xref: /openbmc/linux/arch/x86/kernel/cpu/bugs.c (revision 9fa48a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20 
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cpu.h>
37 
38 #include "cpu.h"
39 
40 static void __init spectre_v1_select_mitigation(void);
41 static void __init spectre_v2_select_mitigation(void);
42 static void __init retbleed_select_mitigation(void);
43 static void __init spectre_v2_user_select_mitigation(void);
44 static void __init ssb_select_mitigation(void);
45 static void __init l1tf_select_mitigation(void);
46 static void __init mds_select_mitigation(void);
47 static void __init md_clear_update_mitigation(void);
48 static void __init md_clear_select_mitigation(void);
49 static void __init taa_select_mitigation(void);
50 static void __init mmio_select_mitigation(void);
51 static void __init srbds_select_mitigation(void);
52 static void __init l1d_flush_select_mitigation(void);
53 
54 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
55 u64 x86_spec_ctrl_base;
56 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
57 
58 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
59 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
60 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
61 
62 static DEFINE_MUTEX(spec_ctrl_mutex);
63 
64 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
65 static void update_spec_ctrl(u64 val)
66 {
67 	this_cpu_write(x86_spec_ctrl_current, val);
68 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
69 }
70 
71 /*
72  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
73  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
74  */
75 void update_spec_ctrl_cond(u64 val)
76 {
77 	if (this_cpu_read(x86_spec_ctrl_current) == val)
78 		return;
79 
80 	this_cpu_write(x86_spec_ctrl_current, val);
81 
82 	/*
83 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
84 	 * forced the update can be delayed until that time.
85 	 */
86 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
87 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
88 }
89 
90 noinstr u64 spec_ctrl_current(void)
91 {
92 	return this_cpu_read(x86_spec_ctrl_current);
93 }
94 EXPORT_SYMBOL_GPL(spec_ctrl_current);
95 
96 /*
97  * AMD specific MSR info for Speculative Store Bypass control.
98  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
99  */
100 u64 __ro_after_init x86_amd_ls_cfg_base;
101 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
102 
103 /* Control conditional STIBP in switch_to() */
104 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
105 /* Control conditional IBPB in switch_mm() */
106 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
107 /* Control unconditional IBPB in switch_mm() */
108 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
109 
110 /* Control MDS CPU buffer clear before returning to user space */
111 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
112 EXPORT_SYMBOL_GPL(mds_user_clear);
113 /* Control MDS CPU buffer clear before idling (halt, mwait) */
114 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
115 EXPORT_SYMBOL_GPL(mds_idle_clear);
116 
117 /*
118  * Controls whether l1d flush based mitigations are enabled,
119  * based on hw features and admin setting via boot parameter
120  * defaults to false
121  */
122 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
123 
124 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
125 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
126 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
127 
128 void __init check_bugs(void)
129 {
130 	identify_boot_cpu();
131 
132 	/*
133 	 * identify_boot_cpu() initialized SMT support information, let the
134 	 * core code know.
135 	 */
136 	cpu_smt_check_topology();
137 
138 	if (!IS_ENABLED(CONFIG_SMP)) {
139 		pr_info("CPU: ");
140 		print_cpu_info(&boot_cpu_data);
141 	}
142 
143 	/*
144 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
145 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
146 	 * init code as it is not enumerated and depends on the family.
147 	 */
148 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
149 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
150 
151 		/*
152 		 * Previously running kernel (kexec), may have some controls
153 		 * turned ON. Clear them and let the mitigations setup below
154 		 * rediscover them based on configuration.
155 		 */
156 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
157 	}
158 
159 	/* Select the proper CPU mitigations before patching alternatives: */
160 	spectre_v1_select_mitigation();
161 	spectre_v2_select_mitigation();
162 	/*
163 	 * retbleed_select_mitigation() relies on the state set by
164 	 * spectre_v2_select_mitigation(); specifically it wants to know about
165 	 * spectre_v2=ibrs.
166 	 */
167 	retbleed_select_mitigation();
168 	/*
169 	 * spectre_v2_user_select_mitigation() relies on the state set by
170 	 * retbleed_select_mitigation(); specifically the STIBP selection is
171 	 * forced for UNRET or IBPB.
172 	 */
173 	spectre_v2_user_select_mitigation();
174 	ssb_select_mitigation();
175 	l1tf_select_mitigation();
176 	md_clear_select_mitigation();
177 	srbds_select_mitigation();
178 	l1d_flush_select_mitigation();
179 
180 	arch_smt_update();
181 
182 #ifdef CONFIG_X86_32
183 	/*
184 	 * Check whether we are able to run this kernel safely on SMP.
185 	 *
186 	 * - i386 is no longer supported.
187 	 * - In order to run on anything without a TSC, we need to be
188 	 *   compiled for a i486.
189 	 */
190 	if (boot_cpu_data.x86 < 4)
191 		panic("Kernel requires i486+ for 'invlpg' and other features");
192 
193 	init_utsname()->machine[1] =
194 		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
195 	alternative_instructions();
196 
197 	fpu__init_check_bugs();
198 #else /* CONFIG_X86_64 */
199 	alternative_instructions();
200 
201 	/*
202 	 * Make sure the first 2MB area is not mapped by huge pages
203 	 * There are typically fixed size MTRRs in there and overlapping
204 	 * MTRRs into large pages causes slow downs.
205 	 *
206 	 * Right now we don't do that with gbpages because there seems
207 	 * very little benefit for that case.
208 	 */
209 	if (!direct_gbpages)
210 		set_memory_4k((unsigned long)__va(0), 1);
211 #endif
212 }
213 
214 /*
215  * NOTE: This function is *only* called for SVM, since Intel uses
216  * MSR_IA32_SPEC_CTRL for SSBD.
217  */
218 void
219 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
220 {
221 	u64 guestval, hostval;
222 	struct thread_info *ti = current_thread_info();
223 
224 	/*
225 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
226 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
227 	 */
228 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
229 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
230 		return;
231 
232 	/*
233 	 * If the host has SSBD mitigation enabled, force it in the host's
234 	 * virtual MSR value. If its not permanently enabled, evaluate
235 	 * current's TIF_SSBD thread flag.
236 	 */
237 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
238 		hostval = SPEC_CTRL_SSBD;
239 	else
240 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
241 
242 	/* Sanitize the guest value */
243 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
244 
245 	if (hostval != guestval) {
246 		unsigned long tif;
247 
248 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
249 				 ssbd_spec_ctrl_to_tif(hostval);
250 
251 		speculation_ctrl_update(tif);
252 	}
253 }
254 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
255 
256 static void x86_amd_ssb_disable(void)
257 {
258 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
259 
260 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
261 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
262 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
263 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
264 }
265 
266 #undef pr_fmt
267 #define pr_fmt(fmt)	"MDS: " fmt
268 
269 /* Default mitigation for MDS-affected CPUs */
270 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
271 static bool mds_nosmt __ro_after_init = false;
272 
273 static const char * const mds_strings[] = {
274 	[MDS_MITIGATION_OFF]	= "Vulnerable",
275 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
276 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
277 };
278 
279 static void __init mds_select_mitigation(void)
280 {
281 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
282 		mds_mitigation = MDS_MITIGATION_OFF;
283 		return;
284 	}
285 
286 	if (mds_mitigation == MDS_MITIGATION_FULL) {
287 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
288 			mds_mitigation = MDS_MITIGATION_VMWERV;
289 
290 		static_branch_enable(&mds_user_clear);
291 
292 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
293 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
294 			cpu_smt_disable(false);
295 	}
296 }
297 
298 static int __init mds_cmdline(char *str)
299 {
300 	if (!boot_cpu_has_bug(X86_BUG_MDS))
301 		return 0;
302 
303 	if (!str)
304 		return -EINVAL;
305 
306 	if (!strcmp(str, "off"))
307 		mds_mitigation = MDS_MITIGATION_OFF;
308 	else if (!strcmp(str, "full"))
309 		mds_mitigation = MDS_MITIGATION_FULL;
310 	else if (!strcmp(str, "full,nosmt")) {
311 		mds_mitigation = MDS_MITIGATION_FULL;
312 		mds_nosmt = true;
313 	}
314 
315 	return 0;
316 }
317 early_param("mds", mds_cmdline);
318 
319 #undef pr_fmt
320 #define pr_fmt(fmt)	"TAA: " fmt
321 
322 enum taa_mitigations {
323 	TAA_MITIGATION_OFF,
324 	TAA_MITIGATION_UCODE_NEEDED,
325 	TAA_MITIGATION_VERW,
326 	TAA_MITIGATION_TSX_DISABLED,
327 };
328 
329 /* Default mitigation for TAA-affected CPUs */
330 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
331 static bool taa_nosmt __ro_after_init;
332 
333 static const char * const taa_strings[] = {
334 	[TAA_MITIGATION_OFF]		= "Vulnerable",
335 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
336 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
337 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
338 };
339 
340 static void __init taa_select_mitigation(void)
341 {
342 	u64 ia32_cap;
343 
344 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
345 		taa_mitigation = TAA_MITIGATION_OFF;
346 		return;
347 	}
348 
349 	/* TSX previously disabled by tsx=off */
350 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
351 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
352 		return;
353 	}
354 
355 	if (cpu_mitigations_off()) {
356 		taa_mitigation = TAA_MITIGATION_OFF;
357 		return;
358 	}
359 
360 	/*
361 	 * TAA mitigation via VERW is turned off if both
362 	 * tsx_async_abort=off and mds=off are specified.
363 	 */
364 	if (taa_mitigation == TAA_MITIGATION_OFF &&
365 	    mds_mitigation == MDS_MITIGATION_OFF)
366 		return;
367 
368 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
369 		taa_mitigation = TAA_MITIGATION_VERW;
370 	else
371 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
372 
373 	/*
374 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
375 	 * A microcode update fixes this behavior to clear CPU buffers. It also
376 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
377 	 * ARCH_CAP_TSX_CTRL_MSR bit.
378 	 *
379 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
380 	 * update is required.
381 	 */
382 	ia32_cap = x86_read_arch_cap_msr();
383 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
384 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
385 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
386 
387 	/*
388 	 * TSX is enabled, select alternate mitigation for TAA which is
389 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
390 	 *
391 	 * For guests that can't determine whether the correct microcode is
392 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
393 	 */
394 	static_branch_enable(&mds_user_clear);
395 
396 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
397 		cpu_smt_disable(false);
398 }
399 
400 static int __init tsx_async_abort_parse_cmdline(char *str)
401 {
402 	if (!boot_cpu_has_bug(X86_BUG_TAA))
403 		return 0;
404 
405 	if (!str)
406 		return -EINVAL;
407 
408 	if (!strcmp(str, "off")) {
409 		taa_mitigation = TAA_MITIGATION_OFF;
410 	} else if (!strcmp(str, "full")) {
411 		taa_mitigation = TAA_MITIGATION_VERW;
412 	} else if (!strcmp(str, "full,nosmt")) {
413 		taa_mitigation = TAA_MITIGATION_VERW;
414 		taa_nosmt = true;
415 	}
416 
417 	return 0;
418 }
419 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
420 
421 #undef pr_fmt
422 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
423 
424 enum mmio_mitigations {
425 	MMIO_MITIGATION_OFF,
426 	MMIO_MITIGATION_UCODE_NEEDED,
427 	MMIO_MITIGATION_VERW,
428 };
429 
430 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
431 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
432 static bool mmio_nosmt __ro_after_init = false;
433 
434 static const char * const mmio_strings[] = {
435 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
436 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
437 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
438 };
439 
440 static void __init mmio_select_mitigation(void)
441 {
442 	u64 ia32_cap;
443 
444 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
445 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
446 	     cpu_mitigations_off()) {
447 		mmio_mitigation = MMIO_MITIGATION_OFF;
448 		return;
449 	}
450 
451 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
452 		return;
453 
454 	ia32_cap = x86_read_arch_cap_msr();
455 
456 	/*
457 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
458 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
459 	 */
460 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
461 					      boot_cpu_has(X86_FEATURE_RTM)))
462 		static_branch_enable(&mds_user_clear);
463 	else
464 		static_branch_enable(&mmio_stale_data_clear);
465 
466 	/*
467 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
468 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
469 	 * is required irrespective of SMT state.
470 	 */
471 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
472 		static_branch_enable(&mds_idle_clear);
473 
474 	/*
475 	 * Check if the system has the right microcode.
476 	 *
477 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
478 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
479 	 * affected systems.
480 	 */
481 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
482 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
483 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
484 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
485 		mmio_mitigation = MMIO_MITIGATION_VERW;
486 	else
487 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
488 
489 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
490 		cpu_smt_disable(false);
491 }
492 
493 static int __init mmio_stale_data_parse_cmdline(char *str)
494 {
495 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
496 		return 0;
497 
498 	if (!str)
499 		return -EINVAL;
500 
501 	if (!strcmp(str, "off")) {
502 		mmio_mitigation = MMIO_MITIGATION_OFF;
503 	} else if (!strcmp(str, "full")) {
504 		mmio_mitigation = MMIO_MITIGATION_VERW;
505 	} else if (!strcmp(str, "full,nosmt")) {
506 		mmio_mitigation = MMIO_MITIGATION_VERW;
507 		mmio_nosmt = true;
508 	}
509 
510 	return 0;
511 }
512 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
513 
514 #undef pr_fmt
515 #define pr_fmt(fmt)     "" fmt
516 
517 static void __init md_clear_update_mitigation(void)
518 {
519 	if (cpu_mitigations_off())
520 		return;
521 
522 	if (!static_key_enabled(&mds_user_clear))
523 		goto out;
524 
525 	/*
526 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
527 	 * mitigation, if necessary.
528 	 */
529 	if (mds_mitigation == MDS_MITIGATION_OFF &&
530 	    boot_cpu_has_bug(X86_BUG_MDS)) {
531 		mds_mitigation = MDS_MITIGATION_FULL;
532 		mds_select_mitigation();
533 	}
534 	if (taa_mitigation == TAA_MITIGATION_OFF &&
535 	    boot_cpu_has_bug(X86_BUG_TAA)) {
536 		taa_mitigation = TAA_MITIGATION_VERW;
537 		taa_select_mitigation();
538 	}
539 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
540 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
541 		mmio_mitigation = MMIO_MITIGATION_VERW;
542 		mmio_select_mitigation();
543 	}
544 out:
545 	if (boot_cpu_has_bug(X86_BUG_MDS))
546 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
547 	if (boot_cpu_has_bug(X86_BUG_TAA))
548 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
549 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
550 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
551 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
552 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
553 }
554 
555 static void __init md_clear_select_mitigation(void)
556 {
557 	mds_select_mitigation();
558 	taa_select_mitigation();
559 	mmio_select_mitigation();
560 
561 	/*
562 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
563 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
564 	 * mitigation selection is done.
565 	 */
566 	md_clear_update_mitigation();
567 }
568 
569 #undef pr_fmt
570 #define pr_fmt(fmt)	"SRBDS: " fmt
571 
572 enum srbds_mitigations {
573 	SRBDS_MITIGATION_OFF,
574 	SRBDS_MITIGATION_UCODE_NEEDED,
575 	SRBDS_MITIGATION_FULL,
576 	SRBDS_MITIGATION_TSX_OFF,
577 	SRBDS_MITIGATION_HYPERVISOR,
578 };
579 
580 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
581 
582 static const char * const srbds_strings[] = {
583 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
584 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
585 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
586 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
587 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
588 };
589 
590 static bool srbds_off;
591 
592 void update_srbds_msr(void)
593 {
594 	u64 mcu_ctrl;
595 
596 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
597 		return;
598 
599 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
600 		return;
601 
602 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
603 		return;
604 
605 	/*
606 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
607 	 * being disabled and it hasn't received the SRBDS MSR microcode.
608 	 */
609 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
610 		return;
611 
612 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
613 
614 	switch (srbds_mitigation) {
615 	case SRBDS_MITIGATION_OFF:
616 	case SRBDS_MITIGATION_TSX_OFF:
617 		mcu_ctrl |= RNGDS_MITG_DIS;
618 		break;
619 	case SRBDS_MITIGATION_FULL:
620 		mcu_ctrl &= ~RNGDS_MITG_DIS;
621 		break;
622 	default:
623 		break;
624 	}
625 
626 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
627 }
628 
629 static void __init srbds_select_mitigation(void)
630 {
631 	u64 ia32_cap;
632 
633 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
634 		return;
635 
636 	/*
637 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
638 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
639 	 * by Processor MMIO Stale Data vulnerability.
640 	 */
641 	ia32_cap = x86_read_arch_cap_msr();
642 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
643 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
644 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
645 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
646 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
647 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
648 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
649 	else if (cpu_mitigations_off() || srbds_off)
650 		srbds_mitigation = SRBDS_MITIGATION_OFF;
651 
652 	update_srbds_msr();
653 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
654 }
655 
656 static int __init srbds_parse_cmdline(char *str)
657 {
658 	if (!str)
659 		return -EINVAL;
660 
661 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
662 		return 0;
663 
664 	srbds_off = !strcmp(str, "off");
665 	return 0;
666 }
667 early_param("srbds", srbds_parse_cmdline);
668 
669 #undef pr_fmt
670 #define pr_fmt(fmt)     "L1D Flush : " fmt
671 
672 enum l1d_flush_mitigations {
673 	L1D_FLUSH_OFF = 0,
674 	L1D_FLUSH_ON,
675 };
676 
677 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
678 
679 static void __init l1d_flush_select_mitigation(void)
680 {
681 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
682 		return;
683 
684 	static_branch_enable(&switch_mm_cond_l1d_flush);
685 	pr_info("Conditional flush on switch_mm() enabled\n");
686 }
687 
688 static int __init l1d_flush_parse_cmdline(char *str)
689 {
690 	if (!strcmp(str, "on"))
691 		l1d_flush_mitigation = L1D_FLUSH_ON;
692 
693 	return 0;
694 }
695 early_param("l1d_flush", l1d_flush_parse_cmdline);
696 
697 #undef pr_fmt
698 #define pr_fmt(fmt)     "Spectre V1 : " fmt
699 
700 enum spectre_v1_mitigation {
701 	SPECTRE_V1_MITIGATION_NONE,
702 	SPECTRE_V1_MITIGATION_AUTO,
703 };
704 
705 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
706 	SPECTRE_V1_MITIGATION_AUTO;
707 
708 static const char * const spectre_v1_strings[] = {
709 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
710 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
711 };
712 
713 /*
714  * Does SMAP provide full mitigation against speculative kernel access to
715  * userspace?
716  */
717 static bool smap_works_speculatively(void)
718 {
719 	if (!boot_cpu_has(X86_FEATURE_SMAP))
720 		return false;
721 
722 	/*
723 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
724 	 * prevent speculative access to user data in the L1 cache.
725 	 * Consider SMAP to be non-functional as a mitigation on these
726 	 * CPUs.
727 	 */
728 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
729 		return false;
730 
731 	return true;
732 }
733 
734 static void __init spectre_v1_select_mitigation(void)
735 {
736 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
737 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
738 		return;
739 	}
740 
741 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
742 		/*
743 		 * With Spectre v1, a user can speculatively control either
744 		 * path of a conditional swapgs with a user-controlled GS
745 		 * value.  The mitigation is to add lfences to both code paths.
746 		 *
747 		 * If FSGSBASE is enabled, the user can put a kernel address in
748 		 * GS, in which case SMAP provides no protection.
749 		 *
750 		 * If FSGSBASE is disabled, the user can only put a user space
751 		 * address in GS.  That makes an attack harder, but still
752 		 * possible if there's no SMAP protection.
753 		 */
754 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
755 		    !smap_works_speculatively()) {
756 			/*
757 			 * Mitigation can be provided from SWAPGS itself or
758 			 * PTI as the CR3 write in the Meltdown mitigation
759 			 * is serializing.
760 			 *
761 			 * If neither is there, mitigate with an LFENCE to
762 			 * stop speculation through swapgs.
763 			 */
764 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
765 			    !boot_cpu_has(X86_FEATURE_PTI))
766 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
767 
768 			/*
769 			 * Enable lfences in the kernel entry (non-swapgs)
770 			 * paths, to prevent user entry from speculatively
771 			 * skipping swapgs.
772 			 */
773 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
774 		}
775 	}
776 
777 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
778 }
779 
780 static int __init nospectre_v1_cmdline(char *str)
781 {
782 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
783 	return 0;
784 }
785 early_param("nospectre_v1", nospectre_v1_cmdline);
786 
787 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
788 	SPECTRE_V2_NONE;
789 
790 #undef pr_fmt
791 #define pr_fmt(fmt)     "RETBleed: " fmt
792 
793 enum retbleed_mitigation {
794 	RETBLEED_MITIGATION_NONE,
795 	RETBLEED_MITIGATION_UNRET,
796 	RETBLEED_MITIGATION_IBPB,
797 	RETBLEED_MITIGATION_IBRS,
798 	RETBLEED_MITIGATION_EIBRS,
799 	RETBLEED_MITIGATION_STUFF,
800 };
801 
802 enum retbleed_mitigation_cmd {
803 	RETBLEED_CMD_OFF,
804 	RETBLEED_CMD_AUTO,
805 	RETBLEED_CMD_UNRET,
806 	RETBLEED_CMD_IBPB,
807 	RETBLEED_CMD_STUFF,
808 };
809 
810 static const char * const retbleed_strings[] = {
811 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
812 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
813 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
814 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
815 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
816 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
817 };
818 
819 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
820 	RETBLEED_MITIGATION_NONE;
821 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
822 	RETBLEED_CMD_AUTO;
823 
824 static int __ro_after_init retbleed_nosmt = false;
825 
826 static int __init retbleed_parse_cmdline(char *str)
827 {
828 	if (!str)
829 		return -EINVAL;
830 
831 	while (str) {
832 		char *next = strchr(str, ',');
833 		if (next) {
834 			*next = 0;
835 			next++;
836 		}
837 
838 		if (!strcmp(str, "off")) {
839 			retbleed_cmd = RETBLEED_CMD_OFF;
840 		} else if (!strcmp(str, "auto")) {
841 			retbleed_cmd = RETBLEED_CMD_AUTO;
842 		} else if (!strcmp(str, "unret")) {
843 			retbleed_cmd = RETBLEED_CMD_UNRET;
844 		} else if (!strcmp(str, "ibpb")) {
845 			retbleed_cmd = RETBLEED_CMD_IBPB;
846 		} else if (!strcmp(str, "stuff")) {
847 			retbleed_cmd = RETBLEED_CMD_STUFF;
848 		} else if (!strcmp(str, "nosmt")) {
849 			retbleed_nosmt = true;
850 		} else if (!strcmp(str, "force")) {
851 			setup_force_cpu_bug(X86_BUG_RETBLEED);
852 		} else {
853 			pr_err("Ignoring unknown retbleed option (%s).", str);
854 		}
855 
856 		str = next;
857 	}
858 
859 	return 0;
860 }
861 early_param("retbleed", retbleed_parse_cmdline);
862 
863 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
864 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
865 
866 static void __init retbleed_select_mitigation(void)
867 {
868 	bool mitigate_smt = false;
869 
870 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
871 		return;
872 
873 	switch (retbleed_cmd) {
874 	case RETBLEED_CMD_OFF:
875 		return;
876 
877 	case RETBLEED_CMD_UNRET:
878 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
879 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
880 		} else {
881 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
882 			goto do_cmd_auto;
883 		}
884 		break;
885 
886 	case RETBLEED_CMD_IBPB:
887 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
888 			pr_err("WARNING: CPU does not support IBPB.\n");
889 			goto do_cmd_auto;
890 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
891 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
892 		} else {
893 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
894 			goto do_cmd_auto;
895 		}
896 		break;
897 
898 	case RETBLEED_CMD_STUFF:
899 		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
900 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
901 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
902 
903 		} else {
904 			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
905 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
906 			else
907 				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
908 
909 			goto do_cmd_auto;
910 		}
911 		break;
912 
913 do_cmd_auto:
914 	case RETBLEED_CMD_AUTO:
915 	default:
916 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
917 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
918 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
919 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
920 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
921 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
922 		}
923 
924 		/*
925 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
926 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
927 		 * be set accordingly below.
928 		 */
929 
930 		break;
931 	}
932 
933 	switch (retbleed_mitigation) {
934 	case RETBLEED_MITIGATION_UNRET:
935 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
936 		setup_force_cpu_cap(X86_FEATURE_UNRET);
937 
938 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
939 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
940 			pr_err(RETBLEED_UNTRAIN_MSG);
941 
942 		mitigate_smt = true;
943 		break;
944 
945 	case RETBLEED_MITIGATION_IBPB:
946 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
947 		mitigate_smt = true;
948 		break;
949 
950 	case RETBLEED_MITIGATION_STUFF:
951 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
952 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
953 		x86_set_skl_return_thunk();
954 		break;
955 
956 	default:
957 		break;
958 	}
959 
960 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
961 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
962 		cpu_smt_disable(false);
963 
964 	/*
965 	 * Let IBRS trump all on Intel without affecting the effects of the
966 	 * retbleed= cmdline option except for call depth based stuffing
967 	 */
968 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
969 		switch (spectre_v2_enabled) {
970 		case SPECTRE_V2_IBRS:
971 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
972 			break;
973 		case SPECTRE_V2_EIBRS:
974 		case SPECTRE_V2_EIBRS_RETPOLINE:
975 		case SPECTRE_V2_EIBRS_LFENCE:
976 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
977 			break;
978 		default:
979 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
980 				pr_err(RETBLEED_INTEL_MSG);
981 		}
982 	}
983 
984 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
985 }
986 
987 #undef pr_fmt
988 #define pr_fmt(fmt)     "Spectre V2 : " fmt
989 
990 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
991 	SPECTRE_V2_USER_NONE;
992 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
993 	SPECTRE_V2_USER_NONE;
994 
995 #ifdef CONFIG_RETPOLINE
996 static bool spectre_v2_bad_module;
997 
998 bool retpoline_module_ok(bool has_retpoline)
999 {
1000 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1001 		return true;
1002 
1003 	pr_err("System may be vulnerable to spectre v2\n");
1004 	spectre_v2_bad_module = true;
1005 	return false;
1006 }
1007 
1008 static inline const char *spectre_v2_module_string(void)
1009 {
1010 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1011 }
1012 #else
1013 static inline const char *spectre_v2_module_string(void) { return ""; }
1014 #endif
1015 
1016 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1017 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1018 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1019 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1020 
1021 #ifdef CONFIG_BPF_SYSCALL
1022 void unpriv_ebpf_notify(int new_state)
1023 {
1024 	if (new_state)
1025 		return;
1026 
1027 	/* Unprivileged eBPF is enabled */
1028 
1029 	switch (spectre_v2_enabled) {
1030 	case SPECTRE_V2_EIBRS:
1031 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1032 		break;
1033 	case SPECTRE_V2_EIBRS_LFENCE:
1034 		if (sched_smt_active())
1035 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1036 		break;
1037 	default:
1038 		break;
1039 	}
1040 }
1041 #endif
1042 
1043 static inline bool match_option(const char *arg, int arglen, const char *opt)
1044 {
1045 	int len = strlen(opt);
1046 
1047 	return len == arglen && !strncmp(arg, opt, len);
1048 }
1049 
1050 /* The kernel command line selection for spectre v2 */
1051 enum spectre_v2_mitigation_cmd {
1052 	SPECTRE_V2_CMD_NONE,
1053 	SPECTRE_V2_CMD_AUTO,
1054 	SPECTRE_V2_CMD_FORCE,
1055 	SPECTRE_V2_CMD_RETPOLINE,
1056 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1057 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1058 	SPECTRE_V2_CMD_EIBRS,
1059 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1060 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1061 	SPECTRE_V2_CMD_IBRS,
1062 };
1063 
1064 enum spectre_v2_user_cmd {
1065 	SPECTRE_V2_USER_CMD_NONE,
1066 	SPECTRE_V2_USER_CMD_AUTO,
1067 	SPECTRE_V2_USER_CMD_FORCE,
1068 	SPECTRE_V2_USER_CMD_PRCTL,
1069 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1070 	SPECTRE_V2_USER_CMD_SECCOMP,
1071 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1072 };
1073 
1074 static const char * const spectre_v2_user_strings[] = {
1075 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1076 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1077 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1078 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1079 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1080 };
1081 
1082 static const struct {
1083 	const char			*option;
1084 	enum spectre_v2_user_cmd	cmd;
1085 	bool				secure;
1086 } v2_user_options[] __initconst = {
1087 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1088 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1089 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1090 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1091 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1092 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1093 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1094 };
1095 
1096 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1097 {
1098 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1099 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1100 }
1101 
1102 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1103 
1104 static enum spectre_v2_user_cmd __init
1105 spectre_v2_parse_user_cmdline(void)
1106 {
1107 	char arg[20];
1108 	int ret, i;
1109 
1110 	switch (spectre_v2_cmd) {
1111 	case SPECTRE_V2_CMD_NONE:
1112 		return SPECTRE_V2_USER_CMD_NONE;
1113 	case SPECTRE_V2_CMD_FORCE:
1114 		return SPECTRE_V2_USER_CMD_FORCE;
1115 	default:
1116 		break;
1117 	}
1118 
1119 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1120 				  arg, sizeof(arg));
1121 	if (ret < 0)
1122 		return SPECTRE_V2_USER_CMD_AUTO;
1123 
1124 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1125 		if (match_option(arg, ret, v2_user_options[i].option)) {
1126 			spec_v2_user_print_cond(v2_user_options[i].option,
1127 						v2_user_options[i].secure);
1128 			return v2_user_options[i].cmd;
1129 		}
1130 	}
1131 
1132 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1133 	return SPECTRE_V2_USER_CMD_AUTO;
1134 }
1135 
1136 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
1137 {
1138 	return mode == SPECTRE_V2_EIBRS ||
1139 	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1140 	       mode == SPECTRE_V2_EIBRS_LFENCE;
1141 }
1142 
1143 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1144 {
1145 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1146 }
1147 
1148 static void __init
1149 spectre_v2_user_select_mitigation(void)
1150 {
1151 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1152 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1153 	enum spectre_v2_user_cmd cmd;
1154 
1155 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1156 		return;
1157 
1158 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1159 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1160 		smt_possible = false;
1161 
1162 	cmd = spectre_v2_parse_user_cmdline();
1163 	switch (cmd) {
1164 	case SPECTRE_V2_USER_CMD_NONE:
1165 		goto set_mode;
1166 	case SPECTRE_V2_USER_CMD_FORCE:
1167 		mode = SPECTRE_V2_USER_STRICT;
1168 		break;
1169 	case SPECTRE_V2_USER_CMD_AUTO:
1170 	case SPECTRE_V2_USER_CMD_PRCTL:
1171 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1172 		mode = SPECTRE_V2_USER_PRCTL;
1173 		break;
1174 	case SPECTRE_V2_USER_CMD_SECCOMP:
1175 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1176 		if (IS_ENABLED(CONFIG_SECCOMP))
1177 			mode = SPECTRE_V2_USER_SECCOMP;
1178 		else
1179 			mode = SPECTRE_V2_USER_PRCTL;
1180 		break;
1181 	}
1182 
1183 	/* Initialize Indirect Branch Prediction Barrier */
1184 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1185 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1186 
1187 		spectre_v2_user_ibpb = mode;
1188 		switch (cmd) {
1189 		case SPECTRE_V2_USER_CMD_FORCE:
1190 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1191 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1192 			static_branch_enable(&switch_mm_always_ibpb);
1193 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1194 			break;
1195 		case SPECTRE_V2_USER_CMD_PRCTL:
1196 		case SPECTRE_V2_USER_CMD_AUTO:
1197 		case SPECTRE_V2_USER_CMD_SECCOMP:
1198 			static_branch_enable(&switch_mm_cond_ibpb);
1199 			break;
1200 		default:
1201 			break;
1202 		}
1203 
1204 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1205 			static_key_enabled(&switch_mm_always_ibpb) ?
1206 			"always-on" : "conditional");
1207 	}
1208 
1209 	/*
1210 	 * If no STIBP, enhanced IBRS is enabled, or SMT impossible, STIBP
1211 	 * is not required.
1212 	 *
1213 	 * Enhanced IBRS also protects against cross-thread branch target
1214 	 * injection in user-mode as the IBRS bit remains always set which
1215 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1216 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1217 	 * to userspace. This disables the implicit cross-thread protection,
1218 	 * so allow for STIBP to be selected in that case.
1219 	 */
1220 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1221 	    !smt_possible ||
1222 	    spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1223 		return;
1224 
1225 	/*
1226 	 * At this point, an STIBP mode other than "off" has been set.
1227 	 * If STIBP support is not being forced, check if STIBP always-on
1228 	 * is preferred.
1229 	 */
1230 	if (mode != SPECTRE_V2_USER_STRICT &&
1231 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1232 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1233 
1234 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1235 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1236 		if (mode != SPECTRE_V2_USER_STRICT &&
1237 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1238 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1239 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1240 	}
1241 
1242 	spectre_v2_user_stibp = mode;
1243 
1244 set_mode:
1245 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1246 }
1247 
1248 static const char * const spectre_v2_strings[] = {
1249 	[SPECTRE_V2_NONE]			= "Vulnerable",
1250 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1251 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1252 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1253 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1254 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1255 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1256 };
1257 
1258 static const struct {
1259 	const char *option;
1260 	enum spectre_v2_mitigation_cmd cmd;
1261 	bool secure;
1262 } mitigation_options[] __initconst = {
1263 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1264 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1265 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1266 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1267 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1268 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1269 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1270 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1271 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1272 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1273 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1274 };
1275 
1276 static void __init spec_v2_print_cond(const char *reason, bool secure)
1277 {
1278 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1279 		pr_info("%s selected on command line.\n", reason);
1280 }
1281 
1282 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1283 {
1284 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1285 	char arg[20];
1286 	int ret, i;
1287 
1288 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1289 	    cpu_mitigations_off())
1290 		return SPECTRE_V2_CMD_NONE;
1291 
1292 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1293 	if (ret < 0)
1294 		return SPECTRE_V2_CMD_AUTO;
1295 
1296 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1297 		if (!match_option(arg, ret, mitigation_options[i].option))
1298 			continue;
1299 		cmd = mitigation_options[i].cmd;
1300 		break;
1301 	}
1302 
1303 	if (i >= ARRAY_SIZE(mitigation_options)) {
1304 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1305 		return SPECTRE_V2_CMD_AUTO;
1306 	}
1307 
1308 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1309 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1310 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1311 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1312 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1313 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1314 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1315 		       mitigation_options[i].option);
1316 		return SPECTRE_V2_CMD_AUTO;
1317 	}
1318 
1319 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1320 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1321 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1322 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1323 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1324 		       mitigation_options[i].option);
1325 		return SPECTRE_V2_CMD_AUTO;
1326 	}
1327 
1328 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1329 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1330 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1331 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1332 		       mitigation_options[i].option);
1333 		return SPECTRE_V2_CMD_AUTO;
1334 	}
1335 
1336 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1337 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1338 		       mitigation_options[i].option);
1339 		return SPECTRE_V2_CMD_AUTO;
1340 	}
1341 
1342 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1343 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1344 		       mitigation_options[i].option);
1345 		return SPECTRE_V2_CMD_AUTO;
1346 	}
1347 
1348 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1349 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1350 		       mitigation_options[i].option);
1351 		return SPECTRE_V2_CMD_AUTO;
1352 	}
1353 
1354 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1355 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1356 		       mitigation_options[i].option);
1357 		return SPECTRE_V2_CMD_AUTO;
1358 	}
1359 
1360 	spec_v2_print_cond(mitigation_options[i].option,
1361 			   mitigation_options[i].secure);
1362 	return cmd;
1363 }
1364 
1365 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1366 {
1367 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1368 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1369 		return SPECTRE_V2_NONE;
1370 	}
1371 
1372 	return SPECTRE_V2_RETPOLINE;
1373 }
1374 
1375 /* Disable in-kernel use of non-RSB RET predictors */
1376 static void __init spec_ctrl_disable_kernel_rrsba(void)
1377 {
1378 	u64 ia32_cap;
1379 
1380 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1381 		return;
1382 
1383 	ia32_cap = x86_read_arch_cap_msr();
1384 
1385 	if (ia32_cap & ARCH_CAP_RRSBA) {
1386 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1387 		update_spec_ctrl(x86_spec_ctrl_base);
1388 	}
1389 }
1390 
1391 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1392 {
1393 	/*
1394 	 * Similar to context switches, there are two types of RSB attacks
1395 	 * after VM exit:
1396 	 *
1397 	 * 1) RSB underflow
1398 	 *
1399 	 * 2) Poisoned RSB entry
1400 	 *
1401 	 * When retpoline is enabled, both are mitigated by filling/clearing
1402 	 * the RSB.
1403 	 *
1404 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1405 	 * prediction isolation protections, RSB still needs to be cleared
1406 	 * because of #2.  Note that SMEP provides no protection here, unlike
1407 	 * user-space-poisoned RSB entries.
1408 	 *
1409 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1410 	 * bug is present then a LITE version of RSB protection is required,
1411 	 * just a single call needs to retire before a RET is executed.
1412 	 */
1413 	switch (mode) {
1414 	case SPECTRE_V2_NONE:
1415 		return;
1416 
1417 	case SPECTRE_V2_EIBRS_LFENCE:
1418 	case SPECTRE_V2_EIBRS:
1419 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1420 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1421 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1422 		}
1423 		return;
1424 
1425 	case SPECTRE_V2_EIBRS_RETPOLINE:
1426 	case SPECTRE_V2_RETPOLINE:
1427 	case SPECTRE_V2_LFENCE:
1428 	case SPECTRE_V2_IBRS:
1429 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1430 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1431 		return;
1432 	}
1433 
1434 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1435 	dump_stack();
1436 }
1437 
1438 static void __init spectre_v2_select_mitigation(void)
1439 {
1440 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1441 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1442 
1443 	/*
1444 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1445 	 * then nothing to do.
1446 	 */
1447 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1448 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1449 		return;
1450 
1451 	switch (cmd) {
1452 	case SPECTRE_V2_CMD_NONE:
1453 		return;
1454 
1455 	case SPECTRE_V2_CMD_FORCE:
1456 	case SPECTRE_V2_CMD_AUTO:
1457 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1458 			mode = SPECTRE_V2_EIBRS;
1459 			break;
1460 		}
1461 
1462 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1463 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1464 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1465 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1466 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1467 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1468 			mode = SPECTRE_V2_IBRS;
1469 			break;
1470 		}
1471 
1472 		mode = spectre_v2_select_retpoline();
1473 		break;
1474 
1475 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1476 		pr_err(SPECTRE_V2_LFENCE_MSG);
1477 		mode = SPECTRE_V2_LFENCE;
1478 		break;
1479 
1480 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1481 		mode = SPECTRE_V2_RETPOLINE;
1482 		break;
1483 
1484 	case SPECTRE_V2_CMD_RETPOLINE:
1485 		mode = spectre_v2_select_retpoline();
1486 		break;
1487 
1488 	case SPECTRE_V2_CMD_IBRS:
1489 		mode = SPECTRE_V2_IBRS;
1490 		break;
1491 
1492 	case SPECTRE_V2_CMD_EIBRS:
1493 		mode = SPECTRE_V2_EIBRS;
1494 		break;
1495 
1496 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1497 		mode = SPECTRE_V2_EIBRS_LFENCE;
1498 		break;
1499 
1500 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1501 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1502 		break;
1503 	}
1504 
1505 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1506 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1507 
1508 	if (spectre_v2_in_ibrs_mode(mode)) {
1509 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1510 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1511 		} else {
1512 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1513 			update_spec_ctrl(x86_spec_ctrl_base);
1514 		}
1515 	}
1516 
1517 	switch (mode) {
1518 	case SPECTRE_V2_NONE:
1519 	case SPECTRE_V2_EIBRS:
1520 		break;
1521 
1522 	case SPECTRE_V2_IBRS:
1523 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1524 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1525 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1526 		break;
1527 
1528 	case SPECTRE_V2_LFENCE:
1529 	case SPECTRE_V2_EIBRS_LFENCE:
1530 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1531 		fallthrough;
1532 
1533 	case SPECTRE_V2_RETPOLINE:
1534 	case SPECTRE_V2_EIBRS_RETPOLINE:
1535 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1536 		break;
1537 	}
1538 
1539 	/*
1540 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1541 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1542 	 * prediction from a non-RSB predictor is still a risk.
1543 	 */
1544 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1545 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1546 	    mode == SPECTRE_V2_RETPOLINE)
1547 		spec_ctrl_disable_kernel_rrsba();
1548 
1549 	spectre_v2_enabled = mode;
1550 	pr_info("%s\n", spectre_v2_strings[mode]);
1551 
1552 	/*
1553 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1554 	 * context switch.  In general there are two types of RSB attacks
1555 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1556 	 *
1557 	 * 1) RSB underflow
1558 	 *
1559 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1560 	 *    speculated return targets may come from the branch predictor,
1561 	 *    which could have a user-poisoned BTB or BHB entry.
1562 	 *
1563 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1564 	 *    regardless of the state of the RSB.
1565 	 *
1566 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1567 	 *    scenario is mitigated by the IBRS branch prediction isolation
1568 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1569 	 *    protect against this type of attack.
1570 	 *
1571 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1572 	 *
1573 	 * 2) Poisoned RSB entry
1574 	 *
1575 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1576 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1577 	 *    entry.
1578 	 *
1579 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1580 	 *    eIBRS.
1581 	 *
1582 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1583 	 *    RSB clearing.
1584 	 *
1585 	 * So to mitigate all cases, unconditionally fill RSB on context
1586 	 * switches.
1587 	 *
1588 	 * FIXME: Is this pointless for retbleed-affected AMD?
1589 	 */
1590 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1591 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1592 
1593 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1594 
1595 	/*
1596 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1597 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1598 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1599 	 * otherwise enabled.
1600 	 *
1601 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1602 	 * the user might select retpoline on the kernel command line and if
1603 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1604 	 * enable IBRS around firmware calls.
1605 	 */
1606 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1607 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1608 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1609 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1610 
1611 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1612 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1613 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1614 		}
1615 
1616 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1617 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1618 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1619 	}
1620 
1621 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1622 	spectre_v2_cmd = cmd;
1623 }
1624 
1625 static void update_stibp_msr(void * __unused)
1626 {
1627 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1628 	update_spec_ctrl(val);
1629 }
1630 
1631 /* Update x86_spec_ctrl_base in case SMT state changed. */
1632 static void update_stibp_strict(void)
1633 {
1634 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1635 
1636 	if (sched_smt_active())
1637 		mask |= SPEC_CTRL_STIBP;
1638 
1639 	if (mask == x86_spec_ctrl_base)
1640 		return;
1641 
1642 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1643 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1644 	x86_spec_ctrl_base = mask;
1645 	on_each_cpu(update_stibp_msr, NULL, 1);
1646 }
1647 
1648 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1649 static void update_indir_branch_cond(void)
1650 {
1651 	if (sched_smt_active())
1652 		static_branch_enable(&switch_to_cond_stibp);
1653 	else
1654 		static_branch_disable(&switch_to_cond_stibp);
1655 }
1656 
1657 #undef pr_fmt
1658 #define pr_fmt(fmt) fmt
1659 
1660 /* Update the static key controlling the MDS CPU buffer clear in idle */
1661 static void update_mds_branch_idle(void)
1662 {
1663 	u64 ia32_cap = x86_read_arch_cap_msr();
1664 
1665 	/*
1666 	 * Enable the idle clearing if SMT is active on CPUs which are
1667 	 * affected only by MSBDS and not any other MDS variant.
1668 	 *
1669 	 * The other variants cannot be mitigated when SMT is enabled, so
1670 	 * clearing the buffers on idle just to prevent the Store Buffer
1671 	 * repartitioning leak would be a window dressing exercise.
1672 	 */
1673 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1674 		return;
1675 
1676 	if (sched_smt_active()) {
1677 		static_branch_enable(&mds_idle_clear);
1678 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1679 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1680 		static_branch_disable(&mds_idle_clear);
1681 	}
1682 }
1683 
1684 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1685 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1686 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1687 
1688 void cpu_bugs_smt_update(void)
1689 {
1690 	mutex_lock(&spec_ctrl_mutex);
1691 
1692 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1693 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1694 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1695 
1696 	switch (spectre_v2_user_stibp) {
1697 	case SPECTRE_V2_USER_NONE:
1698 		break;
1699 	case SPECTRE_V2_USER_STRICT:
1700 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1701 		update_stibp_strict();
1702 		break;
1703 	case SPECTRE_V2_USER_PRCTL:
1704 	case SPECTRE_V2_USER_SECCOMP:
1705 		update_indir_branch_cond();
1706 		break;
1707 	}
1708 
1709 	switch (mds_mitigation) {
1710 	case MDS_MITIGATION_FULL:
1711 	case MDS_MITIGATION_VMWERV:
1712 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1713 			pr_warn_once(MDS_MSG_SMT);
1714 		update_mds_branch_idle();
1715 		break;
1716 	case MDS_MITIGATION_OFF:
1717 		break;
1718 	}
1719 
1720 	switch (taa_mitigation) {
1721 	case TAA_MITIGATION_VERW:
1722 	case TAA_MITIGATION_UCODE_NEEDED:
1723 		if (sched_smt_active())
1724 			pr_warn_once(TAA_MSG_SMT);
1725 		break;
1726 	case TAA_MITIGATION_TSX_DISABLED:
1727 	case TAA_MITIGATION_OFF:
1728 		break;
1729 	}
1730 
1731 	switch (mmio_mitigation) {
1732 	case MMIO_MITIGATION_VERW:
1733 	case MMIO_MITIGATION_UCODE_NEEDED:
1734 		if (sched_smt_active())
1735 			pr_warn_once(MMIO_MSG_SMT);
1736 		break;
1737 	case MMIO_MITIGATION_OFF:
1738 		break;
1739 	}
1740 
1741 	mutex_unlock(&spec_ctrl_mutex);
1742 }
1743 
1744 #undef pr_fmt
1745 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1746 
1747 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1748 
1749 /* The kernel command line selection */
1750 enum ssb_mitigation_cmd {
1751 	SPEC_STORE_BYPASS_CMD_NONE,
1752 	SPEC_STORE_BYPASS_CMD_AUTO,
1753 	SPEC_STORE_BYPASS_CMD_ON,
1754 	SPEC_STORE_BYPASS_CMD_PRCTL,
1755 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1756 };
1757 
1758 static const char * const ssb_strings[] = {
1759 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1760 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1761 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1762 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1763 };
1764 
1765 static const struct {
1766 	const char *option;
1767 	enum ssb_mitigation_cmd cmd;
1768 } ssb_mitigation_options[]  __initconst = {
1769 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1770 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1771 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1772 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1773 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1774 };
1775 
1776 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1777 {
1778 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1779 	char arg[20];
1780 	int ret, i;
1781 
1782 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1783 	    cpu_mitigations_off()) {
1784 		return SPEC_STORE_BYPASS_CMD_NONE;
1785 	} else {
1786 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1787 					  arg, sizeof(arg));
1788 		if (ret < 0)
1789 			return SPEC_STORE_BYPASS_CMD_AUTO;
1790 
1791 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1792 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1793 				continue;
1794 
1795 			cmd = ssb_mitigation_options[i].cmd;
1796 			break;
1797 		}
1798 
1799 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1800 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1801 			return SPEC_STORE_BYPASS_CMD_AUTO;
1802 		}
1803 	}
1804 
1805 	return cmd;
1806 }
1807 
1808 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1809 {
1810 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1811 	enum ssb_mitigation_cmd cmd;
1812 
1813 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1814 		return mode;
1815 
1816 	cmd = ssb_parse_cmdline();
1817 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1818 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1819 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1820 		return mode;
1821 
1822 	switch (cmd) {
1823 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1824 		/*
1825 		 * Choose prctl+seccomp as the default mode if seccomp is
1826 		 * enabled.
1827 		 */
1828 		if (IS_ENABLED(CONFIG_SECCOMP))
1829 			mode = SPEC_STORE_BYPASS_SECCOMP;
1830 		else
1831 			mode = SPEC_STORE_BYPASS_PRCTL;
1832 		break;
1833 	case SPEC_STORE_BYPASS_CMD_ON:
1834 		mode = SPEC_STORE_BYPASS_DISABLE;
1835 		break;
1836 	case SPEC_STORE_BYPASS_CMD_AUTO:
1837 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1838 		mode = SPEC_STORE_BYPASS_PRCTL;
1839 		break;
1840 	case SPEC_STORE_BYPASS_CMD_NONE:
1841 		break;
1842 	}
1843 
1844 	/*
1845 	 * We have three CPU feature flags that are in play here:
1846 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1847 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1848 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1849 	 */
1850 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1851 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1852 		/*
1853 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1854 		 * use a completely different MSR and bit dependent on family.
1855 		 */
1856 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1857 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1858 			x86_amd_ssb_disable();
1859 		} else {
1860 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1861 			update_spec_ctrl(x86_spec_ctrl_base);
1862 		}
1863 	}
1864 
1865 	return mode;
1866 }
1867 
1868 static void ssb_select_mitigation(void)
1869 {
1870 	ssb_mode = __ssb_select_mitigation();
1871 
1872 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1873 		pr_info("%s\n", ssb_strings[ssb_mode]);
1874 }
1875 
1876 #undef pr_fmt
1877 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1878 
1879 static void task_update_spec_tif(struct task_struct *tsk)
1880 {
1881 	/* Force the update of the real TIF bits */
1882 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1883 
1884 	/*
1885 	 * Immediately update the speculation control MSRs for the current
1886 	 * task, but for a non-current task delay setting the CPU
1887 	 * mitigation until it is scheduled next.
1888 	 *
1889 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1890 	 * always the current task.
1891 	 */
1892 	if (tsk == current)
1893 		speculation_ctrl_update_current();
1894 }
1895 
1896 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1897 {
1898 
1899 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1900 		return -EPERM;
1901 
1902 	switch (ctrl) {
1903 	case PR_SPEC_ENABLE:
1904 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1905 		return 0;
1906 	case PR_SPEC_DISABLE:
1907 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1908 		return 0;
1909 	default:
1910 		return -ERANGE;
1911 	}
1912 }
1913 
1914 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1915 {
1916 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1917 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1918 		return -ENXIO;
1919 
1920 	switch (ctrl) {
1921 	case PR_SPEC_ENABLE:
1922 		/* If speculation is force disabled, enable is not allowed */
1923 		if (task_spec_ssb_force_disable(task))
1924 			return -EPERM;
1925 		task_clear_spec_ssb_disable(task);
1926 		task_clear_spec_ssb_noexec(task);
1927 		task_update_spec_tif(task);
1928 		break;
1929 	case PR_SPEC_DISABLE:
1930 		task_set_spec_ssb_disable(task);
1931 		task_clear_spec_ssb_noexec(task);
1932 		task_update_spec_tif(task);
1933 		break;
1934 	case PR_SPEC_FORCE_DISABLE:
1935 		task_set_spec_ssb_disable(task);
1936 		task_set_spec_ssb_force_disable(task);
1937 		task_clear_spec_ssb_noexec(task);
1938 		task_update_spec_tif(task);
1939 		break;
1940 	case PR_SPEC_DISABLE_NOEXEC:
1941 		if (task_spec_ssb_force_disable(task))
1942 			return -EPERM;
1943 		task_set_spec_ssb_disable(task);
1944 		task_set_spec_ssb_noexec(task);
1945 		task_update_spec_tif(task);
1946 		break;
1947 	default:
1948 		return -ERANGE;
1949 	}
1950 	return 0;
1951 }
1952 
1953 static bool is_spec_ib_user_controlled(void)
1954 {
1955 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1956 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1957 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1958 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1959 }
1960 
1961 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1962 {
1963 	switch (ctrl) {
1964 	case PR_SPEC_ENABLE:
1965 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1966 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1967 			return 0;
1968 
1969 		/*
1970 		 * With strict mode for both IBPB and STIBP, the instruction
1971 		 * code paths avoid checking this task flag and instead,
1972 		 * unconditionally run the instruction. However, STIBP and IBPB
1973 		 * are independent and either can be set to conditionally
1974 		 * enabled regardless of the mode of the other.
1975 		 *
1976 		 * If either is set to conditional, allow the task flag to be
1977 		 * updated, unless it was force-disabled by a previous prctl
1978 		 * call. Currently, this is possible on an AMD CPU which has the
1979 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1980 		 * kernel is booted with 'spectre_v2_user=seccomp', then
1981 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1982 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1983 		 */
1984 		if (!is_spec_ib_user_controlled() ||
1985 		    task_spec_ib_force_disable(task))
1986 			return -EPERM;
1987 
1988 		task_clear_spec_ib_disable(task);
1989 		task_update_spec_tif(task);
1990 		break;
1991 	case PR_SPEC_DISABLE:
1992 	case PR_SPEC_FORCE_DISABLE:
1993 		/*
1994 		 * Indirect branch speculation is always allowed when
1995 		 * mitigation is force disabled.
1996 		 */
1997 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1998 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1999 			return -EPERM;
2000 
2001 		if (!is_spec_ib_user_controlled())
2002 			return 0;
2003 
2004 		task_set_spec_ib_disable(task);
2005 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2006 			task_set_spec_ib_force_disable(task);
2007 		task_update_spec_tif(task);
2008 		if (task == current)
2009 			indirect_branch_prediction_barrier();
2010 		break;
2011 	default:
2012 		return -ERANGE;
2013 	}
2014 	return 0;
2015 }
2016 
2017 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2018 			     unsigned long ctrl)
2019 {
2020 	switch (which) {
2021 	case PR_SPEC_STORE_BYPASS:
2022 		return ssb_prctl_set(task, ctrl);
2023 	case PR_SPEC_INDIRECT_BRANCH:
2024 		return ib_prctl_set(task, ctrl);
2025 	case PR_SPEC_L1D_FLUSH:
2026 		return l1d_flush_prctl_set(task, ctrl);
2027 	default:
2028 		return -ENODEV;
2029 	}
2030 }
2031 
2032 #ifdef CONFIG_SECCOMP
2033 void arch_seccomp_spec_mitigate(struct task_struct *task)
2034 {
2035 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2036 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2037 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2038 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2039 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2040 }
2041 #endif
2042 
2043 static int l1d_flush_prctl_get(struct task_struct *task)
2044 {
2045 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2046 		return PR_SPEC_FORCE_DISABLE;
2047 
2048 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2049 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2050 	else
2051 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2052 }
2053 
2054 static int ssb_prctl_get(struct task_struct *task)
2055 {
2056 	switch (ssb_mode) {
2057 	case SPEC_STORE_BYPASS_DISABLE:
2058 		return PR_SPEC_DISABLE;
2059 	case SPEC_STORE_BYPASS_SECCOMP:
2060 	case SPEC_STORE_BYPASS_PRCTL:
2061 		if (task_spec_ssb_force_disable(task))
2062 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2063 		if (task_spec_ssb_noexec(task))
2064 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2065 		if (task_spec_ssb_disable(task))
2066 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2067 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2068 	default:
2069 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2070 			return PR_SPEC_ENABLE;
2071 		return PR_SPEC_NOT_AFFECTED;
2072 	}
2073 }
2074 
2075 static int ib_prctl_get(struct task_struct *task)
2076 {
2077 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2078 		return PR_SPEC_NOT_AFFECTED;
2079 
2080 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2081 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2082 		return PR_SPEC_ENABLE;
2083 	else if (is_spec_ib_user_controlled()) {
2084 		if (task_spec_ib_force_disable(task))
2085 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2086 		if (task_spec_ib_disable(task))
2087 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2088 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2089 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2090 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2091 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2092 		return PR_SPEC_DISABLE;
2093 	else
2094 		return PR_SPEC_NOT_AFFECTED;
2095 }
2096 
2097 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2098 {
2099 	switch (which) {
2100 	case PR_SPEC_STORE_BYPASS:
2101 		return ssb_prctl_get(task);
2102 	case PR_SPEC_INDIRECT_BRANCH:
2103 		return ib_prctl_get(task);
2104 	case PR_SPEC_L1D_FLUSH:
2105 		return l1d_flush_prctl_get(task);
2106 	default:
2107 		return -ENODEV;
2108 	}
2109 }
2110 
2111 void x86_spec_ctrl_setup_ap(void)
2112 {
2113 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2114 		update_spec_ctrl(x86_spec_ctrl_base);
2115 
2116 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2117 		x86_amd_ssb_disable();
2118 }
2119 
2120 bool itlb_multihit_kvm_mitigation;
2121 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2122 
2123 #undef pr_fmt
2124 #define pr_fmt(fmt)	"L1TF: " fmt
2125 
2126 /* Default mitigation for L1TF-affected CPUs */
2127 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2128 #if IS_ENABLED(CONFIG_KVM_INTEL)
2129 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2130 #endif
2131 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2132 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2133 
2134 /*
2135  * These CPUs all support 44bits physical address space internally in the
2136  * cache but CPUID can report a smaller number of physical address bits.
2137  *
2138  * The L1TF mitigation uses the top most address bit for the inversion of
2139  * non present PTEs. When the installed memory reaches into the top most
2140  * address bit due to memory holes, which has been observed on machines
2141  * which report 36bits physical address bits and have 32G RAM installed,
2142  * then the mitigation range check in l1tf_select_mitigation() triggers.
2143  * This is a false positive because the mitigation is still possible due to
2144  * the fact that the cache uses 44bit internally. Use the cache bits
2145  * instead of the reported physical bits and adjust them on the affected
2146  * machines to 44bit if the reported bits are less than 44.
2147  */
2148 static void override_cache_bits(struct cpuinfo_x86 *c)
2149 {
2150 	if (c->x86 != 6)
2151 		return;
2152 
2153 	switch (c->x86_model) {
2154 	case INTEL_FAM6_NEHALEM:
2155 	case INTEL_FAM6_WESTMERE:
2156 	case INTEL_FAM6_SANDYBRIDGE:
2157 	case INTEL_FAM6_IVYBRIDGE:
2158 	case INTEL_FAM6_HASWELL:
2159 	case INTEL_FAM6_HASWELL_L:
2160 	case INTEL_FAM6_HASWELL_G:
2161 	case INTEL_FAM6_BROADWELL:
2162 	case INTEL_FAM6_BROADWELL_G:
2163 	case INTEL_FAM6_SKYLAKE_L:
2164 	case INTEL_FAM6_SKYLAKE:
2165 	case INTEL_FAM6_KABYLAKE_L:
2166 	case INTEL_FAM6_KABYLAKE:
2167 		if (c->x86_cache_bits < 44)
2168 			c->x86_cache_bits = 44;
2169 		break;
2170 	}
2171 }
2172 
2173 static void __init l1tf_select_mitigation(void)
2174 {
2175 	u64 half_pa;
2176 
2177 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2178 		return;
2179 
2180 	if (cpu_mitigations_off())
2181 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2182 	else if (cpu_mitigations_auto_nosmt())
2183 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2184 
2185 	override_cache_bits(&boot_cpu_data);
2186 
2187 	switch (l1tf_mitigation) {
2188 	case L1TF_MITIGATION_OFF:
2189 	case L1TF_MITIGATION_FLUSH_NOWARN:
2190 	case L1TF_MITIGATION_FLUSH:
2191 		break;
2192 	case L1TF_MITIGATION_FLUSH_NOSMT:
2193 	case L1TF_MITIGATION_FULL:
2194 		cpu_smt_disable(false);
2195 		break;
2196 	case L1TF_MITIGATION_FULL_FORCE:
2197 		cpu_smt_disable(true);
2198 		break;
2199 	}
2200 
2201 #if CONFIG_PGTABLE_LEVELS == 2
2202 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2203 	return;
2204 #endif
2205 
2206 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2207 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2208 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2209 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2210 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2211 				half_pa);
2212 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2213 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2214 		return;
2215 	}
2216 
2217 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2218 }
2219 
2220 static int __init l1tf_cmdline(char *str)
2221 {
2222 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2223 		return 0;
2224 
2225 	if (!str)
2226 		return -EINVAL;
2227 
2228 	if (!strcmp(str, "off"))
2229 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2230 	else if (!strcmp(str, "flush,nowarn"))
2231 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2232 	else if (!strcmp(str, "flush"))
2233 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2234 	else if (!strcmp(str, "flush,nosmt"))
2235 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2236 	else if (!strcmp(str, "full"))
2237 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2238 	else if (!strcmp(str, "full,force"))
2239 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2240 
2241 	return 0;
2242 }
2243 early_param("l1tf", l1tf_cmdline);
2244 
2245 #undef pr_fmt
2246 #define pr_fmt(fmt) fmt
2247 
2248 #ifdef CONFIG_SYSFS
2249 
2250 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2251 
2252 #if IS_ENABLED(CONFIG_KVM_INTEL)
2253 static const char * const l1tf_vmx_states[] = {
2254 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2255 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2256 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2257 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2258 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2259 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2260 };
2261 
2262 static ssize_t l1tf_show_state(char *buf)
2263 {
2264 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2265 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2266 
2267 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2268 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2269 	     sched_smt_active())) {
2270 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2271 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2272 	}
2273 
2274 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2275 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2276 			  sched_smt_active() ? "vulnerable" : "disabled");
2277 }
2278 
2279 static ssize_t itlb_multihit_show_state(char *buf)
2280 {
2281 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2282 	    !boot_cpu_has(X86_FEATURE_VMX))
2283 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2284 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2285 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2286 	else if (itlb_multihit_kvm_mitigation)
2287 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2288 	else
2289 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2290 }
2291 #else
2292 static ssize_t l1tf_show_state(char *buf)
2293 {
2294 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2295 }
2296 
2297 static ssize_t itlb_multihit_show_state(char *buf)
2298 {
2299 	return sysfs_emit(buf, "Processor vulnerable\n");
2300 }
2301 #endif
2302 
2303 static ssize_t mds_show_state(char *buf)
2304 {
2305 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2306 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2307 				  mds_strings[mds_mitigation]);
2308 	}
2309 
2310 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2311 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2312 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2313 				   sched_smt_active() ? "mitigated" : "disabled"));
2314 	}
2315 
2316 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2317 			  sched_smt_active() ? "vulnerable" : "disabled");
2318 }
2319 
2320 static ssize_t tsx_async_abort_show_state(char *buf)
2321 {
2322 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2323 	    (taa_mitigation == TAA_MITIGATION_OFF))
2324 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2325 
2326 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2327 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2328 				  taa_strings[taa_mitigation]);
2329 	}
2330 
2331 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2332 			  sched_smt_active() ? "vulnerable" : "disabled");
2333 }
2334 
2335 static ssize_t mmio_stale_data_show_state(char *buf)
2336 {
2337 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2338 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2339 
2340 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2341 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2342 
2343 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2344 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2345 				  mmio_strings[mmio_mitigation]);
2346 	}
2347 
2348 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2349 			  sched_smt_active() ? "vulnerable" : "disabled");
2350 }
2351 
2352 static char *stibp_state(void)
2353 {
2354 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
2355 		return "";
2356 
2357 	switch (spectre_v2_user_stibp) {
2358 	case SPECTRE_V2_USER_NONE:
2359 		return ", STIBP: disabled";
2360 	case SPECTRE_V2_USER_STRICT:
2361 		return ", STIBP: forced";
2362 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2363 		return ", STIBP: always-on";
2364 	case SPECTRE_V2_USER_PRCTL:
2365 	case SPECTRE_V2_USER_SECCOMP:
2366 		if (static_key_enabled(&switch_to_cond_stibp))
2367 			return ", STIBP: conditional";
2368 	}
2369 	return "";
2370 }
2371 
2372 static char *ibpb_state(void)
2373 {
2374 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2375 		if (static_key_enabled(&switch_mm_always_ibpb))
2376 			return ", IBPB: always-on";
2377 		if (static_key_enabled(&switch_mm_cond_ibpb))
2378 			return ", IBPB: conditional";
2379 		return ", IBPB: disabled";
2380 	}
2381 	return "";
2382 }
2383 
2384 static char *pbrsb_eibrs_state(void)
2385 {
2386 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2387 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2388 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2389 			return ", PBRSB-eIBRS: SW sequence";
2390 		else
2391 			return ", PBRSB-eIBRS: Vulnerable";
2392 	} else {
2393 		return ", PBRSB-eIBRS: Not affected";
2394 	}
2395 }
2396 
2397 static ssize_t spectre_v2_show_state(char *buf)
2398 {
2399 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2400 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2401 
2402 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2403 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2404 
2405 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2406 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2407 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2408 
2409 	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2410 			  spectre_v2_strings[spectre_v2_enabled],
2411 			  ibpb_state(),
2412 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2413 			  stibp_state(),
2414 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2415 			  pbrsb_eibrs_state(),
2416 			  spectre_v2_module_string());
2417 }
2418 
2419 static ssize_t srbds_show_state(char *buf)
2420 {
2421 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2422 }
2423 
2424 static ssize_t retbleed_show_state(char *buf)
2425 {
2426 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2427 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2428 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2429 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2430 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2431 
2432 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2433 				  !sched_smt_active() ? "disabled" :
2434 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2435 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2436 				  "enabled with STIBP protection" : "vulnerable");
2437 	}
2438 
2439 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2440 }
2441 
2442 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2443 			       char *buf, unsigned int bug)
2444 {
2445 	if (!boot_cpu_has_bug(bug))
2446 		return sysfs_emit(buf, "Not affected\n");
2447 
2448 	switch (bug) {
2449 	case X86_BUG_CPU_MELTDOWN:
2450 		if (boot_cpu_has(X86_FEATURE_PTI))
2451 			return sysfs_emit(buf, "Mitigation: PTI\n");
2452 
2453 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2454 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2455 
2456 		break;
2457 
2458 	case X86_BUG_SPECTRE_V1:
2459 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2460 
2461 	case X86_BUG_SPECTRE_V2:
2462 		return spectre_v2_show_state(buf);
2463 
2464 	case X86_BUG_SPEC_STORE_BYPASS:
2465 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2466 
2467 	case X86_BUG_L1TF:
2468 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2469 			return l1tf_show_state(buf);
2470 		break;
2471 
2472 	case X86_BUG_MDS:
2473 		return mds_show_state(buf);
2474 
2475 	case X86_BUG_TAA:
2476 		return tsx_async_abort_show_state(buf);
2477 
2478 	case X86_BUG_ITLB_MULTIHIT:
2479 		return itlb_multihit_show_state(buf);
2480 
2481 	case X86_BUG_SRBDS:
2482 		return srbds_show_state(buf);
2483 
2484 	case X86_BUG_MMIO_STALE_DATA:
2485 	case X86_BUG_MMIO_UNKNOWN:
2486 		return mmio_stale_data_show_state(buf);
2487 
2488 	case X86_BUG_RETBLEED:
2489 		return retbleed_show_state(buf);
2490 
2491 	default:
2492 		break;
2493 	}
2494 
2495 	return sysfs_emit(buf, "Vulnerable\n");
2496 }
2497 
2498 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2499 {
2500 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2501 }
2502 
2503 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2504 {
2505 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2506 }
2507 
2508 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2509 {
2510 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2511 }
2512 
2513 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2514 {
2515 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2516 }
2517 
2518 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2519 {
2520 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2521 }
2522 
2523 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2524 {
2525 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2526 }
2527 
2528 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2529 {
2530 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2531 }
2532 
2533 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2534 {
2535 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2536 }
2537 
2538 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2539 {
2540 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2541 }
2542 
2543 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2544 {
2545 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2546 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2547 	else
2548 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2549 }
2550 
2551 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2552 {
2553 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2554 }
2555 #endif
2556