1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/nospec.h> 15 #include <linux/prctl.h> 16 #include <linux/sched/smt.h> 17 #include <linux/pgtable.h> 18 #include <linux/bpf.h> 19 20 #include <asm/spec-ctrl.h> 21 #include <asm/cmdline.h> 22 #include <asm/bugs.h> 23 #include <asm/processor.h> 24 #include <asm/processor-flags.h> 25 #include <asm/fpu/api.h> 26 #include <asm/msr.h> 27 #include <asm/vmx.h> 28 #include <asm/paravirt.h> 29 #include <asm/intel-family.h> 30 #include <asm/e820/api.h> 31 #include <asm/hypervisor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cpu.h> 34 35 #include "cpu.h" 36 37 static void __init spectre_v1_select_mitigation(void); 38 static void __init spectre_v2_select_mitigation(void); 39 static void __init retbleed_select_mitigation(void); 40 static void __init spectre_v2_user_select_mitigation(void); 41 static void __init ssb_select_mitigation(void); 42 static void __init l1tf_select_mitigation(void); 43 static void __init mds_select_mitigation(void); 44 static void __init md_clear_update_mitigation(void); 45 static void __init md_clear_select_mitigation(void); 46 static void __init taa_select_mitigation(void); 47 static void __init mmio_select_mitigation(void); 48 static void __init srbds_select_mitigation(void); 49 static void __init l1d_flush_select_mitigation(void); 50 static void __init srso_select_mitigation(void); 51 static void __init gds_select_mitigation(void); 52 53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 54 u64 x86_spec_ctrl_base; 55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); 56 57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current); 60 61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; 62 EXPORT_SYMBOL_GPL(x86_pred_cmd); 63 64 static DEFINE_MUTEX(spec_ctrl_mutex); 65 66 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk; 67 68 /* Update SPEC_CTRL MSR and its cached copy unconditionally */ 69 static void update_spec_ctrl(u64 val) 70 { 71 this_cpu_write(x86_spec_ctrl_current, val); 72 wrmsrl(MSR_IA32_SPEC_CTRL, val); 73 } 74 75 /* 76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 78 */ 79 void update_spec_ctrl_cond(u64 val) 80 { 81 if (this_cpu_read(x86_spec_ctrl_current) == val) 82 return; 83 84 this_cpu_write(x86_spec_ctrl_current, val); 85 86 /* 87 * When KERNEL_IBRS this MSR is written on return-to-user, unless 88 * forced the update can be delayed until that time. 89 */ 90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 91 wrmsrl(MSR_IA32_SPEC_CTRL, val); 92 } 93 94 noinstr u64 spec_ctrl_current(void) 95 { 96 return this_cpu_read(x86_spec_ctrl_current); 97 } 98 EXPORT_SYMBOL_GPL(spec_ctrl_current); 99 100 /* 101 * AMD specific MSR info for Speculative Store Bypass control. 102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 103 */ 104 u64 __ro_after_init x86_amd_ls_cfg_base; 105 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 106 107 /* Control conditional STIBP in switch_to() */ 108 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 109 /* Control conditional IBPB in switch_mm() */ 110 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 111 /* Control unconditional IBPB in switch_mm() */ 112 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 113 114 /* Control MDS CPU buffer clear before idling (halt, mwait) */ 115 DEFINE_STATIC_KEY_FALSE(mds_idle_clear); 116 EXPORT_SYMBOL_GPL(mds_idle_clear); 117 118 /* 119 * Controls whether l1d flush based mitigations are enabled, 120 * based on hw features and admin setting via boot parameter 121 * defaults to false 122 */ 123 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 124 125 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ 126 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); 127 EXPORT_SYMBOL_GPL(mmio_stale_data_clear); 128 129 void __init cpu_select_mitigations(void) 130 { 131 /* 132 * Read the SPEC_CTRL MSR to account for reserved bits which may 133 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 134 * init code as it is not enumerated and depends on the family. 135 */ 136 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { 137 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 138 139 /* 140 * Previously running kernel (kexec), may have some controls 141 * turned ON. Clear them and let the mitigations setup below 142 * rediscover them based on configuration. 143 */ 144 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; 145 } 146 147 /* Select the proper CPU mitigations before patching alternatives: */ 148 spectre_v1_select_mitigation(); 149 spectre_v2_select_mitigation(); 150 /* 151 * retbleed_select_mitigation() relies on the state set by 152 * spectre_v2_select_mitigation(); specifically it wants to know about 153 * spectre_v2=ibrs. 154 */ 155 retbleed_select_mitigation(); 156 /* 157 * spectre_v2_user_select_mitigation() relies on the state set by 158 * retbleed_select_mitigation(); specifically the STIBP selection is 159 * forced for UNRET or IBPB. 160 */ 161 spectre_v2_user_select_mitigation(); 162 ssb_select_mitigation(); 163 l1tf_select_mitigation(); 164 md_clear_select_mitigation(); 165 srbds_select_mitigation(); 166 l1d_flush_select_mitigation(); 167 168 /* 169 * srso_select_mitigation() depends and must run after 170 * retbleed_select_mitigation(). 171 */ 172 srso_select_mitigation(); 173 gds_select_mitigation(); 174 } 175 176 /* 177 * NOTE: This function is *only* called for SVM, since Intel uses 178 * MSR_IA32_SPEC_CTRL for SSBD. 179 */ 180 void 181 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) 182 { 183 u64 guestval, hostval; 184 struct thread_info *ti = current_thread_info(); 185 186 /* 187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 189 */ 190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 191 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 192 return; 193 194 /* 195 * If the host has SSBD mitigation enabled, force it in the host's 196 * virtual MSR value. If its not permanently enabled, evaluate 197 * current's TIF_SSBD thread flag. 198 */ 199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 200 hostval = SPEC_CTRL_SSBD; 201 else 202 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 203 204 /* Sanitize the guest value */ 205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 206 207 if (hostval != guestval) { 208 unsigned long tif; 209 210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 211 ssbd_spec_ctrl_to_tif(hostval); 212 213 speculation_ctrl_update(tif); 214 } 215 } 216 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); 217 218 static void x86_amd_ssb_disable(void) 219 { 220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 221 222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 225 wrmsrl(MSR_AMD64_LS_CFG, msrval); 226 } 227 228 #undef pr_fmt 229 #define pr_fmt(fmt) "MDS: " fmt 230 231 /* Default mitigation for MDS-affected CPUs */ 232 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; 233 static bool mds_nosmt __ro_after_init = false; 234 235 static const char * const mds_strings[] = { 236 [MDS_MITIGATION_OFF] = "Vulnerable", 237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 239 }; 240 241 static void __init mds_select_mitigation(void) 242 { 243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { 244 mds_mitigation = MDS_MITIGATION_OFF; 245 return; 246 } 247 248 if (mds_mitigation == MDS_MITIGATION_FULL) { 249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 250 mds_mitigation = MDS_MITIGATION_VMWERV; 251 252 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 253 254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 255 (mds_nosmt || cpu_mitigations_auto_nosmt())) 256 cpu_smt_disable(false); 257 } 258 } 259 260 static int __init mds_cmdline(char *str) 261 { 262 if (!boot_cpu_has_bug(X86_BUG_MDS)) 263 return 0; 264 265 if (!str) 266 return -EINVAL; 267 268 if (!strcmp(str, "off")) 269 mds_mitigation = MDS_MITIGATION_OFF; 270 else if (!strcmp(str, "full")) 271 mds_mitigation = MDS_MITIGATION_FULL; 272 else if (!strcmp(str, "full,nosmt")) { 273 mds_mitigation = MDS_MITIGATION_FULL; 274 mds_nosmt = true; 275 } 276 277 return 0; 278 } 279 early_param("mds", mds_cmdline); 280 281 #undef pr_fmt 282 #define pr_fmt(fmt) "TAA: " fmt 283 284 enum taa_mitigations { 285 TAA_MITIGATION_OFF, 286 TAA_MITIGATION_UCODE_NEEDED, 287 TAA_MITIGATION_VERW, 288 TAA_MITIGATION_TSX_DISABLED, 289 }; 290 291 /* Default mitigation for TAA-affected CPUs */ 292 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; 293 static bool taa_nosmt __ro_after_init; 294 295 static const char * const taa_strings[] = { 296 [TAA_MITIGATION_OFF] = "Vulnerable", 297 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 298 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 299 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 300 }; 301 302 static void __init taa_select_mitigation(void) 303 { 304 u64 ia32_cap; 305 306 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 307 taa_mitigation = TAA_MITIGATION_OFF; 308 return; 309 } 310 311 /* TSX previously disabled by tsx=off */ 312 if (!boot_cpu_has(X86_FEATURE_RTM)) { 313 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 314 return; 315 } 316 317 if (cpu_mitigations_off()) { 318 taa_mitigation = TAA_MITIGATION_OFF; 319 return; 320 } 321 322 /* 323 * TAA mitigation via VERW is turned off if both 324 * tsx_async_abort=off and mds=off are specified. 325 */ 326 if (taa_mitigation == TAA_MITIGATION_OFF && 327 mds_mitigation == MDS_MITIGATION_OFF) 328 return; 329 330 if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) 331 taa_mitigation = TAA_MITIGATION_VERW; 332 else 333 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 334 335 /* 336 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 337 * A microcode update fixes this behavior to clear CPU buffers. It also 338 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 339 * ARCH_CAP_TSX_CTRL_MSR bit. 340 * 341 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 342 * update is required. 343 */ 344 ia32_cap = x86_read_arch_cap_msr(); 345 if ( (ia32_cap & ARCH_CAP_MDS_NO) && 346 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)) 347 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 348 349 /* 350 * TSX is enabled, select alternate mitigation for TAA which is 351 * the same as MDS. Enable MDS static branch to clear CPU buffers. 352 * 353 * For guests that can't determine whether the correct microcode is 354 * present on host, enable the mitigation for UCODE_NEEDED as well. 355 */ 356 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 357 358 if (taa_nosmt || cpu_mitigations_auto_nosmt()) 359 cpu_smt_disable(false); 360 } 361 362 static int __init tsx_async_abort_parse_cmdline(char *str) 363 { 364 if (!boot_cpu_has_bug(X86_BUG_TAA)) 365 return 0; 366 367 if (!str) 368 return -EINVAL; 369 370 if (!strcmp(str, "off")) { 371 taa_mitigation = TAA_MITIGATION_OFF; 372 } else if (!strcmp(str, "full")) { 373 taa_mitigation = TAA_MITIGATION_VERW; 374 } else if (!strcmp(str, "full,nosmt")) { 375 taa_mitigation = TAA_MITIGATION_VERW; 376 taa_nosmt = true; 377 } 378 379 return 0; 380 } 381 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 382 383 #undef pr_fmt 384 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 385 386 enum mmio_mitigations { 387 MMIO_MITIGATION_OFF, 388 MMIO_MITIGATION_UCODE_NEEDED, 389 MMIO_MITIGATION_VERW, 390 }; 391 392 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 393 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; 394 static bool mmio_nosmt __ro_after_init = false; 395 396 static const char * const mmio_strings[] = { 397 [MMIO_MITIGATION_OFF] = "Vulnerable", 398 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 399 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 400 }; 401 402 static void __init mmio_select_mitigation(void) 403 { 404 u64 ia32_cap; 405 406 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || 407 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || 408 cpu_mitigations_off()) { 409 mmio_mitigation = MMIO_MITIGATION_OFF; 410 return; 411 } 412 413 if (mmio_mitigation == MMIO_MITIGATION_OFF) 414 return; 415 416 ia32_cap = x86_read_arch_cap_msr(); 417 418 /* 419 * Enable CPU buffer clear mitigation for host and VMM, if also affected 420 * by MDS or TAA. Otherwise, enable mitigation for VMM only. 421 */ 422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && 423 boot_cpu_has(X86_FEATURE_RTM))) 424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 425 426 /* 427 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based 428 * mitigations, disable KVM-only mitigation in that case. 429 */ 430 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 431 static_branch_disable(&mmio_stale_data_clear); 432 else 433 static_branch_enable(&mmio_stale_data_clear); 434 435 /* 436 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 437 * be propagated to uncore buffers, clearing the Fill buffers on idle 438 * is required irrespective of SMT state. 439 */ 440 if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) 441 static_branch_enable(&mds_idle_clear); 442 443 /* 444 * Check if the system has the right microcode. 445 * 446 * CPU Fill buffer clear mitigation is enumerated by either an explicit 447 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 448 * affected systems. 449 */ 450 if ((ia32_cap & ARCH_CAP_FB_CLEAR) || 451 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 452 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 453 !(ia32_cap & ARCH_CAP_MDS_NO))) 454 mmio_mitigation = MMIO_MITIGATION_VERW; 455 else 456 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 457 458 if (mmio_nosmt || cpu_mitigations_auto_nosmt()) 459 cpu_smt_disable(false); 460 } 461 462 static int __init mmio_stale_data_parse_cmdline(char *str) 463 { 464 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 465 return 0; 466 467 if (!str) 468 return -EINVAL; 469 470 if (!strcmp(str, "off")) { 471 mmio_mitigation = MMIO_MITIGATION_OFF; 472 } else if (!strcmp(str, "full")) { 473 mmio_mitigation = MMIO_MITIGATION_VERW; 474 } else if (!strcmp(str, "full,nosmt")) { 475 mmio_mitigation = MMIO_MITIGATION_VERW; 476 mmio_nosmt = true; 477 } 478 479 return 0; 480 } 481 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 482 483 #undef pr_fmt 484 #define pr_fmt(fmt) "Register File Data Sampling: " fmt 485 486 enum rfds_mitigations { 487 RFDS_MITIGATION_OFF, 488 RFDS_MITIGATION_VERW, 489 RFDS_MITIGATION_UCODE_NEEDED, 490 }; 491 492 /* Default mitigation for Register File Data Sampling */ 493 static enum rfds_mitigations rfds_mitigation __ro_after_init = 494 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF; 495 496 static const char * const rfds_strings[] = { 497 [RFDS_MITIGATION_OFF] = "Vulnerable", 498 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File", 499 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 500 }; 501 502 static void __init rfds_select_mitigation(void) 503 { 504 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) { 505 rfds_mitigation = RFDS_MITIGATION_OFF; 506 return; 507 } 508 if (rfds_mitigation == RFDS_MITIGATION_OFF) 509 return; 510 511 if (x86_read_arch_cap_msr() & ARCH_CAP_RFDS_CLEAR) 512 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 513 else 514 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED; 515 } 516 517 static __init int rfds_parse_cmdline(char *str) 518 { 519 if (!str) 520 return -EINVAL; 521 522 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 523 return 0; 524 525 if (!strcmp(str, "off")) 526 rfds_mitigation = RFDS_MITIGATION_OFF; 527 else if (!strcmp(str, "on")) 528 rfds_mitigation = RFDS_MITIGATION_VERW; 529 530 return 0; 531 } 532 early_param("reg_file_data_sampling", rfds_parse_cmdline); 533 534 #undef pr_fmt 535 #define pr_fmt(fmt) "" fmt 536 537 static void __init md_clear_update_mitigation(void) 538 { 539 if (cpu_mitigations_off()) 540 return; 541 542 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 543 goto out; 544 545 /* 546 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO 547 * Stale Data mitigation, if necessary. 548 */ 549 if (mds_mitigation == MDS_MITIGATION_OFF && 550 boot_cpu_has_bug(X86_BUG_MDS)) { 551 mds_mitigation = MDS_MITIGATION_FULL; 552 mds_select_mitigation(); 553 } 554 if (taa_mitigation == TAA_MITIGATION_OFF && 555 boot_cpu_has_bug(X86_BUG_TAA)) { 556 taa_mitigation = TAA_MITIGATION_VERW; 557 taa_select_mitigation(); 558 } 559 /* 560 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear 561 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state. 562 */ 563 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 564 mmio_mitigation = MMIO_MITIGATION_VERW; 565 mmio_select_mitigation(); 566 } 567 if (rfds_mitigation == RFDS_MITIGATION_OFF && 568 boot_cpu_has_bug(X86_BUG_RFDS)) { 569 rfds_mitigation = RFDS_MITIGATION_VERW; 570 rfds_select_mitigation(); 571 } 572 out: 573 if (boot_cpu_has_bug(X86_BUG_MDS)) 574 pr_info("MDS: %s\n", mds_strings[mds_mitigation]); 575 if (boot_cpu_has_bug(X86_BUG_TAA)) 576 pr_info("TAA: %s\n", taa_strings[taa_mitigation]); 577 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 578 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); 579 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 580 pr_info("MMIO Stale Data: Unknown: No mitigations\n"); 581 if (boot_cpu_has_bug(X86_BUG_RFDS)) 582 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]); 583 } 584 585 static void __init md_clear_select_mitigation(void) 586 { 587 mds_select_mitigation(); 588 taa_select_mitigation(); 589 mmio_select_mitigation(); 590 rfds_select_mitigation(); 591 592 /* 593 * As these mitigations are inter-related and rely on VERW instruction 594 * to clear the microarchitural buffers, update and print their status 595 * after mitigation selection is done for each of these vulnerabilities. 596 */ 597 md_clear_update_mitigation(); 598 } 599 600 #undef pr_fmt 601 #define pr_fmt(fmt) "SRBDS: " fmt 602 603 enum srbds_mitigations { 604 SRBDS_MITIGATION_OFF, 605 SRBDS_MITIGATION_UCODE_NEEDED, 606 SRBDS_MITIGATION_FULL, 607 SRBDS_MITIGATION_TSX_OFF, 608 SRBDS_MITIGATION_HYPERVISOR, 609 }; 610 611 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; 612 613 static const char * const srbds_strings[] = { 614 [SRBDS_MITIGATION_OFF] = "Vulnerable", 615 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 616 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 617 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 618 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 619 }; 620 621 static bool srbds_off; 622 623 void update_srbds_msr(void) 624 { 625 u64 mcu_ctrl; 626 627 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 628 return; 629 630 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 631 return; 632 633 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 634 return; 635 636 /* 637 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 638 * being disabled and it hasn't received the SRBDS MSR microcode. 639 */ 640 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 641 return; 642 643 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 644 645 switch (srbds_mitigation) { 646 case SRBDS_MITIGATION_OFF: 647 case SRBDS_MITIGATION_TSX_OFF: 648 mcu_ctrl |= RNGDS_MITG_DIS; 649 break; 650 case SRBDS_MITIGATION_FULL: 651 mcu_ctrl &= ~RNGDS_MITG_DIS; 652 break; 653 default: 654 break; 655 } 656 657 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 658 } 659 660 static void __init srbds_select_mitigation(void) 661 { 662 u64 ia32_cap; 663 664 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 665 return; 666 667 /* 668 * Check to see if this is one of the MDS_NO systems supporting TSX that 669 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 670 * by Processor MMIO Stale Data vulnerability. 671 */ 672 ia32_cap = x86_read_arch_cap_msr(); 673 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 674 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 675 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 676 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 677 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 678 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 679 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 680 else if (cpu_mitigations_off() || srbds_off) 681 srbds_mitigation = SRBDS_MITIGATION_OFF; 682 683 update_srbds_msr(); 684 pr_info("%s\n", srbds_strings[srbds_mitigation]); 685 } 686 687 static int __init srbds_parse_cmdline(char *str) 688 { 689 if (!str) 690 return -EINVAL; 691 692 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 693 return 0; 694 695 srbds_off = !strcmp(str, "off"); 696 return 0; 697 } 698 early_param("srbds", srbds_parse_cmdline); 699 700 #undef pr_fmt 701 #define pr_fmt(fmt) "L1D Flush : " fmt 702 703 enum l1d_flush_mitigations { 704 L1D_FLUSH_OFF = 0, 705 L1D_FLUSH_ON, 706 }; 707 708 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 709 710 static void __init l1d_flush_select_mitigation(void) 711 { 712 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 713 return; 714 715 static_branch_enable(&switch_mm_cond_l1d_flush); 716 pr_info("Conditional flush on switch_mm() enabled\n"); 717 } 718 719 static int __init l1d_flush_parse_cmdline(char *str) 720 { 721 if (!strcmp(str, "on")) 722 l1d_flush_mitigation = L1D_FLUSH_ON; 723 724 return 0; 725 } 726 early_param("l1d_flush", l1d_flush_parse_cmdline); 727 728 #undef pr_fmt 729 #define pr_fmt(fmt) "GDS: " fmt 730 731 enum gds_mitigations { 732 GDS_MITIGATION_OFF, 733 GDS_MITIGATION_UCODE_NEEDED, 734 GDS_MITIGATION_FORCE, 735 GDS_MITIGATION_FULL, 736 GDS_MITIGATION_FULL_LOCKED, 737 GDS_MITIGATION_HYPERVISOR, 738 }; 739 740 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION) 741 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE; 742 #else 743 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL; 744 #endif 745 746 static const char * const gds_strings[] = { 747 [GDS_MITIGATION_OFF] = "Vulnerable", 748 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 749 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", 750 [GDS_MITIGATION_FULL] = "Mitigation: Microcode", 751 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", 752 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 753 }; 754 755 bool gds_ucode_mitigated(void) 756 { 757 return (gds_mitigation == GDS_MITIGATION_FULL || 758 gds_mitigation == GDS_MITIGATION_FULL_LOCKED); 759 } 760 EXPORT_SYMBOL_GPL(gds_ucode_mitigated); 761 762 void update_gds_msr(void) 763 { 764 u64 mcu_ctrl_after; 765 u64 mcu_ctrl; 766 767 switch (gds_mitigation) { 768 case GDS_MITIGATION_OFF: 769 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 770 mcu_ctrl |= GDS_MITG_DIS; 771 break; 772 case GDS_MITIGATION_FULL_LOCKED: 773 /* 774 * The LOCKED state comes from the boot CPU. APs might not have 775 * the same state. Make sure the mitigation is enabled on all 776 * CPUs. 777 */ 778 case GDS_MITIGATION_FULL: 779 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 780 mcu_ctrl &= ~GDS_MITG_DIS; 781 break; 782 case GDS_MITIGATION_FORCE: 783 case GDS_MITIGATION_UCODE_NEEDED: 784 case GDS_MITIGATION_HYPERVISOR: 785 return; 786 }; 787 788 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 789 790 /* 791 * Check to make sure that the WRMSR value was not ignored. Writes to 792 * GDS_MITG_DIS will be ignored if this processor is locked but the boot 793 * processor was not. 794 */ 795 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); 796 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); 797 } 798 799 static void __init gds_select_mitigation(void) 800 { 801 u64 mcu_ctrl; 802 803 if (!boot_cpu_has_bug(X86_BUG_GDS)) 804 return; 805 806 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 807 gds_mitigation = GDS_MITIGATION_HYPERVISOR; 808 goto out; 809 } 810 811 if (cpu_mitigations_off()) 812 gds_mitigation = GDS_MITIGATION_OFF; 813 /* Will verify below that mitigation _can_ be disabled */ 814 815 /* No microcode */ 816 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) { 817 if (gds_mitigation == GDS_MITIGATION_FORCE) { 818 /* 819 * This only needs to be done on the boot CPU so do it 820 * here rather than in update_gds_msr() 821 */ 822 setup_clear_cpu_cap(X86_FEATURE_AVX); 823 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); 824 } else { 825 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; 826 } 827 goto out; 828 } 829 830 /* Microcode has mitigation, use it */ 831 if (gds_mitigation == GDS_MITIGATION_FORCE) 832 gds_mitigation = GDS_MITIGATION_FULL; 833 834 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 835 if (mcu_ctrl & GDS_MITG_LOCKED) { 836 if (gds_mitigation == GDS_MITIGATION_OFF) 837 pr_warn("Mitigation locked. Disable failed.\n"); 838 839 /* 840 * The mitigation is selected from the boot CPU. All other CPUs 841 * _should_ have the same state. If the boot CPU isn't locked 842 * but others are then update_gds_msr() will WARN() of the state 843 * mismatch. If the boot CPU is locked update_gds_msr() will 844 * ensure the other CPUs have the mitigation enabled. 845 */ 846 gds_mitigation = GDS_MITIGATION_FULL_LOCKED; 847 } 848 849 update_gds_msr(); 850 out: 851 pr_info("%s\n", gds_strings[gds_mitigation]); 852 } 853 854 static int __init gds_parse_cmdline(char *str) 855 { 856 if (!str) 857 return -EINVAL; 858 859 if (!boot_cpu_has_bug(X86_BUG_GDS)) 860 return 0; 861 862 if (!strcmp(str, "off")) 863 gds_mitigation = GDS_MITIGATION_OFF; 864 else if (!strcmp(str, "force")) 865 gds_mitigation = GDS_MITIGATION_FORCE; 866 867 return 0; 868 } 869 early_param("gather_data_sampling", gds_parse_cmdline); 870 871 #undef pr_fmt 872 #define pr_fmt(fmt) "Spectre V1 : " fmt 873 874 enum spectre_v1_mitigation { 875 SPECTRE_V1_MITIGATION_NONE, 876 SPECTRE_V1_MITIGATION_AUTO, 877 }; 878 879 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 880 SPECTRE_V1_MITIGATION_AUTO; 881 882 static const char * const spectre_v1_strings[] = { 883 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 884 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 885 }; 886 887 /* 888 * Does SMAP provide full mitigation against speculative kernel access to 889 * userspace? 890 */ 891 static bool smap_works_speculatively(void) 892 { 893 if (!boot_cpu_has(X86_FEATURE_SMAP)) 894 return false; 895 896 /* 897 * On CPUs which are vulnerable to Meltdown, SMAP does not 898 * prevent speculative access to user data in the L1 cache. 899 * Consider SMAP to be non-functional as a mitigation on these 900 * CPUs. 901 */ 902 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 903 return false; 904 905 return true; 906 } 907 908 static void __init spectre_v1_select_mitigation(void) 909 { 910 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { 911 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 912 return; 913 } 914 915 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 916 /* 917 * With Spectre v1, a user can speculatively control either 918 * path of a conditional swapgs with a user-controlled GS 919 * value. The mitigation is to add lfences to both code paths. 920 * 921 * If FSGSBASE is enabled, the user can put a kernel address in 922 * GS, in which case SMAP provides no protection. 923 * 924 * If FSGSBASE is disabled, the user can only put a user space 925 * address in GS. That makes an attack harder, but still 926 * possible if there's no SMAP protection. 927 */ 928 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 929 !smap_works_speculatively()) { 930 /* 931 * Mitigation can be provided from SWAPGS itself or 932 * PTI as the CR3 write in the Meltdown mitigation 933 * is serializing. 934 * 935 * If neither is there, mitigate with an LFENCE to 936 * stop speculation through swapgs. 937 */ 938 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 939 !boot_cpu_has(X86_FEATURE_PTI)) 940 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 941 942 /* 943 * Enable lfences in the kernel entry (non-swapgs) 944 * paths, to prevent user entry from speculatively 945 * skipping swapgs. 946 */ 947 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 948 } 949 } 950 951 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 952 } 953 954 static int __init nospectre_v1_cmdline(char *str) 955 { 956 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 957 return 0; 958 } 959 early_param("nospectre_v1", nospectre_v1_cmdline); 960 961 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; 962 963 #undef pr_fmt 964 #define pr_fmt(fmt) "RETBleed: " fmt 965 966 enum retbleed_mitigation { 967 RETBLEED_MITIGATION_NONE, 968 RETBLEED_MITIGATION_UNRET, 969 RETBLEED_MITIGATION_IBPB, 970 RETBLEED_MITIGATION_IBRS, 971 RETBLEED_MITIGATION_EIBRS, 972 RETBLEED_MITIGATION_STUFF, 973 }; 974 975 enum retbleed_mitigation_cmd { 976 RETBLEED_CMD_OFF, 977 RETBLEED_CMD_AUTO, 978 RETBLEED_CMD_UNRET, 979 RETBLEED_CMD_IBPB, 980 RETBLEED_CMD_STUFF, 981 }; 982 983 static const char * const retbleed_strings[] = { 984 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 985 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 986 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 987 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 988 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 989 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", 990 }; 991 992 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 993 RETBLEED_MITIGATION_NONE; 994 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = 995 RETBLEED_CMD_AUTO; 996 997 static int __ro_after_init retbleed_nosmt = false; 998 999 static int __init retbleed_parse_cmdline(char *str) 1000 { 1001 if (!str) 1002 return -EINVAL; 1003 1004 while (str) { 1005 char *next = strchr(str, ','); 1006 if (next) { 1007 *next = 0; 1008 next++; 1009 } 1010 1011 if (!strcmp(str, "off")) { 1012 retbleed_cmd = RETBLEED_CMD_OFF; 1013 } else if (!strcmp(str, "auto")) { 1014 retbleed_cmd = RETBLEED_CMD_AUTO; 1015 } else if (!strcmp(str, "unret")) { 1016 retbleed_cmd = RETBLEED_CMD_UNRET; 1017 } else if (!strcmp(str, "ibpb")) { 1018 retbleed_cmd = RETBLEED_CMD_IBPB; 1019 } else if (!strcmp(str, "stuff")) { 1020 retbleed_cmd = RETBLEED_CMD_STUFF; 1021 } else if (!strcmp(str, "nosmt")) { 1022 retbleed_nosmt = true; 1023 } else if (!strcmp(str, "force")) { 1024 setup_force_cpu_bug(X86_BUG_RETBLEED); 1025 } else { 1026 pr_err("Ignoring unknown retbleed option (%s).", str); 1027 } 1028 1029 str = next; 1030 } 1031 1032 return 0; 1033 } 1034 early_param("retbleed", retbleed_parse_cmdline); 1035 1036 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 1037 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 1038 1039 static void __init retbleed_select_mitigation(void) 1040 { 1041 bool mitigate_smt = false; 1042 1043 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) 1044 return; 1045 1046 switch (retbleed_cmd) { 1047 case RETBLEED_CMD_OFF: 1048 return; 1049 1050 case RETBLEED_CMD_UNRET: 1051 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) { 1052 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1053 } else { 1054 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n"); 1055 goto do_cmd_auto; 1056 } 1057 break; 1058 1059 case RETBLEED_CMD_IBPB: 1060 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 1061 pr_err("WARNING: CPU does not support IBPB.\n"); 1062 goto do_cmd_auto; 1063 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) { 1064 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1065 } else { 1066 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n"); 1067 goto do_cmd_auto; 1068 } 1069 break; 1070 1071 case RETBLEED_CMD_STUFF: 1072 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) && 1073 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) { 1074 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1075 1076 } else { 1077 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING)) 1078 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n"); 1079 else 1080 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n"); 1081 1082 goto do_cmd_auto; 1083 } 1084 break; 1085 1086 do_cmd_auto: 1087 case RETBLEED_CMD_AUTO: 1088 default: 1089 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1090 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 1091 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) 1092 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1093 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB)) 1094 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1095 } 1096 1097 /* 1098 * The Intel mitigation (IBRS or eIBRS) was already selected in 1099 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will 1100 * be set accordingly below. 1101 */ 1102 1103 break; 1104 } 1105 1106 switch (retbleed_mitigation) { 1107 case RETBLEED_MITIGATION_UNRET: 1108 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1109 setup_force_cpu_cap(X86_FEATURE_UNRET); 1110 1111 x86_return_thunk = retbleed_return_thunk; 1112 1113 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 1114 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 1115 pr_err(RETBLEED_UNTRAIN_MSG); 1116 1117 mitigate_smt = true; 1118 break; 1119 1120 case RETBLEED_MITIGATION_IBPB: 1121 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 1122 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 1123 mitigate_smt = true; 1124 break; 1125 1126 case RETBLEED_MITIGATION_STUFF: 1127 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1128 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1129 x86_set_skl_return_thunk(); 1130 break; 1131 1132 default: 1133 break; 1134 } 1135 1136 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 1137 (retbleed_nosmt || cpu_mitigations_auto_nosmt())) 1138 cpu_smt_disable(false); 1139 1140 /* 1141 * Let IBRS trump all on Intel without affecting the effects of the 1142 * retbleed= cmdline option except for call depth based stuffing 1143 */ 1144 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1145 switch (spectre_v2_enabled) { 1146 case SPECTRE_V2_IBRS: 1147 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1148 break; 1149 case SPECTRE_V2_EIBRS: 1150 case SPECTRE_V2_EIBRS_RETPOLINE: 1151 case SPECTRE_V2_EIBRS_LFENCE: 1152 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1153 break; 1154 default: 1155 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) 1156 pr_err(RETBLEED_INTEL_MSG); 1157 } 1158 } 1159 1160 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 1161 } 1162 1163 #undef pr_fmt 1164 #define pr_fmt(fmt) "Spectre V2 : " fmt 1165 1166 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 1167 SPECTRE_V2_USER_NONE; 1168 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 1169 SPECTRE_V2_USER_NONE; 1170 1171 #ifdef CONFIG_RETPOLINE 1172 static bool spectre_v2_bad_module; 1173 1174 bool retpoline_module_ok(bool has_retpoline) 1175 { 1176 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 1177 return true; 1178 1179 pr_err("System may be vulnerable to spectre v2\n"); 1180 spectre_v2_bad_module = true; 1181 return false; 1182 } 1183 1184 static inline const char *spectre_v2_module_string(void) 1185 { 1186 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 1187 } 1188 #else 1189 static inline const char *spectre_v2_module_string(void) { return ""; } 1190 #endif 1191 1192 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 1193 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 1194 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 1195 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 1196 1197 #ifdef CONFIG_BPF_SYSCALL 1198 void unpriv_ebpf_notify(int new_state) 1199 { 1200 if (new_state) 1201 return; 1202 1203 /* Unprivileged eBPF is enabled */ 1204 1205 switch (spectre_v2_enabled) { 1206 case SPECTRE_V2_EIBRS: 1207 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1208 break; 1209 case SPECTRE_V2_EIBRS_LFENCE: 1210 if (sched_smt_active()) 1211 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1212 break; 1213 default: 1214 break; 1215 } 1216 } 1217 #endif 1218 1219 static inline bool match_option(const char *arg, int arglen, const char *opt) 1220 { 1221 int len = strlen(opt); 1222 1223 return len == arglen && !strncmp(arg, opt, len); 1224 } 1225 1226 /* The kernel command line selection for spectre v2 */ 1227 enum spectre_v2_mitigation_cmd { 1228 SPECTRE_V2_CMD_NONE, 1229 SPECTRE_V2_CMD_AUTO, 1230 SPECTRE_V2_CMD_FORCE, 1231 SPECTRE_V2_CMD_RETPOLINE, 1232 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1233 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1234 SPECTRE_V2_CMD_EIBRS, 1235 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1236 SPECTRE_V2_CMD_EIBRS_LFENCE, 1237 SPECTRE_V2_CMD_IBRS, 1238 }; 1239 1240 enum spectre_v2_user_cmd { 1241 SPECTRE_V2_USER_CMD_NONE, 1242 SPECTRE_V2_USER_CMD_AUTO, 1243 SPECTRE_V2_USER_CMD_FORCE, 1244 SPECTRE_V2_USER_CMD_PRCTL, 1245 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1246 SPECTRE_V2_USER_CMD_SECCOMP, 1247 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1248 }; 1249 1250 static const char * const spectre_v2_user_strings[] = { 1251 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1252 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1253 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1254 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1255 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1256 }; 1257 1258 static const struct { 1259 const char *option; 1260 enum spectre_v2_user_cmd cmd; 1261 bool secure; 1262 } v2_user_options[] __initconst = { 1263 { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, 1264 { "off", SPECTRE_V2_USER_CMD_NONE, false }, 1265 { "on", SPECTRE_V2_USER_CMD_FORCE, true }, 1266 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, 1267 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, 1268 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, 1269 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, 1270 }; 1271 1272 static void __init spec_v2_user_print_cond(const char *reason, bool secure) 1273 { 1274 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1275 pr_info("spectre_v2_user=%s forced on command line.\n", reason); 1276 } 1277 1278 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; 1279 1280 static enum spectre_v2_user_cmd __init 1281 spectre_v2_parse_user_cmdline(void) 1282 { 1283 char arg[20]; 1284 int ret, i; 1285 1286 switch (spectre_v2_cmd) { 1287 case SPECTRE_V2_CMD_NONE: 1288 return SPECTRE_V2_USER_CMD_NONE; 1289 case SPECTRE_V2_CMD_FORCE: 1290 return SPECTRE_V2_USER_CMD_FORCE; 1291 default: 1292 break; 1293 } 1294 1295 ret = cmdline_find_option(boot_command_line, "spectre_v2_user", 1296 arg, sizeof(arg)); 1297 if (ret < 0) 1298 return SPECTRE_V2_USER_CMD_AUTO; 1299 1300 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { 1301 if (match_option(arg, ret, v2_user_options[i].option)) { 1302 spec_v2_user_print_cond(v2_user_options[i].option, 1303 v2_user_options[i].secure); 1304 return v2_user_options[i].cmd; 1305 } 1306 } 1307 1308 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); 1309 return SPECTRE_V2_USER_CMD_AUTO; 1310 } 1311 1312 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1313 { 1314 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; 1315 } 1316 1317 static void __init 1318 spectre_v2_user_select_mitigation(void) 1319 { 1320 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; 1321 bool smt_possible = IS_ENABLED(CONFIG_SMP); 1322 enum spectre_v2_user_cmd cmd; 1323 1324 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1325 return; 1326 1327 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 1328 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 1329 smt_possible = false; 1330 1331 cmd = spectre_v2_parse_user_cmdline(); 1332 switch (cmd) { 1333 case SPECTRE_V2_USER_CMD_NONE: 1334 goto set_mode; 1335 case SPECTRE_V2_USER_CMD_FORCE: 1336 mode = SPECTRE_V2_USER_STRICT; 1337 break; 1338 case SPECTRE_V2_USER_CMD_AUTO: 1339 case SPECTRE_V2_USER_CMD_PRCTL: 1340 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1341 mode = SPECTRE_V2_USER_PRCTL; 1342 break; 1343 case SPECTRE_V2_USER_CMD_SECCOMP: 1344 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1345 if (IS_ENABLED(CONFIG_SECCOMP)) 1346 mode = SPECTRE_V2_USER_SECCOMP; 1347 else 1348 mode = SPECTRE_V2_USER_PRCTL; 1349 break; 1350 } 1351 1352 /* Initialize Indirect Branch Prediction Barrier */ 1353 if (boot_cpu_has(X86_FEATURE_IBPB)) { 1354 setup_force_cpu_cap(X86_FEATURE_USE_IBPB); 1355 1356 spectre_v2_user_ibpb = mode; 1357 switch (cmd) { 1358 case SPECTRE_V2_USER_CMD_FORCE: 1359 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1360 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1361 static_branch_enable(&switch_mm_always_ibpb); 1362 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1363 break; 1364 case SPECTRE_V2_USER_CMD_PRCTL: 1365 case SPECTRE_V2_USER_CMD_AUTO: 1366 case SPECTRE_V2_USER_CMD_SECCOMP: 1367 static_branch_enable(&switch_mm_cond_ibpb); 1368 break; 1369 default: 1370 break; 1371 } 1372 1373 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1374 static_key_enabled(&switch_mm_always_ibpb) ? 1375 "always-on" : "conditional"); 1376 } 1377 1378 /* 1379 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP 1380 * is not required. 1381 * 1382 * Intel's Enhanced IBRS also protects against cross-thread branch target 1383 * injection in user-mode as the IBRS bit remains always set which 1384 * implicitly enables cross-thread protections. However, in legacy IBRS 1385 * mode, the IBRS bit is set only on kernel entry and cleared on return 1386 * to userspace. AMD Automatic IBRS also does not protect userspace. 1387 * These modes therefore disable the implicit cross-thread protection, 1388 * so allow for STIBP to be selected in those cases. 1389 */ 1390 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1391 !smt_possible || 1392 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1393 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) 1394 return; 1395 1396 /* 1397 * At this point, an STIBP mode other than "off" has been set. 1398 * If STIBP support is not being forced, check if STIBP always-on 1399 * is preferred. 1400 */ 1401 if (mode != SPECTRE_V2_USER_STRICT && 1402 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1403 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1404 1405 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1406 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 1407 if (mode != SPECTRE_V2_USER_STRICT && 1408 mode != SPECTRE_V2_USER_STRICT_PREFERRED) 1409 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1410 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1411 } 1412 1413 spectre_v2_user_stibp = mode; 1414 1415 set_mode: 1416 pr_info("%s\n", spectre_v2_user_strings[mode]); 1417 } 1418 1419 static const char * const spectre_v2_strings[] = { 1420 [SPECTRE_V2_NONE] = "Vulnerable", 1421 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1422 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", 1423 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", 1424 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", 1425 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", 1426 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1427 }; 1428 1429 static const struct { 1430 const char *option; 1431 enum spectre_v2_mitigation_cmd cmd; 1432 bool secure; 1433 } mitigation_options[] __initconst = { 1434 { "off", SPECTRE_V2_CMD_NONE, false }, 1435 { "on", SPECTRE_V2_CMD_FORCE, true }, 1436 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, 1437 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1438 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1439 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, 1440 { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, 1441 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, 1442 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, 1443 { "auto", SPECTRE_V2_CMD_AUTO, false }, 1444 { "ibrs", SPECTRE_V2_CMD_IBRS, false }, 1445 }; 1446 1447 static void __init spec_v2_print_cond(const char *reason, bool secure) 1448 { 1449 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1450 pr_info("%s selected on command line.\n", reason); 1451 } 1452 1453 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) 1454 { 1455 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; 1456 char arg[20]; 1457 int ret, i; 1458 1459 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || 1460 cpu_mitigations_off()) 1461 return SPECTRE_V2_CMD_NONE; 1462 1463 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); 1464 if (ret < 0) 1465 return SPECTRE_V2_CMD_AUTO; 1466 1467 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { 1468 if (!match_option(arg, ret, mitigation_options[i].option)) 1469 continue; 1470 cmd = mitigation_options[i].cmd; 1471 break; 1472 } 1473 1474 if (i >= ARRAY_SIZE(mitigation_options)) { 1475 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1476 return SPECTRE_V2_CMD_AUTO; 1477 } 1478 1479 if ((cmd == SPECTRE_V2_CMD_RETPOLINE || 1480 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1481 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 1482 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1483 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1484 !IS_ENABLED(CONFIG_RETPOLINE)) { 1485 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1486 mitigation_options[i].option); 1487 return SPECTRE_V2_CMD_AUTO; 1488 } 1489 1490 if ((cmd == SPECTRE_V2_CMD_EIBRS || 1491 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1492 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1493 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1494 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", 1495 mitigation_options[i].option); 1496 return SPECTRE_V2_CMD_AUTO; 1497 } 1498 1499 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1500 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 1501 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 1502 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", 1503 mitigation_options[i].option); 1504 return SPECTRE_V2_CMD_AUTO; 1505 } 1506 1507 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) { 1508 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1509 mitigation_options[i].option); 1510 return SPECTRE_V2_CMD_AUTO; 1511 } 1512 1513 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1514 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", 1515 mitigation_options[i].option); 1516 return SPECTRE_V2_CMD_AUTO; 1517 } 1518 1519 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 1520 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", 1521 mitigation_options[i].option); 1522 return SPECTRE_V2_CMD_AUTO; 1523 } 1524 1525 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { 1526 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", 1527 mitigation_options[i].option); 1528 return SPECTRE_V2_CMD_AUTO; 1529 } 1530 1531 spec_v2_print_cond(mitigation_options[i].option, 1532 mitigation_options[i].secure); 1533 return cmd; 1534 } 1535 1536 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1537 { 1538 if (!IS_ENABLED(CONFIG_RETPOLINE)) { 1539 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1540 return SPECTRE_V2_NONE; 1541 } 1542 1543 return SPECTRE_V2_RETPOLINE; 1544 } 1545 1546 /* Disable in-kernel use of non-RSB RET predictors */ 1547 static void __init spec_ctrl_disable_kernel_rrsba(void) 1548 { 1549 u64 ia32_cap; 1550 1551 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1552 return; 1553 1554 ia32_cap = x86_read_arch_cap_msr(); 1555 1556 if (ia32_cap & ARCH_CAP_RRSBA) { 1557 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1558 update_spec_ctrl(x86_spec_ctrl_base); 1559 } 1560 } 1561 1562 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) 1563 { 1564 /* 1565 * Similar to context switches, there are two types of RSB attacks 1566 * after VM exit: 1567 * 1568 * 1) RSB underflow 1569 * 1570 * 2) Poisoned RSB entry 1571 * 1572 * When retpoline is enabled, both are mitigated by filling/clearing 1573 * the RSB. 1574 * 1575 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch 1576 * prediction isolation protections, RSB still needs to be cleared 1577 * because of #2. Note that SMEP provides no protection here, unlike 1578 * user-space-poisoned RSB entries. 1579 * 1580 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB 1581 * bug is present then a LITE version of RSB protection is required, 1582 * just a single call needs to retire before a RET is executed. 1583 */ 1584 switch (mode) { 1585 case SPECTRE_V2_NONE: 1586 return; 1587 1588 case SPECTRE_V2_EIBRS_LFENCE: 1589 case SPECTRE_V2_EIBRS: 1590 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 1591 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 1592 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 1593 } 1594 return; 1595 1596 case SPECTRE_V2_EIBRS_RETPOLINE: 1597 case SPECTRE_V2_RETPOLINE: 1598 case SPECTRE_V2_LFENCE: 1599 case SPECTRE_V2_IBRS: 1600 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1601 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); 1602 return; 1603 } 1604 1605 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); 1606 dump_stack(); 1607 } 1608 1609 /* 1610 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by 1611 * branch history in userspace. Not needed if BHI_NO is set. 1612 */ 1613 static bool __init spec_ctrl_bhi_dis(void) 1614 { 1615 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL)) 1616 return false; 1617 1618 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S; 1619 update_spec_ctrl(x86_spec_ctrl_base); 1620 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW); 1621 1622 return true; 1623 } 1624 1625 enum bhi_mitigations { 1626 BHI_MITIGATION_OFF, 1627 BHI_MITIGATION_ON, 1628 BHI_MITIGATION_AUTO, 1629 }; 1630 1631 static enum bhi_mitigations bhi_mitigation __ro_after_init = 1632 IS_ENABLED(CONFIG_SPECTRE_BHI_ON) ? BHI_MITIGATION_ON : 1633 IS_ENABLED(CONFIG_SPECTRE_BHI_OFF) ? BHI_MITIGATION_OFF : 1634 BHI_MITIGATION_AUTO; 1635 1636 static int __init spectre_bhi_parse_cmdline(char *str) 1637 { 1638 if (!str) 1639 return -EINVAL; 1640 1641 if (!strcmp(str, "off")) 1642 bhi_mitigation = BHI_MITIGATION_OFF; 1643 else if (!strcmp(str, "on")) 1644 bhi_mitigation = BHI_MITIGATION_ON; 1645 else if (!strcmp(str, "auto")) 1646 bhi_mitigation = BHI_MITIGATION_AUTO; 1647 else 1648 pr_err("Ignoring unknown spectre_bhi option (%s)", str); 1649 1650 return 0; 1651 } 1652 early_param("spectre_bhi", spectre_bhi_parse_cmdline); 1653 1654 static void __init bhi_select_mitigation(void) 1655 { 1656 if (bhi_mitigation == BHI_MITIGATION_OFF) 1657 return; 1658 1659 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */ 1660 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 1661 !(x86_read_arch_cap_msr() & ARCH_CAP_RRSBA)) 1662 return; 1663 1664 if (spec_ctrl_bhi_dis()) 1665 return; 1666 1667 if (!IS_ENABLED(CONFIG_X86_64)) 1668 return; 1669 1670 /* Mitigate KVM by default */ 1671 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT); 1672 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n"); 1673 1674 if (bhi_mitigation == BHI_MITIGATION_AUTO) 1675 return; 1676 1677 /* Mitigate syscalls when the mitigation is forced =on */ 1678 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP); 1679 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n"); 1680 } 1681 1682 static void __init spectre_v2_select_mitigation(void) 1683 { 1684 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); 1685 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; 1686 1687 /* 1688 * If the CPU is not affected and the command line mode is NONE or AUTO 1689 * then nothing to do. 1690 */ 1691 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && 1692 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) 1693 return; 1694 1695 switch (cmd) { 1696 case SPECTRE_V2_CMD_NONE: 1697 return; 1698 1699 case SPECTRE_V2_CMD_FORCE: 1700 case SPECTRE_V2_CMD_AUTO: 1701 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1702 mode = SPECTRE_V2_EIBRS; 1703 break; 1704 } 1705 1706 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) && 1707 boot_cpu_has_bug(X86_BUG_RETBLEED) && 1708 retbleed_cmd != RETBLEED_CMD_OFF && 1709 retbleed_cmd != RETBLEED_CMD_STUFF && 1710 boot_cpu_has(X86_FEATURE_IBRS) && 1711 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1712 mode = SPECTRE_V2_IBRS; 1713 break; 1714 } 1715 1716 mode = spectre_v2_select_retpoline(); 1717 break; 1718 1719 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 1720 pr_err(SPECTRE_V2_LFENCE_MSG); 1721 mode = SPECTRE_V2_LFENCE; 1722 break; 1723 1724 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 1725 mode = SPECTRE_V2_RETPOLINE; 1726 break; 1727 1728 case SPECTRE_V2_CMD_RETPOLINE: 1729 mode = spectre_v2_select_retpoline(); 1730 break; 1731 1732 case SPECTRE_V2_CMD_IBRS: 1733 mode = SPECTRE_V2_IBRS; 1734 break; 1735 1736 case SPECTRE_V2_CMD_EIBRS: 1737 mode = SPECTRE_V2_EIBRS; 1738 break; 1739 1740 case SPECTRE_V2_CMD_EIBRS_LFENCE: 1741 mode = SPECTRE_V2_EIBRS_LFENCE; 1742 break; 1743 1744 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 1745 mode = SPECTRE_V2_EIBRS_RETPOLINE; 1746 break; 1747 } 1748 1749 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 1750 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1751 1752 if (spectre_v2_in_ibrs_mode(mode)) { 1753 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { 1754 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); 1755 } else { 1756 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 1757 update_spec_ctrl(x86_spec_ctrl_base); 1758 } 1759 } 1760 1761 switch (mode) { 1762 case SPECTRE_V2_NONE: 1763 case SPECTRE_V2_EIBRS: 1764 break; 1765 1766 case SPECTRE_V2_IBRS: 1767 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 1768 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1769 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 1770 break; 1771 1772 case SPECTRE_V2_LFENCE: 1773 case SPECTRE_V2_EIBRS_LFENCE: 1774 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 1775 fallthrough; 1776 1777 case SPECTRE_V2_RETPOLINE: 1778 case SPECTRE_V2_EIBRS_RETPOLINE: 1779 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 1780 break; 1781 } 1782 1783 /* 1784 * Disable alternate RSB predictions in kernel when indirect CALLs and 1785 * JMPs gets protection against BHI and Intramode-BTI, but RET 1786 * prediction from a non-RSB predictor is still a risk. 1787 */ 1788 if (mode == SPECTRE_V2_EIBRS_LFENCE || 1789 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1790 mode == SPECTRE_V2_RETPOLINE) 1791 spec_ctrl_disable_kernel_rrsba(); 1792 1793 if (boot_cpu_has(X86_BUG_BHI)) 1794 bhi_select_mitigation(); 1795 1796 spectre_v2_enabled = mode; 1797 pr_info("%s\n", spectre_v2_strings[mode]); 1798 1799 /* 1800 * If Spectre v2 protection has been enabled, fill the RSB during a 1801 * context switch. In general there are two types of RSB attacks 1802 * across context switches, for which the CALLs/RETs may be unbalanced. 1803 * 1804 * 1) RSB underflow 1805 * 1806 * Some Intel parts have "bottomless RSB". When the RSB is empty, 1807 * speculated return targets may come from the branch predictor, 1808 * which could have a user-poisoned BTB or BHB entry. 1809 * 1810 * AMD has it even worse: *all* returns are speculated from the BTB, 1811 * regardless of the state of the RSB. 1812 * 1813 * When IBRS or eIBRS is enabled, the "user -> kernel" attack 1814 * scenario is mitigated by the IBRS branch prediction isolation 1815 * properties, so the RSB buffer filling wouldn't be necessary to 1816 * protect against this type of attack. 1817 * 1818 * The "user -> user" attack scenario is mitigated by RSB filling. 1819 * 1820 * 2) Poisoned RSB entry 1821 * 1822 * If the 'next' in-kernel return stack is shorter than 'prev', 1823 * 'next' could be tricked into speculating with a user-poisoned RSB 1824 * entry. 1825 * 1826 * The "user -> kernel" attack scenario is mitigated by SMEP and 1827 * eIBRS. 1828 * 1829 * The "user -> user" scenario, also known as SpectreBHB, requires 1830 * RSB clearing. 1831 * 1832 * So to mitigate all cases, unconditionally fill RSB on context 1833 * switches. 1834 * 1835 * FIXME: Is this pointless for retbleed-affected AMD? 1836 */ 1837 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 1838 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); 1839 1840 spectre_v2_determine_rsb_fill_type_at_vmexit(mode); 1841 1842 /* 1843 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 1844 * and Enhanced IBRS protect firmware too, so enable IBRS around 1845 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't 1846 * otherwise enabled. 1847 * 1848 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because 1849 * the user might select retpoline on the kernel command line and if 1850 * the CPU supports Enhanced IBRS, kernel might un-intentionally not 1851 * enable IBRS around firmware calls. 1852 */ 1853 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 1854 boot_cpu_has(X86_FEATURE_IBPB) && 1855 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1856 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 1857 1858 if (retbleed_cmd != RETBLEED_CMD_IBPB) { 1859 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 1860 pr_info("Enabling Speculation Barrier for firmware calls\n"); 1861 } 1862 1863 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { 1864 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 1865 pr_info("Enabling Restricted Speculation for firmware calls\n"); 1866 } 1867 1868 /* Set up IBPB and STIBP depending on the general spectre V2 command */ 1869 spectre_v2_cmd = cmd; 1870 } 1871 1872 static void update_stibp_msr(void * __unused) 1873 { 1874 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 1875 update_spec_ctrl(val); 1876 } 1877 1878 /* Update x86_spec_ctrl_base in case SMT state changed. */ 1879 static void update_stibp_strict(void) 1880 { 1881 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 1882 1883 if (sched_smt_active()) 1884 mask |= SPEC_CTRL_STIBP; 1885 1886 if (mask == x86_spec_ctrl_base) 1887 return; 1888 1889 pr_info("Update user space SMT mitigation: STIBP %s\n", 1890 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 1891 x86_spec_ctrl_base = mask; 1892 on_each_cpu(update_stibp_msr, NULL, 1); 1893 } 1894 1895 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 1896 static void update_indir_branch_cond(void) 1897 { 1898 if (sched_smt_active()) 1899 static_branch_enable(&switch_to_cond_stibp); 1900 else 1901 static_branch_disable(&switch_to_cond_stibp); 1902 } 1903 1904 #undef pr_fmt 1905 #define pr_fmt(fmt) fmt 1906 1907 /* Update the static key controlling the MDS CPU buffer clear in idle */ 1908 static void update_mds_branch_idle(void) 1909 { 1910 u64 ia32_cap = x86_read_arch_cap_msr(); 1911 1912 /* 1913 * Enable the idle clearing if SMT is active on CPUs which are 1914 * affected only by MSBDS and not any other MDS variant. 1915 * 1916 * The other variants cannot be mitigated when SMT is enabled, so 1917 * clearing the buffers on idle just to prevent the Store Buffer 1918 * repartitioning leak would be a window dressing exercise. 1919 */ 1920 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 1921 return; 1922 1923 if (sched_smt_active()) { 1924 static_branch_enable(&mds_idle_clear); 1925 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 1926 (ia32_cap & ARCH_CAP_FBSDP_NO)) { 1927 static_branch_disable(&mds_idle_clear); 1928 } 1929 } 1930 1931 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 1932 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 1933 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 1934 1935 void cpu_bugs_smt_update(void) 1936 { 1937 mutex_lock(&spec_ctrl_mutex); 1938 1939 if (sched_smt_active() && unprivileged_ebpf_enabled() && 1940 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 1941 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1942 1943 switch (spectre_v2_user_stibp) { 1944 case SPECTRE_V2_USER_NONE: 1945 break; 1946 case SPECTRE_V2_USER_STRICT: 1947 case SPECTRE_V2_USER_STRICT_PREFERRED: 1948 update_stibp_strict(); 1949 break; 1950 case SPECTRE_V2_USER_PRCTL: 1951 case SPECTRE_V2_USER_SECCOMP: 1952 update_indir_branch_cond(); 1953 break; 1954 } 1955 1956 switch (mds_mitigation) { 1957 case MDS_MITIGATION_FULL: 1958 case MDS_MITIGATION_VMWERV: 1959 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 1960 pr_warn_once(MDS_MSG_SMT); 1961 update_mds_branch_idle(); 1962 break; 1963 case MDS_MITIGATION_OFF: 1964 break; 1965 } 1966 1967 switch (taa_mitigation) { 1968 case TAA_MITIGATION_VERW: 1969 case TAA_MITIGATION_UCODE_NEEDED: 1970 if (sched_smt_active()) 1971 pr_warn_once(TAA_MSG_SMT); 1972 break; 1973 case TAA_MITIGATION_TSX_DISABLED: 1974 case TAA_MITIGATION_OFF: 1975 break; 1976 } 1977 1978 switch (mmio_mitigation) { 1979 case MMIO_MITIGATION_VERW: 1980 case MMIO_MITIGATION_UCODE_NEEDED: 1981 if (sched_smt_active()) 1982 pr_warn_once(MMIO_MSG_SMT); 1983 break; 1984 case MMIO_MITIGATION_OFF: 1985 break; 1986 } 1987 1988 mutex_unlock(&spec_ctrl_mutex); 1989 } 1990 1991 #undef pr_fmt 1992 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 1993 1994 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; 1995 1996 /* The kernel command line selection */ 1997 enum ssb_mitigation_cmd { 1998 SPEC_STORE_BYPASS_CMD_NONE, 1999 SPEC_STORE_BYPASS_CMD_AUTO, 2000 SPEC_STORE_BYPASS_CMD_ON, 2001 SPEC_STORE_BYPASS_CMD_PRCTL, 2002 SPEC_STORE_BYPASS_CMD_SECCOMP, 2003 }; 2004 2005 static const char * const ssb_strings[] = { 2006 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 2007 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 2008 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 2009 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 2010 }; 2011 2012 static const struct { 2013 const char *option; 2014 enum ssb_mitigation_cmd cmd; 2015 } ssb_mitigation_options[] __initconst = { 2016 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ 2017 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ 2018 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ 2019 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ 2020 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ 2021 }; 2022 2023 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) 2024 { 2025 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; 2026 char arg[20]; 2027 int ret, i; 2028 2029 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || 2030 cpu_mitigations_off()) { 2031 return SPEC_STORE_BYPASS_CMD_NONE; 2032 } else { 2033 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", 2034 arg, sizeof(arg)); 2035 if (ret < 0) 2036 return SPEC_STORE_BYPASS_CMD_AUTO; 2037 2038 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { 2039 if (!match_option(arg, ret, ssb_mitigation_options[i].option)) 2040 continue; 2041 2042 cmd = ssb_mitigation_options[i].cmd; 2043 break; 2044 } 2045 2046 if (i >= ARRAY_SIZE(ssb_mitigation_options)) { 2047 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 2048 return SPEC_STORE_BYPASS_CMD_AUTO; 2049 } 2050 } 2051 2052 return cmd; 2053 } 2054 2055 static enum ssb_mitigation __init __ssb_select_mitigation(void) 2056 { 2057 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; 2058 enum ssb_mitigation_cmd cmd; 2059 2060 if (!boot_cpu_has(X86_FEATURE_SSBD)) 2061 return mode; 2062 2063 cmd = ssb_parse_cmdline(); 2064 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && 2065 (cmd == SPEC_STORE_BYPASS_CMD_NONE || 2066 cmd == SPEC_STORE_BYPASS_CMD_AUTO)) 2067 return mode; 2068 2069 switch (cmd) { 2070 case SPEC_STORE_BYPASS_CMD_SECCOMP: 2071 /* 2072 * Choose prctl+seccomp as the default mode if seccomp is 2073 * enabled. 2074 */ 2075 if (IS_ENABLED(CONFIG_SECCOMP)) 2076 mode = SPEC_STORE_BYPASS_SECCOMP; 2077 else 2078 mode = SPEC_STORE_BYPASS_PRCTL; 2079 break; 2080 case SPEC_STORE_BYPASS_CMD_ON: 2081 mode = SPEC_STORE_BYPASS_DISABLE; 2082 break; 2083 case SPEC_STORE_BYPASS_CMD_AUTO: 2084 case SPEC_STORE_BYPASS_CMD_PRCTL: 2085 mode = SPEC_STORE_BYPASS_PRCTL; 2086 break; 2087 case SPEC_STORE_BYPASS_CMD_NONE: 2088 break; 2089 } 2090 2091 /* 2092 * We have three CPU feature flags that are in play here: 2093 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 2094 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 2095 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 2096 */ 2097 if (mode == SPEC_STORE_BYPASS_DISABLE) { 2098 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 2099 /* 2100 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 2101 * use a completely different MSR and bit dependent on family. 2102 */ 2103 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 2104 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 2105 x86_amd_ssb_disable(); 2106 } else { 2107 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 2108 update_spec_ctrl(x86_spec_ctrl_base); 2109 } 2110 } 2111 2112 return mode; 2113 } 2114 2115 static void ssb_select_mitigation(void) 2116 { 2117 ssb_mode = __ssb_select_mitigation(); 2118 2119 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2120 pr_info("%s\n", ssb_strings[ssb_mode]); 2121 } 2122 2123 #undef pr_fmt 2124 #define pr_fmt(fmt) "Speculation prctl: " fmt 2125 2126 static void task_update_spec_tif(struct task_struct *tsk) 2127 { 2128 /* Force the update of the real TIF bits */ 2129 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 2130 2131 /* 2132 * Immediately update the speculation control MSRs for the current 2133 * task, but for a non-current task delay setting the CPU 2134 * mitigation until it is scheduled next. 2135 * 2136 * This can only happen for SECCOMP mitigation. For PRCTL it's 2137 * always the current task. 2138 */ 2139 if (tsk == current) 2140 speculation_ctrl_update_current(); 2141 } 2142 2143 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 2144 { 2145 2146 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2147 return -EPERM; 2148 2149 switch (ctrl) { 2150 case PR_SPEC_ENABLE: 2151 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2152 return 0; 2153 case PR_SPEC_DISABLE: 2154 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2155 return 0; 2156 default: 2157 return -ERANGE; 2158 } 2159 } 2160 2161 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 2162 { 2163 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 2164 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 2165 return -ENXIO; 2166 2167 switch (ctrl) { 2168 case PR_SPEC_ENABLE: 2169 /* If speculation is force disabled, enable is not allowed */ 2170 if (task_spec_ssb_force_disable(task)) 2171 return -EPERM; 2172 task_clear_spec_ssb_disable(task); 2173 task_clear_spec_ssb_noexec(task); 2174 task_update_spec_tif(task); 2175 break; 2176 case PR_SPEC_DISABLE: 2177 task_set_spec_ssb_disable(task); 2178 task_clear_spec_ssb_noexec(task); 2179 task_update_spec_tif(task); 2180 break; 2181 case PR_SPEC_FORCE_DISABLE: 2182 task_set_spec_ssb_disable(task); 2183 task_set_spec_ssb_force_disable(task); 2184 task_clear_spec_ssb_noexec(task); 2185 task_update_spec_tif(task); 2186 break; 2187 case PR_SPEC_DISABLE_NOEXEC: 2188 if (task_spec_ssb_force_disable(task)) 2189 return -EPERM; 2190 task_set_spec_ssb_disable(task); 2191 task_set_spec_ssb_noexec(task); 2192 task_update_spec_tif(task); 2193 break; 2194 default: 2195 return -ERANGE; 2196 } 2197 return 0; 2198 } 2199 2200 static bool is_spec_ib_user_controlled(void) 2201 { 2202 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 2203 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2204 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 2205 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 2206 } 2207 2208 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 2209 { 2210 switch (ctrl) { 2211 case PR_SPEC_ENABLE: 2212 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2213 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2214 return 0; 2215 2216 /* 2217 * With strict mode for both IBPB and STIBP, the instruction 2218 * code paths avoid checking this task flag and instead, 2219 * unconditionally run the instruction. However, STIBP and IBPB 2220 * are independent and either can be set to conditionally 2221 * enabled regardless of the mode of the other. 2222 * 2223 * If either is set to conditional, allow the task flag to be 2224 * updated, unless it was force-disabled by a previous prctl 2225 * call. Currently, this is possible on an AMD CPU which has the 2226 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 2227 * kernel is booted with 'spectre_v2_user=seccomp', then 2228 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 2229 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 2230 */ 2231 if (!is_spec_ib_user_controlled() || 2232 task_spec_ib_force_disable(task)) 2233 return -EPERM; 2234 2235 task_clear_spec_ib_disable(task); 2236 task_update_spec_tif(task); 2237 break; 2238 case PR_SPEC_DISABLE: 2239 case PR_SPEC_FORCE_DISABLE: 2240 /* 2241 * Indirect branch speculation is always allowed when 2242 * mitigation is force disabled. 2243 */ 2244 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2245 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2246 return -EPERM; 2247 2248 if (!is_spec_ib_user_controlled()) 2249 return 0; 2250 2251 task_set_spec_ib_disable(task); 2252 if (ctrl == PR_SPEC_FORCE_DISABLE) 2253 task_set_spec_ib_force_disable(task); 2254 task_update_spec_tif(task); 2255 if (task == current) 2256 indirect_branch_prediction_barrier(); 2257 break; 2258 default: 2259 return -ERANGE; 2260 } 2261 return 0; 2262 } 2263 2264 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 2265 unsigned long ctrl) 2266 { 2267 switch (which) { 2268 case PR_SPEC_STORE_BYPASS: 2269 return ssb_prctl_set(task, ctrl); 2270 case PR_SPEC_INDIRECT_BRANCH: 2271 return ib_prctl_set(task, ctrl); 2272 case PR_SPEC_L1D_FLUSH: 2273 return l1d_flush_prctl_set(task, ctrl); 2274 default: 2275 return -ENODEV; 2276 } 2277 } 2278 2279 #ifdef CONFIG_SECCOMP 2280 void arch_seccomp_spec_mitigate(struct task_struct *task) 2281 { 2282 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 2283 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2284 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2285 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 2286 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2287 } 2288 #endif 2289 2290 static int l1d_flush_prctl_get(struct task_struct *task) 2291 { 2292 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2293 return PR_SPEC_FORCE_DISABLE; 2294 2295 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 2296 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2297 else 2298 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2299 } 2300 2301 static int ssb_prctl_get(struct task_struct *task) 2302 { 2303 switch (ssb_mode) { 2304 case SPEC_STORE_BYPASS_DISABLE: 2305 return PR_SPEC_DISABLE; 2306 case SPEC_STORE_BYPASS_SECCOMP: 2307 case SPEC_STORE_BYPASS_PRCTL: 2308 if (task_spec_ssb_force_disable(task)) 2309 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2310 if (task_spec_ssb_noexec(task)) 2311 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2312 if (task_spec_ssb_disable(task)) 2313 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2314 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2315 default: 2316 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2317 return PR_SPEC_ENABLE; 2318 return PR_SPEC_NOT_AFFECTED; 2319 } 2320 } 2321 2322 static int ib_prctl_get(struct task_struct *task) 2323 { 2324 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2325 return PR_SPEC_NOT_AFFECTED; 2326 2327 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2328 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2329 return PR_SPEC_ENABLE; 2330 else if (is_spec_ib_user_controlled()) { 2331 if (task_spec_ib_force_disable(task)) 2332 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2333 if (task_spec_ib_disable(task)) 2334 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2335 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2336 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2337 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2338 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2339 return PR_SPEC_DISABLE; 2340 else 2341 return PR_SPEC_NOT_AFFECTED; 2342 } 2343 2344 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2345 { 2346 switch (which) { 2347 case PR_SPEC_STORE_BYPASS: 2348 return ssb_prctl_get(task); 2349 case PR_SPEC_INDIRECT_BRANCH: 2350 return ib_prctl_get(task); 2351 case PR_SPEC_L1D_FLUSH: 2352 return l1d_flush_prctl_get(task); 2353 default: 2354 return -ENODEV; 2355 } 2356 } 2357 2358 void x86_spec_ctrl_setup_ap(void) 2359 { 2360 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2361 update_spec_ctrl(x86_spec_ctrl_base); 2362 2363 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2364 x86_amd_ssb_disable(); 2365 } 2366 2367 bool itlb_multihit_kvm_mitigation; 2368 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); 2369 2370 #undef pr_fmt 2371 #define pr_fmt(fmt) "L1TF: " fmt 2372 2373 /* Default mitigation for L1TF-affected CPUs */ 2374 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; 2375 #if IS_ENABLED(CONFIG_KVM_INTEL) 2376 EXPORT_SYMBOL_GPL(l1tf_mitigation); 2377 #endif 2378 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2379 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); 2380 2381 /* 2382 * These CPUs all support 44bits physical address space internally in the 2383 * cache but CPUID can report a smaller number of physical address bits. 2384 * 2385 * The L1TF mitigation uses the top most address bit for the inversion of 2386 * non present PTEs. When the installed memory reaches into the top most 2387 * address bit due to memory holes, which has been observed on machines 2388 * which report 36bits physical address bits and have 32G RAM installed, 2389 * then the mitigation range check in l1tf_select_mitigation() triggers. 2390 * This is a false positive because the mitigation is still possible due to 2391 * the fact that the cache uses 44bit internally. Use the cache bits 2392 * instead of the reported physical bits and adjust them on the affected 2393 * machines to 44bit if the reported bits are less than 44. 2394 */ 2395 static void override_cache_bits(struct cpuinfo_x86 *c) 2396 { 2397 if (c->x86 != 6) 2398 return; 2399 2400 switch (c->x86_model) { 2401 case INTEL_FAM6_NEHALEM: 2402 case INTEL_FAM6_WESTMERE: 2403 case INTEL_FAM6_SANDYBRIDGE: 2404 case INTEL_FAM6_IVYBRIDGE: 2405 case INTEL_FAM6_HASWELL: 2406 case INTEL_FAM6_HASWELL_L: 2407 case INTEL_FAM6_HASWELL_G: 2408 case INTEL_FAM6_BROADWELL: 2409 case INTEL_FAM6_BROADWELL_G: 2410 case INTEL_FAM6_SKYLAKE_L: 2411 case INTEL_FAM6_SKYLAKE: 2412 case INTEL_FAM6_KABYLAKE_L: 2413 case INTEL_FAM6_KABYLAKE: 2414 if (c->x86_cache_bits < 44) 2415 c->x86_cache_bits = 44; 2416 break; 2417 } 2418 } 2419 2420 static void __init l1tf_select_mitigation(void) 2421 { 2422 u64 half_pa; 2423 2424 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2425 return; 2426 2427 if (cpu_mitigations_off()) 2428 l1tf_mitigation = L1TF_MITIGATION_OFF; 2429 else if (cpu_mitigations_auto_nosmt()) 2430 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2431 2432 override_cache_bits(&boot_cpu_data); 2433 2434 switch (l1tf_mitigation) { 2435 case L1TF_MITIGATION_OFF: 2436 case L1TF_MITIGATION_FLUSH_NOWARN: 2437 case L1TF_MITIGATION_FLUSH: 2438 break; 2439 case L1TF_MITIGATION_FLUSH_NOSMT: 2440 case L1TF_MITIGATION_FULL: 2441 cpu_smt_disable(false); 2442 break; 2443 case L1TF_MITIGATION_FULL_FORCE: 2444 cpu_smt_disable(true); 2445 break; 2446 } 2447 2448 #if CONFIG_PGTABLE_LEVELS == 2 2449 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2450 return; 2451 #endif 2452 2453 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2454 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2455 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2456 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2457 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2458 half_pa); 2459 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2460 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2461 return; 2462 } 2463 2464 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2465 } 2466 2467 static int __init l1tf_cmdline(char *str) 2468 { 2469 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2470 return 0; 2471 2472 if (!str) 2473 return -EINVAL; 2474 2475 if (!strcmp(str, "off")) 2476 l1tf_mitigation = L1TF_MITIGATION_OFF; 2477 else if (!strcmp(str, "flush,nowarn")) 2478 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2479 else if (!strcmp(str, "flush")) 2480 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2481 else if (!strcmp(str, "flush,nosmt")) 2482 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2483 else if (!strcmp(str, "full")) 2484 l1tf_mitigation = L1TF_MITIGATION_FULL; 2485 else if (!strcmp(str, "full,force")) 2486 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2487 2488 return 0; 2489 } 2490 early_param("l1tf", l1tf_cmdline); 2491 2492 #undef pr_fmt 2493 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt 2494 2495 enum srso_mitigation { 2496 SRSO_MITIGATION_NONE, 2497 SRSO_MITIGATION_UCODE_NEEDED, 2498 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED, 2499 SRSO_MITIGATION_MICROCODE, 2500 SRSO_MITIGATION_SAFE_RET, 2501 SRSO_MITIGATION_IBPB, 2502 SRSO_MITIGATION_IBPB_ON_VMEXIT, 2503 }; 2504 2505 enum srso_mitigation_cmd { 2506 SRSO_CMD_OFF, 2507 SRSO_CMD_MICROCODE, 2508 SRSO_CMD_SAFE_RET, 2509 SRSO_CMD_IBPB, 2510 SRSO_CMD_IBPB_ON_VMEXIT, 2511 }; 2512 2513 static const char * const srso_strings[] = { 2514 [SRSO_MITIGATION_NONE] = "Vulnerable", 2515 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 2516 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode", 2517 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET", 2518 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET", 2519 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", 2520 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only" 2521 }; 2522 2523 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE; 2524 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET; 2525 2526 static int __init srso_parse_cmdline(char *str) 2527 { 2528 if (!str) 2529 return -EINVAL; 2530 2531 if (!strcmp(str, "off")) 2532 srso_cmd = SRSO_CMD_OFF; 2533 else if (!strcmp(str, "microcode")) 2534 srso_cmd = SRSO_CMD_MICROCODE; 2535 else if (!strcmp(str, "safe-ret")) 2536 srso_cmd = SRSO_CMD_SAFE_RET; 2537 else if (!strcmp(str, "ibpb")) 2538 srso_cmd = SRSO_CMD_IBPB; 2539 else if (!strcmp(str, "ibpb-vmexit")) 2540 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT; 2541 else 2542 pr_err("Ignoring unknown SRSO option (%s).", str); 2543 2544 return 0; 2545 } 2546 early_param("spec_rstack_overflow", srso_parse_cmdline); 2547 2548 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." 2549 2550 static void __init srso_select_mitigation(void) 2551 { 2552 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE); 2553 2554 if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off()) 2555 goto pred_cmd; 2556 2557 if (has_microcode) { 2558 /* 2559 * Zen1/2 with SMT off aren't vulnerable after the right 2560 * IBPB microcode has been applied. 2561 */ 2562 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { 2563 setup_force_cpu_cap(X86_FEATURE_SRSO_NO); 2564 return; 2565 } 2566 2567 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2568 srso_mitigation = SRSO_MITIGATION_IBPB; 2569 goto out; 2570 } 2571 } else { 2572 pr_warn("IBPB-extending microcode not applied!\n"); 2573 pr_warn(SRSO_NOTICE); 2574 2575 /* may be overwritten by SRSO_CMD_SAFE_RET below */ 2576 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED; 2577 } 2578 2579 switch (srso_cmd) { 2580 case SRSO_CMD_OFF: 2581 goto pred_cmd; 2582 2583 case SRSO_CMD_MICROCODE: 2584 if (has_microcode) { 2585 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2586 pr_warn(SRSO_NOTICE); 2587 } 2588 break; 2589 2590 case SRSO_CMD_SAFE_RET: 2591 if (IS_ENABLED(CONFIG_CPU_SRSO)) { 2592 /* 2593 * Enable the return thunk for generated code 2594 * like ftrace, static_call, etc. 2595 */ 2596 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 2597 setup_force_cpu_cap(X86_FEATURE_UNRET); 2598 2599 if (boot_cpu_data.x86 == 0x19) { 2600 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); 2601 x86_return_thunk = srso_alias_return_thunk; 2602 } else { 2603 setup_force_cpu_cap(X86_FEATURE_SRSO); 2604 x86_return_thunk = srso_return_thunk; 2605 } 2606 if (has_microcode) 2607 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2608 else 2609 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED; 2610 } else { 2611 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n"); 2612 goto pred_cmd; 2613 } 2614 break; 2615 2616 case SRSO_CMD_IBPB: 2617 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) { 2618 if (has_microcode) { 2619 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 2620 srso_mitigation = SRSO_MITIGATION_IBPB; 2621 } 2622 } else { 2623 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n"); 2624 goto pred_cmd; 2625 } 2626 break; 2627 2628 case SRSO_CMD_IBPB_ON_VMEXIT: 2629 if (IS_ENABLED(CONFIG_CPU_SRSO)) { 2630 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) { 2631 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 2632 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2633 } 2634 } else { 2635 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n"); 2636 goto pred_cmd; 2637 } 2638 break; 2639 2640 default: 2641 break; 2642 } 2643 2644 out: 2645 pr_info("%s\n", srso_strings[srso_mitigation]); 2646 2647 pred_cmd: 2648 if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) && 2649 boot_cpu_has(X86_FEATURE_SBPB)) 2650 x86_pred_cmd = PRED_CMD_SBPB; 2651 } 2652 2653 #undef pr_fmt 2654 #define pr_fmt(fmt) fmt 2655 2656 #ifdef CONFIG_SYSFS 2657 2658 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 2659 2660 #if IS_ENABLED(CONFIG_KVM_INTEL) 2661 static const char * const l1tf_vmx_states[] = { 2662 [VMENTER_L1D_FLUSH_AUTO] = "auto", 2663 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 2664 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 2665 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 2666 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 2667 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 2668 }; 2669 2670 static ssize_t l1tf_show_state(char *buf) 2671 { 2672 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 2673 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2674 2675 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 2676 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 2677 sched_smt_active())) { 2678 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 2679 l1tf_vmx_states[l1tf_vmx_mitigation]); 2680 } 2681 2682 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 2683 l1tf_vmx_states[l1tf_vmx_mitigation], 2684 sched_smt_active() ? "vulnerable" : "disabled"); 2685 } 2686 2687 static ssize_t itlb_multihit_show_state(char *buf) 2688 { 2689 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2690 !boot_cpu_has(X86_FEATURE_VMX)) 2691 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); 2692 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 2693 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); 2694 else if (itlb_multihit_kvm_mitigation) 2695 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); 2696 else 2697 return sysfs_emit(buf, "KVM: Vulnerable\n"); 2698 } 2699 #else 2700 static ssize_t l1tf_show_state(char *buf) 2701 { 2702 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2703 } 2704 2705 static ssize_t itlb_multihit_show_state(char *buf) 2706 { 2707 return sysfs_emit(buf, "Processor vulnerable\n"); 2708 } 2709 #endif 2710 2711 static ssize_t mds_show_state(char *buf) 2712 { 2713 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2714 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2715 mds_strings[mds_mitigation]); 2716 } 2717 2718 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 2719 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2720 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 2721 sched_smt_active() ? "mitigated" : "disabled")); 2722 } 2723 2724 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2725 sched_smt_active() ? "vulnerable" : "disabled"); 2726 } 2727 2728 static ssize_t tsx_async_abort_show_state(char *buf) 2729 { 2730 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 2731 (taa_mitigation == TAA_MITIGATION_OFF)) 2732 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); 2733 2734 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2735 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2736 taa_strings[taa_mitigation]); 2737 } 2738 2739 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 2740 sched_smt_active() ? "vulnerable" : "disabled"); 2741 } 2742 2743 static ssize_t mmio_stale_data_show_state(char *buf) 2744 { 2745 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2746 return sysfs_emit(buf, "Unknown: No mitigations\n"); 2747 2748 if (mmio_mitigation == MMIO_MITIGATION_OFF) 2749 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 2750 2751 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2752 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2753 mmio_strings[mmio_mitigation]); 2754 } 2755 2756 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 2757 sched_smt_active() ? "vulnerable" : "disabled"); 2758 } 2759 2760 static ssize_t rfds_show_state(char *buf) 2761 { 2762 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]); 2763 } 2764 2765 static char *stibp_state(void) 2766 { 2767 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 2768 !boot_cpu_has(X86_FEATURE_AUTOIBRS)) 2769 return ""; 2770 2771 switch (spectre_v2_user_stibp) { 2772 case SPECTRE_V2_USER_NONE: 2773 return "; STIBP: disabled"; 2774 case SPECTRE_V2_USER_STRICT: 2775 return "; STIBP: forced"; 2776 case SPECTRE_V2_USER_STRICT_PREFERRED: 2777 return "; STIBP: always-on"; 2778 case SPECTRE_V2_USER_PRCTL: 2779 case SPECTRE_V2_USER_SECCOMP: 2780 if (static_key_enabled(&switch_to_cond_stibp)) 2781 return "; STIBP: conditional"; 2782 } 2783 return ""; 2784 } 2785 2786 static char *ibpb_state(void) 2787 { 2788 if (boot_cpu_has(X86_FEATURE_IBPB)) { 2789 if (static_key_enabled(&switch_mm_always_ibpb)) 2790 return "; IBPB: always-on"; 2791 if (static_key_enabled(&switch_mm_cond_ibpb)) 2792 return "; IBPB: conditional"; 2793 return "; IBPB: disabled"; 2794 } 2795 return ""; 2796 } 2797 2798 static char *pbrsb_eibrs_state(void) 2799 { 2800 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2801 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 2802 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 2803 return "; PBRSB-eIBRS: SW sequence"; 2804 else 2805 return "; PBRSB-eIBRS: Vulnerable"; 2806 } else { 2807 return "; PBRSB-eIBRS: Not affected"; 2808 } 2809 } 2810 2811 static const char * const spectre_bhi_state(void) 2812 { 2813 if (!boot_cpu_has_bug(X86_BUG_BHI)) 2814 return "; BHI: Not affected"; 2815 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW)) 2816 return "; BHI: BHI_DIS_S"; 2817 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP)) 2818 return "; BHI: SW loop, KVM: SW loop"; 2819 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 2820 !(x86_read_arch_cap_msr() & ARCH_CAP_RRSBA)) 2821 return "; BHI: Retpoline"; 2822 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT)) 2823 return "; BHI: Syscall hardening, KVM: SW loop"; 2824 2825 return "; BHI: Vulnerable (Syscall hardening enabled)"; 2826 } 2827 2828 static ssize_t spectre_v2_show_state(char *buf) 2829 { 2830 if (spectre_v2_enabled == SPECTRE_V2_LFENCE) 2831 return sysfs_emit(buf, "Vulnerable: LFENCE\n"); 2832 2833 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 2834 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 2835 2836 if (sched_smt_active() && unprivileged_ebpf_enabled() && 2837 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 2838 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 2839 2840 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n", 2841 spectre_v2_strings[spectre_v2_enabled], 2842 ibpb_state(), 2843 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "", 2844 stibp_state(), 2845 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "", 2846 pbrsb_eibrs_state(), 2847 spectre_bhi_state(), 2848 /* this should always be at the end */ 2849 spectre_v2_module_string()); 2850 } 2851 2852 static ssize_t srbds_show_state(char *buf) 2853 { 2854 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); 2855 } 2856 2857 static ssize_t retbleed_show_state(char *buf) 2858 { 2859 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 2860 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2861 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 2862 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 2863 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 2864 2865 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], 2866 !sched_smt_active() ? "disabled" : 2867 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2868 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 2869 "enabled with STIBP protection" : "vulnerable"); 2870 } 2871 2872 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 2873 } 2874 2875 static ssize_t srso_show_state(char *buf) 2876 { 2877 if (boot_cpu_has(X86_FEATURE_SRSO_NO)) 2878 return sysfs_emit(buf, "Mitigation: SMT disabled\n"); 2879 2880 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]); 2881 } 2882 2883 static ssize_t gds_show_state(char *buf) 2884 { 2885 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); 2886 } 2887 2888 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 2889 char *buf, unsigned int bug) 2890 { 2891 if (!boot_cpu_has_bug(bug)) 2892 return sysfs_emit(buf, "Not affected\n"); 2893 2894 switch (bug) { 2895 case X86_BUG_CPU_MELTDOWN: 2896 if (boot_cpu_has(X86_FEATURE_PTI)) 2897 return sysfs_emit(buf, "Mitigation: PTI\n"); 2898 2899 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 2900 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 2901 2902 break; 2903 2904 case X86_BUG_SPECTRE_V1: 2905 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 2906 2907 case X86_BUG_SPECTRE_V2: 2908 return spectre_v2_show_state(buf); 2909 2910 case X86_BUG_SPEC_STORE_BYPASS: 2911 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); 2912 2913 case X86_BUG_L1TF: 2914 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 2915 return l1tf_show_state(buf); 2916 break; 2917 2918 case X86_BUG_MDS: 2919 return mds_show_state(buf); 2920 2921 case X86_BUG_TAA: 2922 return tsx_async_abort_show_state(buf); 2923 2924 case X86_BUG_ITLB_MULTIHIT: 2925 return itlb_multihit_show_state(buf); 2926 2927 case X86_BUG_SRBDS: 2928 return srbds_show_state(buf); 2929 2930 case X86_BUG_MMIO_STALE_DATA: 2931 case X86_BUG_MMIO_UNKNOWN: 2932 return mmio_stale_data_show_state(buf); 2933 2934 case X86_BUG_RETBLEED: 2935 return retbleed_show_state(buf); 2936 2937 case X86_BUG_SRSO: 2938 return srso_show_state(buf); 2939 2940 case X86_BUG_GDS: 2941 return gds_show_state(buf); 2942 2943 case X86_BUG_RFDS: 2944 return rfds_show_state(buf); 2945 2946 default: 2947 break; 2948 } 2949 2950 return sysfs_emit(buf, "Vulnerable\n"); 2951 } 2952 2953 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 2954 { 2955 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 2956 } 2957 2958 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 2959 { 2960 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 2961 } 2962 2963 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 2964 { 2965 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 2966 } 2967 2968 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 2969 { 2970 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 2971 } 2972 2973 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 2974 { 2975 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 2976 } 2977 2978 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 2979 { 2980 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 2981 } 2982 2983 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 2984 { 2985 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 2986 } 2987 2988 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 2989 { 2990 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 2991 } 2992 2993 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 2994 { 2995 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 2996 } 2997 2998 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 2999 { 3000 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 3001 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); 3002 else 3003 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 3004 } 3005 3006 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 3007 { 3008 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 3009 } 3010 3011 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) 3012 { 3013 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); 3014 } 3015 3016 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) 3017 { 3018 return cpu_show_common(dev, attr, buf, X86_BUG_GDS); 3019 } 3020 3021 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf) 3022 { 3023 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS); 3024 } 3025 #endif 3026