent user entry from speculatively
739 			 * skipping swapgs.
740 			 */
741 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
742 		}
743 	}
744 
745 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
746 }
747 
748 static int __init nospectre_v1_cmdline(char *str)
749 {
750 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
751 	return 0;
752 }
753 early_param("nospectre_v1", nospectre_v1_cmdline);
754 
755 #undef pr_fmt
756 #define pr_fmt(fmt)     "Spectre V2 : " fmt
757 
758 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
759 	SPECTRE_V2_NONE;
760 
761 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
762 	SPECTRE_V2_USER_NONE;
763 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
764 	SPECTRE_V2_USER_NONE;
765 
766 #ifdef CONFIG_RETPOLINE
767 static bool spectre_v2_bad_module;
768 
769 bool retpoline_module_ok(bool has_retpoline)
770 {
771 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
772 		return true;
773 
774 	pr_err("System may be vulnerable to spectre v2\n");
775 	spectre_v2_bad_module = true;
776 	return false;
777 }
778 
779 static inline const char *spectre_v2_module_string(void)
780 {
781 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
782 }
783 #else
784 static inline const char *spectre_v2_module_string(void) { return ""; }
785 #endif
786 
787 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
788 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
789 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
790 
791 #ifdef CONFIG_BPF_SYSCALL
792 void unpriv_ebpf_notify(int new_state)
793 {
794 	if (new_state)
795 		return;
796 
797 	/* Unprivileged eBPF is enabled */
798 
799 	switch (spectre_v2_enabled) {
800 	case SPECTRE_V2_EIBRS:
801 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
802 		break;
803 	case SPECTRE_V2_EIBRS_LFENCE:
804 		if (sched_smt_active())
805 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
806 		break;
807 	default:
808 		break;
809 	}
810 }
811 #endif
812 
813 static inline bool match_option(const char *arg, int arglen, const char *opt)
814 {
815 	int len = strlen(opt);
816 
817 	return len == arglen && !strncmp(arg, opt, len);
818 }
819 
820 /* The kernel command line selection for spectre v2 */
821 enum spectre_v2_mitigation_cmd {
822 	SPECTRE_V2_CMD_NONE,
823 	SPECTRE_V2_CMD_AUTO,
824 	SPECTRE_V2_CMD_FORCE,
825 	SPECTRE_V2_CMD_RETPOLINE,
826 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
827 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
828 	SPECTRE_V2_CMD_EIBRS,
829 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
830 	SPECTRE_V2_CMD_EIBRS_LFENCE,
831 };
832 
833 enum spectre_v2_user_cmd {
834 	SPECTRE_V2_USER_CMD_NONE,
835 	SPECTRE_V2_USER_CMD_AUTO,
836 	SPECTRE_V2_USER_CMD_FORCE,
837 	SPECTRE_V2_USER_CMD_PRCTL,
838 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
839 	SPECTRE_V2_USER_CMD_SECCOMP,
840 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
841 };
842 
843 static const char * const spectre_v2_user_strings[] = {
844 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
845 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
846 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
847 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
848 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
849 };
850 
851 static const struct {
852 	const char			*option;
853 	enum spectre_v2_user_cmd	cmd;
854 	bool				secure;
855 } v2_user_options[] __initconst = {
856 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
857 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
858 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
859 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
860 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
861 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
862 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
863 };
864 
865 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
866 {
867 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
868 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
869 }
870 
871 static enum spectre_v2_user_cmd __init
872 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
873 {
874 	char arg[20];
875 	int ret, i;
876 
877 	switch (v2_cmd) {
878 	case SPECTRE_V2_CMD_NONE:
879 		return SPECTRE_V2_USER_CMD_NONE;
880 	case SPECTRE_V2_CMD_FORCE:
881 		return SPECTRE_V2_USER_CMD_FORCE;
882 	default:
883 		break;
884 	}
885 
886 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
887 				  arg, sizeof(arg));
888 	if (ret < 0)
889 		return SPECTRE_V2_USER_CMD_AUTO;
890 
891 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
892 		if (match_option(arg, ret, v2_user_options[i].option)) {
893 			spec_v2_user_print_cond(v2_user_options[i].option,
894 						v2_user_options[i].secure);
895 			return v2_user_options[i].cmd;
896 		}
897 	}
898 
899 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
900 	return SPECTRE_V2_USER_CMD_AUTO;
901 }
902 
903 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
904 {
905 	return (mode == SPECTRE_V2_EIBRS ||
906 		mode == SPECTRE_V2_EIBRS_RETPOLINE ||
907 		mode == SPECTRE_V2_EIBRS_LFENCE);
908 }
909 
910 static void __init
911 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
912 {
913 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
914 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
915 	enum spectre_v2_user_cmd cmd;
916 
917 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
918 		return;
919 
920 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
921 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
922 		smt_possible = false;
923 
924 	cmd = spectre_v2_parse_user_cmdline(v2_cmd);
925 	switch (cmd) {
926 	case SPECTRE_V2_USER_CMD_NONE:
927 		goto set_mode;
928 	case SPECTRE_V2_USER_CMD_FORCE:
929 		mode = SPECTRE_V2_USER_STRICT;
930 		break;
931 	case SPECTRE_V2_USER_CMD_AUTO:
932 	case SPECTRE_V2_USER_CMD_PRCTL:
933 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
934 		mode = SPECTRE_V2_USER_PRCTL;
935 		break;
936 	case SPECTRE_V2_USER_CMD_SECCOMP:
937 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
938 		if (IS_ENABLED(CONFIG_SECCOMP))
939 			mode = SPECTRE_V2_USER_SECCOMP;
940 		else
941 			mode = SPECTRE_V2_USER_PRCTL;
942 		break;
943 	}
944 
945 	/* Initialize Indirect Branch Prediction Barrier */
946 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
947 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
948 
949 		spectre_v2_user_ibpb = mode;
950 		switch (cmd) {
951 		case SPECTRE_V2_USER_CMD_FORCE:
952 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
953 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
954 			static_branch_enable(&switch_mm_always_ibpb);
955 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
956 			break;
957 		case SPECTRE_V2_USER_CMD_PRCTL:
958 		case SPECTRE_V2_USER_CMD_AUTO:
959 		case SPECTRE_V2_USER_CMD_SECCOMP:
960 			static_branch_enable(&switch_mm_cond_ibpb);
961 			break;
962 		default:
963 			break;
964 		}
965 
966 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
967 			static_key_enabled(&switch_mm_always_ibpb) ?
968 			"always-on" : "conditional");
969 	}
970 
971 	/*
972 	 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
973 	 * required.
974 	 */
975 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
976 	    !smt_possible ||
977 	    spectre_v2_in_eibrs_mode(spectre_v2_enabled))
978 		return;
979 
980 	/*
981 	 * At this point, an STIBP mode other than "off" has been set.
982 	 * If STIBP support is not being forced, check if STIBP always-on
983 	 * is preferred.
984 	 */
985 	if (mode != SPECTRE_V2_USER_STRICT &&
986 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
987 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
988 
989 	spectre_v2_user_stibp = mode;
990 
991 set_mode:
992 	pr_info("%s\n", spectre_v2_user_strings[mode]);
993 }
994 
995 static const char * const spectre_v2_strings[] = {
996 	[SPECTRE_V2_NONE]			= "Vulnerable",
997 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
998 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
999 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1000 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1001 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1002 };
1003 
1004 static const struct {
1005 	const char *option;
1006 	enum spectre_v2_mitigation_cmd cmd;
1007 	bool secure;
1008 } mitigation_options[] __initconst = {
1009 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1010 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1011 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1012 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1013 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1014 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1015 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1016 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1017 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1018 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1019 };
1020 
1021 static void __init spec_v2_print_cond(const char *reason, bool secure)
1022 {
1023 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1024 		pr_info("%s selected on command line.\n", reason);
1025 }
1026 
1027 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1028 {
1029 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1030 	char arg[20];
1031 	int ret, i;
1032 
1033 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1034 	    cpu_mitigations_off())
1035 		return SPECTRE_V2_CMD_NONE;
1036 
1037 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1038 	if (ret < 0)
1039 		return SPECTRE_V2_CMD_AUTO;
1040 
1041 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1042 		if (!match_option(arg, ret, mitigation_options[i].option))
1043 			continue;
1044 		cmd = mitigation_options[i].cmd;
1045 		break;
1046 	}
1047 
1048 	if (i >= ARRAY_SIZE(mitigation_options)) {
1049 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1050 		return SPECTRE_V2_CMD_AUTO;
1051 	}
1052 
1053 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1054 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1055 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1056 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1057 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1058 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1059 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1060 		       mitigation_options[i].option);
1061 		return SPECTRE_V2_CMD_AUTO;
1062 	}
1063 
1064 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1065 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1066 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1067 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1068 		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1069 		       mitigation_options[i].option);
1070 		return SPECTRE_V2_CMD_AUTO;
1071 	}
1072 
1073 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1074 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1075 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1076 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1077 		       mitigation_options[i].option);
1078 		return SPECTRE_V2_CMD_AUTO;
1079 	}
1080 
1081 	spec_v2_print_cond(mitigation_options[i].option,
1082 			   mitigation_options[i].secure);
1083 	return cmd;
1084 }
1085 
1086 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1087 {
1088 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1089 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1090 		return SPECTRE_V2_NONE;
1091 	}
1092 
1093 	return SPECTRE_V2_RETPOLINE;
1094 }
1095 
1096 static void __init spectre_v2_select_mitigation(void)
1097 {
1098 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1099 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1100 
1101 	/*
1102 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1103 	 * then nothing to do.
1104 	 */
1105 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1106 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1107 		return;
1108 
1109 	switch (cmd) {
1110 	case SPECTRE_V2_CMD_NONE:
1111 		return;
1112 
1113 	case SPECTRE_V2_CMD_FORCE:
1114 	case SPECTRE_V2_CMD_AUTO:
1115 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1116 			mode = SPECTRE_V2_EIBRS;
1117 			break;
1118 		}
1119 
1120 		mode = spectre_v2_select_retpoline();
1121 		break;
1122 
1123 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1124 		pr_err(SPECTRE_V2_LFENCE_MSG);
1125 		mode = SPECTRE_V2_LFENCE;
1126 		break;
1127 
1128 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1129 		mode = SPECTRE_V2_RETPOLINE;
1130 		break;
1131 
1132 	case SPECTRE_V2_CMD_RETPOLINE:
1133 		mode = spectre_v2_select_retpoline();
1134 		break;
1135 
1136 	case SPECTRE_V2_CMD_EIBRS:
1137 		mode = SPECTRE_V2_EIBRS;
1138 		break;
1139 
1140 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1141 		mode = SPECTRE_V2_EIBRS_LFENCE;
1142 		break;
1143 
1144 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1145 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1146 		break;
1147 	}
1148 
1149 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1150 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1151 
1152 	if (spectre_v2_in_eibrs_mode(mode)) {
1153 		/* Force it so VMEXIT will restore correctly */
1154 		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1155 		wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1156 	}
1157 
1158 	switch (mode) {
1159 	case SPECTRE_V2_NONE:
1160 	case SPECTRE_V2_EIBRS:
1161 		break;
1162 
1163 	case SPECTRE_V2_LFENCE:
1164 	case SPECTRE_V2_EIBRS_LFENCE:
1165 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1166 		fallthrough;
1167 
1168 	case SPECTRE_V2_RETPOLINE:
1169 	case SPECTRE_V2_EIBRS_RETPOLINE:
1170 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1171 		break;
1172 	}
1173 
1174 	spectre_v2_enabled = mode;
1175 	pr_info("%s\n", spectre_v2_strings[mode]);
1176 
1177 	/*
1178 	 * If spectre v2 protection has been enabled, unconditionally fill
1179 	 * RSB during a context switch; this protects against two independent
1180 	 * issues:
1181 	 *
1182 	 *	- RSB underflow (and switch to BTB) on Skylake+
1183 	 *	- SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
1184 	 */
1185 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1186 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1187 
1188 	/*
1189 	 * Retpoline means the kernel is safe because it has no indirect
1190 	 * branches. Enhanced IBRS protects firmware too, so, enable restricted
1191 	 * speculation around firmware calls only when Enhanced IBRS isn't
1192 	 * supported.
1193 	 *
1194 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1195 	 * the user might select retpoline on the kernel command line and if
1196 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1197 	 * enable IBRS around firmware calls.
1198 	 */
1199 	if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_eibrs_mode(mode)) {
1200 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1201 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1202 	}
1203 
1204 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1205 	spectre_v2_user_select_mitigation(cmd);
1206 }
1207 
1208 static void update_stibp_msr(void * __unused)
1209 {
1210 	wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1211 }
1212 
1213 /* Update x86_spec_ctrl_base in case SMT state changed. */
1214 static void update_stibp_strict(void)
1215 {
1216 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1217 
1218 	if (sched_smt_active())
1219 		mask |= SPEC_CTRL_STIBP;
1220 
1221 	if (mask == x86_spec_ctrl_base)
1222 		return;
1223 
1224 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1225 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1226 	x86_spec_ctrl_base = mask;
1227 	on_each_cpu(update_stibp_msr, NULL, 1);
1228 }
1229 
1230 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1231 static void update_indir_branch_cond(void)
1232 {
1233 	if (sched_smt_active())
1234 		static_branch_enable(&switch_to_cond_stibp);
1235 	else
1236 		static_branch_disable(&switch_to_cond_stibp);
1237 }
1238 
1239 #undef pr_fmt
1240 #define pr_fmt(fmt) fmt
1241 
1242 /* Update the static key controlling the MDS CPU buffer clear in idle */
1243 static void update_mds_branch_idle(void)
1244 {
1245 	u64 ia32_cap = x86_read_arch_cap_msr();
1246 
1247 	/*
1248 	 * Enable the idle clearing if SMT is active on CPUs which are
1249 	 * affected only by MSBDS and not any other MDS variant.
1250 	 *
1251 	 * The other variants cannot be mitigated when SMT is enabled, so
1252 	 * clearing the buffers on idle just to prevent the Store Buffer
1253 	 * repartitioning leak would be a window dressing exercise.
1254 	 */
1255 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1256 		return;
1257 
1258 	if (sched_smt_active()) {
1259 		static_branch_enable(&mds_idle_clear);
1260 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1261 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1262 		static_branch_disable(&mds_idle_clear);
1263 	}
1264 }
1265 
1266 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1267 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1268 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1269 
1270 void cpu_bugs_smt_update(void)
1271 {
1272 	mutex_lock(&spec_ctrl_mutex);
1273 
1274 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1275 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1276 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1277 
1278 	switch (spectre_v2_user_stibp) {
1279 	case SPECTRE_V2_USER_NONE:
1280 		break;
1281 	case SPECTRE_V2_USER_STRICT:
1282 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1283 		update_stibp_strict();
1284 		break;
1285 	case SPECTRE_V2_USER_PRCTL:
1286 	case SPECTRE_V2_USER_SECCOMP:
1287 		update_indir_branch_cond();
1288 		break;
1289 	}
1290 
1291 	switch (mds_mitigation) {
1292 	case MDS_MITIGATION_FULL:
1293 	case MDS_MITIGATION_VMWERV:
1294 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1295 			pr_warn_once(MDS_MSG_SMT);
1296 		update_mds_branch_idle();
1297 		break;
1298 	case MDS_MITIGATION_OFF:
1299 		break;
1300 	}
1301 
1302 	switch (taa_mitigation) {
1303 	case TAA_MITIGATION_VERW:
1304 	case TAA_MITIGATION_UCODE_NEEDED:
1305 		if (sched_smt_active())
1306 			pr_warn_once(TAA_MSG_SMT);
1307 		break;
1308 	case TAA_MITIGATION_TSX_DISABLED:
1309 	case TAA_MITIGATION_OFF:
1310 		break;
1311 	}
1312 
1313 	switch (mmio_mitigation) {
1314 	case MMIO_MITIGATION_VERW:
1315 	case MMIO_MITIGATION_UCODE_NEEDED:
1316 		if (sched_smt_active())
1317 			pr_warn_once(MMIO_MSG_SMT);
1318 		break;
1319 	case MMIO_MITIGATION_OFF:
1320 		break;
1321 	}
1322 
1323 	mutex_unlock(&spec_ctrl_mutex);
1324 }
1325 
1326 #undef pr_fmt
1327 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1328 
1329 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1330 
1331 /* The kernel command line selection */
1332 enum ssb_mitigation_cmd {
1333 	SPEC_STORE_BYPASS_CMD_NONE,
1334 	SPEC_STORE_BYPASS_CMD_AUTO,
1335 	SPEC_STORE_BYPASS_CMD_ON,
1336 	SPEC_STORE_BYPASS_CMD_PRCTL,
1337 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1338 };
1339 
1340 static const char * const ssb_strings[] = {
1341 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1342 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1343 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1344 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1345 };
1346 
1347 static const struct {
1348 	const char *option;
1349 	enum ssb_mitigation_cmd cmd;
1350 } ssb_mitigation_options[]  __initconst = {
1351 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1352 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1353 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1354 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1355 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1356 };
1357 
1358 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1359 {
1360 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1361 	char arg[20];
1362 	int ret, i;
1363 
1364 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1365 	    cpu_mitigations_off()) {
1366 		return SPEC_STORE_BYPASS_CMD_NONE;
1367 	} else {
1368 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1369 					  arg, sizeof(arg));
1370 		if (ret < 0)
1371 			return SPEC_STORE_BYPASS_CMD_AUTO;
1372 
1373 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1374 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1375 				continue;
1376 
1377 			cmd = ssb_mitigation_options[i].cmd;
1378 			break;
1379 		}
1380 
1381 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1382 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1383 			return SPEC_STORE_BYPASS_CMD_AUTO;
1384 		}
1385 	}
1386 
1387 	return cmd;
1388 }
1389 
1390 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1391 {
1392 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1393 	enum ssb_mitigation_cmd cmd;
1394 
1395 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1396 		return mode;
1397 
1398 	cmd = ssb_parse_cmdline();
1399 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1400 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1401 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1402 		return mode;
1403 
1404 	switch (cmd) {
1405 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1406 		/*
1407 		 * Choose prctl+seccomp as the default mode if seccomp is
1408 		 * enabled.
1409 		 */
1410 		if (IS_ENABLED(CONFIG_SECCOMP))
1411 			mode = SPEC_STORE_BYPASS_SECCOMP;
1412 		else
1413 			mode = SPEC_STORE_BYPASS_PRCTL;
1414 		break;
1415 	case SPEC_STORE_BYPASS_CMD_ON:
1416 		mode = SPEC_STORE_BYPASS_DISABLE;
1417 		break;
1418 	case SPEC_STORE_BYPASS_CMD_AUTO:
1419 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1420 		mode = SPEC_STORE_BYPASS_PRCTL;
1421 		break;
1422 	case SPEC_STORE_BYPASS_CMD_NONE:
1423 		break;
1424 	}
1425 
1426 	/*
1427 	 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1428 	 * bit in the mask to allow guests to use the mitigation even in the
1429 	 * case where the host does not enable it.
1430 	 */
1431 	if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1432 	    static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1433 		x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1434 	}
1435 
1436 	/*
1437 	 * We have three CPU feature flags that are in play here:
1438 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1439 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1440 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1441 	 */
1442 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1443 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1444 		/*
1445 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1446 		 * use a completely different MSR and bit dependent on family.
1447 		 */
1448 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1449 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1450 			x86_amd_ssb_disable();
1451 		} else {
1452 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1453 			wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1454 		}
1455 	}
1456 
1457 	return mode;
1458 }
1459 
1460 static void ssb_select_mitigation(void)
1461 {
1462 	ssb_mode = __ssb_select_mitigation();
1463 
1464 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1465 		pr_info("%s\n", ssb_strings[ssb_mode]);
1466 }
1467 
1468 #undef pr_fmt
1469 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1470 
1471 static void task_update_spec_tif(struct task_struct *tsk)
1472 {
1473 	/* Force the update of the real TIF bits */
1474 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1475 
1476 	/*
1477 	 * Immediately update the speculation control MSRs for the current
1478 	 * task, but for a non-current task delay setting the CPU
1479 	 * mitigation until it is scheduled next.
1480 	 *
1481 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1482 	 * always the current task.
1483 	 */
1484 	if (tsk == current)
1485 		speculation_ctrl_update_current();
1486 }
1487 
1488 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1489 {
1490 
1491 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1492 		return -EPERM;
1493 
1494 	switch (ctrl) {
1495 	case PR_SPEC_ENABLE:
1496 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1497 		return 0;
1498 	case PR_SPEC_DISABLE:
1499 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1500 		return 0;
1501 	default:
1502 		return -ERANGE;
1503 	}
1504 }
1505 
1506 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1507 {
1508 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1509 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1510 		return -ENXIO;
1511 
1512 	switch (ctrl) {
1513 	case PR_SPEC_ENABLE:
1514 		/* If speculation is force disabled, enable is not allowed */
1515 		if (task_spec_ssb_force_disable(task))
1516 			return -EPERM;
1517 		task_clear_spec_ssb_disable(task);
1518 		task_clear_spec_ssb_noexec(task);
1519 		task_update_spec_tif(task);
1520 		break;
1521 	case PR_SPEC_DISABLE:
1522 		task_set_spec_ssb_disable(task);
1523 		task_clear_spec_ssb_noexec(task);
1524 		task_update_spec_tif(task);
1525 		break;
1526 	case PR_SPEC_FORCE_DISABLE:
1527 		task_set_spec_ssb_disable(task);
1528 		task_set_spec_ssb_force_disable(task);
1529 		task_clear_spec_ssb_noexec(task);
1530 		task_update_spec_tif(task);
1531 		break;
1532 	case PR_SPEC_DISABLE_NOEXEC:
1533 		if (task_spec_ssb_force_disable(task))
1534 			return -EPERM;
1535 		task_set_spec_ssb_disable(task);
1536 		task_set_spec_ssb_noexec(task);
1537 		task_update_spec_tif(task);
1538 		break;
1539 	default:
1540 		return -ERANGE;
1541 	}
1542 	return 0;
1543 }
1544 
1545 static bool is_spec_ib_user_controlled(void)
1546 {
1547 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1548 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1549 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1550 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1551 }
1552 
1553 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1554 {
1555 	switch (ctrl) {
1556 	case PR_SPEC_ENABLE:
1557 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1558 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1559 			return 0;
1560 
1561 		/*
1562 		 * With strict mode for both IBPB and STIBP, the instruction
1563 		 * code paths avoid checking this task flag and instead,
1564 		 * unconditionally run the instruction. However, STIBP and IBPB
1565 		 * are independent and either can be set to conditionally
1566 		 * enabled regardless of the mode of the other.
1567 		 *
1568 		 * If either is set to conditional, allow the task flag to be
1569 		 * updated, unless it was force-disabled by a previous prctl
1570 		 * call. Currently, this is possible on an AMD CPU which has the
1571 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1572 		 * kernel is booted with 'spectre_v2_user=seccomp', then
1573 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1574 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1575 		 */
1576 		if (!is_spec_ib_user_controlled() ||
1577 		    task_spec_ib_force_disable(task))
1578 			return -EPERM;
1579 
1580 		task_clear_spec_ib_disable(task);
1581 		task_update_spec_tif(task);
1582 		break;
1583 	case PR_SPEC_DISABLE:
1584 	case PR_SPEC_FORCE_DISABLE:
1585 		/*
1586 		 * Indirect branch speculation is always allowed when
1587 		 * mitigation is force disabled.
1588 		 */
1589 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1590 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1591 			return -EPERM;
1592 
1593 		if (!is_spec_ib_user_controlled())
1594 			return 0;
1595 
1596 		task_set_spec_ib_disable(task);
1597 		if (ctrl == PR_SPEC_FORCE_DISABLE)
1598 			task_set_spec_ib_force_disable(task);
1599 		task_update_spec_tif(task);
1600 		break;
1601 	default:
1602 		return -ERANGE;
1603 	}
1604 	return 0;
1605 }
1606 
1607 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1608 			     unsigned long ctrl)
1609 {
1610 	switch (which) {
1611 	case PR_SPEC_STORE_BYPASS:
1612 		return ssb_prctl_set(task, ctrl);
1613 	case PR_SPEC_INDIRECT_BRANCH:
1614 		return ib_prctl_set(task, ctrl);
1615 	case PR_SPEC_L1D_FLUSH:
1616 		return l1d_flush_prctl_set(task, ctrl);
1617 	default:
1618 		return -ENODEV;
1619 	}
1620 }
1621 
1622 #ifdef CONFIG_SECCOMP
1623 void arch_seccomp_spec_mitigate(struct task_struct *task)
1624 {
1625 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1626 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1627 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1628 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1629 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1630 }
1631 #endif
1632 
1633 static int l1d_flush_prctl_get(struct task_struct *task)
1634 {
1635 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1636 		return PR_SPEC_FORCE_DISABLE;
1637 
1638 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1639 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1640 	else
1641 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1642 }
1643 
1644 static int ssb_prctl_get(struct task_struct *task)
1645 {
1646 	switch (ssb_mode) {
1647 	case SPEC_STORE_BYPASS_DISABLE:
1648 		return PR_SPEC_DISABLE;
1649 	case SPEC_STORE_BYPASS_SECCOMP:
1650 	case SPEC_STORE_BYPASS_PRCTL:
1651 		if (task_spec_ssb_force_disable(task))
1652 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1653 		if (task_spec_ssb_noexec(task))
1654 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1655 		if (task_spec_ssb_disable(task))
1656 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1657 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1658 	default:
1659 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1660 			return PR_SPEC_ENABLE;
1661 		return PR_SPEC_NOT_AFFECTED;
1662 	}
1663 }
1664 
1665 static int ib_prctl_get(struct task_struct *task)
1666 {
1667 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1668 		return PR_SPEC_NOT_AFFECTED;
1669 
1670 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1671 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1672 		return PR_SPEC_ENABLE;
1673 	else if (is_spec_ib_user_controlled()) {
1674 		if (task_spec_ib_force_disable(task))
1675 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1676 		if (task_spec_ib_disable(task))
1677 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1678 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1679 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1680 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1681 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1682 		return PR_SPEC_DISABLE;
1683 	else
1684 		return PR_SPEC_NOT_AFFECTED;
1685 }
1686 
1687 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1688 {
1689 	switch (which) {
1690 	case PR_SPEC_STORE_BYPASS:
1691 		return ssb_prctl_get(task);
1692 	case PR_SPEC_INDIRECT_BRANCH:
1693 		return ib_prctl_get(task);
1694 	case PR_SPEC_L1D_FLUSH:
1695 		return l1d_flush_prctl_get(task);
1696 	default:
1697 		return -ENODEV;
1698 	}
1699 }
1700 
1701 void x86_spec_ctrl_setup_ap(void)
1702 {
1703 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1704 		wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1705 
1706 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1707 		x86_amd_ssb_disable();
1708 }
1709 
1710 bool itlb_multihit_kvm_mitigation;
1711 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1712 
1713 #undef pr_fmt
1714 #define pr_fmt(fmt)	"L1TF: " fmt
1715 
1716 /* Default mitigation for L1TF-affected CPUs */
1717 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1718 #if IS_ENABLED(CONFIG_KVM_INTEL)
1719 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1720 #endif
1721 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1722 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1723 
1724 /*
1725  * These CPUs all support 44bits physical address space internally in the
1726  * cache but CPUID can report a smaller number of physical address bits.
1727  *
1728  * The L1TF mitigation uses the top most address bit for the inversion of
1729  * non present PTEs. When the installed memory reaches into the top most
1730  * address bit due to memory holes, which has been observed on machines
1731  * which report 36bits physical address bits and have 32G RAM installed,
1732  * then the mitigation range check in l1tf_select_mitigation() triggers.
1733  * This is a false positive because the mitigation is still possible due to
1734  * the fact that the cache uses 44bit internally. Use the cache bits
1735  * instead of the reported physical bits and adjust them on the affected
1736  * machines to 44bit if the reported bits are less than 44.
1737  */
1738 static void override_cache_bits(struct cpuinfo_x86 *c)
1739 {
1740 	if (c->x86 != 6)
1741 		return;
1742 
1743 	switch (c->x86_model) {
1744 	case INTEL_FAM6_NEHALEM:
1745 	case INTEL_FAM6_WESTMERE:
1746 	case INTEL_FAM6_SANDYBRIDGE:
1747 	case INTEL_FAM6_IVYBRIDGE:
1748 	case INTEL_FAM6_HASWELL:
1749 	case INTEL_FAM6_HASWELL_L:
1750 	case INTEL_FAM6_HASWELL_G:
1751 	case INTEL_FAM6_BROADWELL:
1752 	case INTEL_FAM6_BROADWELL_G:
1753 	case INTEL_FAM6_SKYLAKE_L:
1754 	case INTEL_FAM6_SKYLAKE:
1755 	case INTEL_FAM6_KABYLAKE_L:
1756 	case INTEL_FAM6_KABYLAKE:
1757 		if (c->x86_cache_bits < 44)
1758 			c->x86_cache_bits = 44;
1759 		break;
1760 	}
1761 }
1762 
1763 static void __init l1tf_select_mitigation(void)
1764 {
1765 	u64 half_pa;
1766 
1767 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
1768 		return;
1769 
1770 	if (cpu_mitigations_off())
1771 		l1tf_mitigation = L1TF_MITIGATION_OFF;
1772 	else if (cpu_mitigations_auto_nosmt())
1773 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1774 
1775 	override_cache_bits(&boot_cpu_data);
1776 
1777 	switch (l1tf_mitigation) {
1778 	case L1TF_MITIGATION_OFF:
1779 	case L1TF_MITIGATION_FLUSH_NOWARN:
1780 	case L1TF_MITIGATION_FLUSH:
1781 		break;
1782 	case L1TF_MITIGATION_FLUSH_NOSMT:
1783 	case L1TF_MITIGATION_FULL:
1784 		cpu_smt_disable(false);
1785 		break;
1786 	case L1TF_MITIGATION_FULL_FORCE:
1787 		cpu_smt_disable(true);
1788 		break;
1789 	}
1790 
1791 #if CONFIG_PGTABLE_LEVELS == 2
1792 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1793 	return;
1794 #endif
1795 
1796 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1797 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1798 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1799 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1800 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1801 				half_pa);
1802 		pr_info("However, doing so will make a part of your RAM unusable.\n");
1803 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1804 		return;
1805 	}
1806 
1807 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1808 }
1809 
1810 static int __init l1tf_cmdline(char *str)
1811 {
1812 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
1813 		return 0;
1814 
1815 	if (!str)
1816 		return -EINVAL;
1817 
1818 	if (!strcmp(str, "off"))
1819 		l1tf_mitigation = L1TF_MITIGATION_OFF;
1820 	else if (!strcmp(str, "flush,nowarn"))
1821 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1822 	else if (!strcmp(str, "flush"))
1823 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1824 	else if (!strcmp(str, "flush,nosmt"))
1825 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1826 	else if (!strcmp(str, "full"))
1827 		l1tf_mitigation = L1TF_MITIGATION_FULL;
1828 	else if (!strcmp(str, "full,force"))
1829 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1830 
1831 	return 0;
1832 }
1833 early_param("l1tf", l1tf_cmdline);
1834 
1835 #undef pr_fmt
1836 #define pr_fmt(fmt) fmt
1837 
1838 #ifdef CONFIG_SYSFS
1839 
1840 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1841 
1842 #if IS_ENABLED(CONFIG_KVM_INTEL)
1843 static const char * const l1tf_vmx_states[] = {
1844 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
1845 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
1846 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
1847 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
1848 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
1849 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
1850 };
1851 
1852 static ssize_t l1tf_show_state(char *buf)
1853 {
1854 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1855 		return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1856 
1857 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1858 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1859 	     sched_smt_active())) {
1860 		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1861 			       l1tf_vmx_states[l1tf_vmx_mitigation]);
1862 	}
1863 
1864 	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1865 		       l1tf_vmx_states[l1tf_vmx_mitigation],
1866 		       sched_smt_active() ? "vulnerable" : "disabled");
1867 }
1868 
1869 static ssize_t itlb_multihit_show_state(char *buf)
1870 {
1871 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1872 	    !boot_cpu_has(X86_FEATURE_VMX))
1873 		return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1874 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1875 		return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1876 	else if (itlb_multihit_kvm_mitigation)
1877 		return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1878 	else
1879 		return sprintf(buf, "KVM: Vulnerable\n");
1880 }
1881 #else
1882 static ssize_t l1tf_show_state(char *buf)
1883 {
1884 	return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1885 }
1886 
1887 static ssize_t itlb_multihit_show_state(char *buf)
1888 {
1889 	return sprintf(buf, "Processor vulnerable\n");
1890 }
1891 #endif
1892 
1893 static ssize_t mds_show_state(char *buf)
1894 {
1895 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1896 		return sprintf(buf, "%s; SMT Host state unknown\n",
1897 			       mds_strings[mds_mitigation]);
1898 	}
1899 
1900 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1901 		return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1902 			       (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1903 			        sched_smt_active() ? "mitigated" : "disabled"));
1904 	}
1905 
1906 	return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1907 		       sched_smt_active() ? "vulnerable" : "disabled");
1908 }
1909 
1910 static ssize_t tsx_async_abort_show_state(char *buf)
1911 {
1912 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1913 	    (taa_mitigation == TAA_MITIGATION_OFF))
1914 		return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1915 
1916 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1917 		return sprintf(buf, "%s; SMT Host state unknown\n",
1918 			       taa_strings[taa_mitigation]);
1919 	}
1920 
1921 	return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1922 		       sched_smt_active() ? "vulnerable" : "disabled");
1923 }
1924 
1925 static ssize_t mmio_stale_data_show_state(char *buf)
1926 {
1927 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
1928 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
1929 
1930 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1931 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
1932 				  mmio_strings[mmio_mitigation]);
1933 	}
1934 
1935 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
1936 			  sched_smt_active() ? "vulnerable" : "disabled");
1937 }
1938 
1939 static char *stibp_state(void)
1940 {
1941 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1942 		return "";
1943 
1944 	switch (spectre_v2_user_stibp) {
1945 	case SPECTRE_V2_USER_NONE:
1946 		return ", STIBP: disabled";
1947 	case SPECTRE_V2_USER_STRICT:
1948 		return ", STIBP: forced";
1949 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1950 		return ", STIBP: always-on";
1951 	case SPECTRE_V2_USER_PRCTL:
1952 	case SPECTRE_V2_USER_SECCOMP:
1953 		if (static_key_enabled(&switch_to_cond_stibp))
1954 			return ", STIBP: conditional";
1955 	}
1956 	return "";
1957 }
1958 
1959 static char *ibpb_state(void)
1960 {
1961 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1962 		if (static_key_enabled(&switch_mm_always_ibpb))
1963 			return ", IBPB: always-on";
1964 		if (static_key_enabled(&switch_mm_cond_ibpb))
1965 			return ", IBPB: conditional";
1966 		return ", IBPB: disabled";
1967 	}
1968 	return "";
1969 }
1970 
1971 static ssize_t spectre_v2_show_state(char *buf)
1972 {
1973 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
1974 		return sprintf(buf, "Vulnerable: LFENCE\n");
1975 
1976 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1977 		return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
1978 
1979 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1980 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1981 		return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
1982 
1983 	return sprintf(buf, "%s%s%s%s%s%s\n",
1984 		       spectre_v2_strings[spectre_v2_enabled],
1985 		       ibpb_state(),
1986 		       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1987 		       stibp_state(),
1988 		       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1989 		       spectre_v2_module_string());
1990 }
1991 
1992 static ssize_t srbds_show_state(char *buf)
1993 {
1994 	return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1995 }
1996 
1997 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1998 			       char *buf, unsigned int bug)
1999 {
2000 	if (!boot_cpu_has_bug(bug))
2001 		return sprintf(buf, "Not affected\n");
2002 
2003 	switch (bug) {
2004 	case X86_BUG_CPU_MELTDOWN:
2005 		if (boot_cpu_has(X86_FEATURE_PTI))
2006 			return sprintf(buf, "Mitigation: PTI\n");
2007 
2008 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2009 			return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2010 
2011 		break;
2012 
2013 	case X86_BUG_SPECTRE_V1:
2014 		return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2015 
2016 	case X86_BUG_SPECTRE_V2:
2017 		return spectre_v2_show_state(buf);
2018 
2019 	case X86_BUG_SPEC_STORE_BYPASS:
2020 		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2021 
2022 	case X86_BUG_L1TF:
2023 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2024 			return l1tf_show_state(buf);
2025 		break;
2026 
2027 	case X86_BUG_MDS:
2028 		return mds_show_state(buf);
2029 
2030 	case X86_BUG_TAA:
2031 		return tsx_async_abort_show_state(buf);
2032 
2033 	case X86_BUG_ITLB_MULTIHIT:
2034 		return itlb_multihit_show_state(buf);
2035 
2036 	case X86_BUG_SRBDS:
2037 		return srbds_show_state(buf);
2038 
2039 	case X86_BUG_MMIO_STALE_DATA:
2040 		return mmio_stale_data_show_state(buf);
2041 
2042 	default:
2043 		break;
2044 	}
2045 
2046 	return sprintf(buf, "Vulnerable\n");
2047 }
2048 
2049 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2050 {
2051 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2052 }
2053 
2054 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2055 {
2056 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2057 }
2058 
2059 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2060 {
2061 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2062 }
2063 
2064 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2065 {
2066 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2067 }
2068 
2069 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2070 {
2071 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2072 }
2073 
2074 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2075 {
2076 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2077 }
2078 
2079 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2080 {
2081 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2082 }
2083 
2084 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2085 {
2086 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2087 }
2088 
2089 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2090 {
2091 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2092 }
2093 
2094 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2095 {
2096 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2097 }
2098 #endif
2099