1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/utsname.h> 13 #include <linux/cpu.h> 14 #include <linux/module.h> 15 #include <linux/nospec.h> 16 #include <linux/prctl.h> 17 #include <linux/sched/smt.h> 18 #include <linux/pgtable.h> 19 #include <linux/bpf.h> 20 21 #include <asm/spec-ctrl.h> 22 #include <asm/cmdline.h> 23 #include <asm/bugs.h> 24 #include <asm/processor.h> 25 #include <asm/processor-flags.h> 26 #include <asm/fpu/api.h> 27 #include <asm/msr.h> 28 #include <asm/vmx.h> 29 #include <asm/paravirt.h> 30 #include <asm/alternative.h> 31 #include <asm/set_memory.h> 32 #include <asm/intel-family.h> 33 #include <asm/e820/api.h> 34 #include <asm/hypervisor.h> 35 #include <asm/tlbflush.h> 36 37 #include "cpu.h" 38 39 static void __init spectre_v1_select_mitigation(void); 40 static void __init spectre_v2_select_mitigation(void); 41 static void __init retbleed_select_mitigation(void); 42 static void __init spectre_v2_user_select_mitigation(void); 43 static void __init ssb_select_mitigation(void); 44 static void __init l1tf_select_mitigation(void); 45 static void __init mds_select_mitigation(void); 46 static void __init md_clear_update_mitigation(void); 47 static void __init md_clear_select_mitigation(void); 48 static void __init taa_select_mitigation(void); 49 static void __init mmio_select_mitigation(void); 50 static void __init srbds_select_mitigation(void); 51 static void __init l1d_flush_select_mitigation(void); 52 53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 54 u64 x86_spec_ctrl_base; 55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); 56 57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current); 60 61 static DEFINE_MUTEX(spec_ctrl_mutex); 62 63 /* 64 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 65 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 66 */ 67 void write_spec_ctrl_current(u64 val, bool force) 68 { 69 if (this_cpu_read(x86_spec_ctrl_current) == val) 70 return; 71 72 this_cpu_write(x86_spec_ctrl_current, val); 73 74 /* 75 * When KERNEL_IBRS this MSR is written on return-to-user, unless 76 * forced the update can be delayed until that time. 77 */ 78 if (force || !cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 79 wrmsrl(MSR_IA32_SPEC_CTRL, val); 80 } 81 82 u64 spec_ctrl_current(void) 83 { 84 return this_cpu_read(x86_spec_ctrl_current); 85 } 86 EXPORT_SYMBOL_GPL(spec_ctrl_current); 87 88 /* 89 * AMD specific MSR info for Speculative Store Bypass control. 90 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 91 */ 92 u64 __ro_after_init x86_amd_ls_cfg_base; 93 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 94 95 /* Control conditional STIBP in switch_to() */ 96 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 97 /* Control conditional IBPB in switch_mm() */ 98 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 99 /* Control unconditional IBPB in switch_mm() */ 100 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 101 102 /* Control MDS CPU buffer clear before returning to user space */ 103 DEFINE_STATIC_KEY_FALSE(mds_user_clear); 104 EXPORT_SYMBOL_GPL(mds_user_clear); 105 /* Control MDS CPU buffer clear before idling (halt, mwait) */ 106 DEFINE_STATIC_KEY_FALSE(mds_idle_clear); 107 EXPORT_SYMBOL_GPL(mds_idle_clear); 108 109 /* 110 * Controls whether l1d flush based mitigations are enabled, 111 * based on hw features and admin setting via boot parameter 112 * defaults to false 113 */ 114 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 115 116 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ 117 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); 118 EXPORT_SYMBOL_GPL(mmio_stale_data_clear); 119 120 void __init check_bugs(void) 121 { 122 identify_boot_cpu(); 123 124 /* 125 * identify_boot_cpu() initialized SMT support information, let the 126 * core code know. 127 */ 128 cpu_smt_check_topology(); 129 130 if (!IS_ENABLED(CONFIG_SMP)) { 131 pr_info("CPU: "); 132 print_cpu_info(&boot_cpu_data); 133 } 134 135 /* 136 * Read the SPEC_CTRL MSR to account for reserved bits which may 137 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 138 * init code as it is not enumerated and depends on the family. 139 */ 140 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 141 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 142 143 /* Select the proper CPU mitigations before patching alternatives: */ 144 spectre_v1_select_mitigation(); 145 spectre_v2_select_mitigation(); 146 /* 147 * retbleed_select_mitigation() relies on the state set by 148 * spectre_v2_select_mitigation(); specifically it wants to know about 149 * spectre_v2=ibrs. 150 */ 151 retbleed_select_mitigation(); 152 /* 153 * spectre_v2_user_select_mitigation() relies on the state set by 154 * retbleed_select_mitigation(); specifically the STIBP selection is 155 * forced for UNRET or IBPB. 156 */ 157 spectre_v2_user_select_mitigation(); 158 ssb_select_mitigation(); 159 l1tf_select_mitigation(); 160 md_clear_select_mitigation(); 161 srbds_select_mitigation(); 162 l1d_flush_select_mitigation(); 163 164 arch_smt_update(); 165 166 #ifdef CONFIG_X86_32 167 /* 168 * Check whether we are able to run this kernel safely on SMP. 169 * 170 * - i386 is no longer supported. 171 * - In order to run on anything without a TSC, we need to be 172 * compiled for a i486. 173 */ 174 if (boot_cpu_data.x86 < 4) 175 panic("Kernel requires i486+ for 'invlpg' and other features"); 176 177 init_utsname()->machine[1] = 178 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); 179 alternative_instructions(); 180 181 fpu__init_check_bugs(); 182 #else /* CONFIG_X86_64 */ 183 alternative_instructions(); 184 185 /* 186 * Make sure the first 2MB area is not mapped by huge pages 187 * There are typically fixed size MTRRs in there and overlapping 188 * MTRRs into large pages causes slow downs. 189 * 190 * Right now we don't do that with gbpages because there seems 191 * very little benefit for that case. 192 */ 193 if (!direct_gbpages) 194 set_memory_4k((unsigned long)__va(0), 1); 195 #endif 196 } 197 198 /* 199 * NOTE: This function is *only* called for SVM. VMX spec_ctrl handling is 200 * done in vmenter.S. 201 */ 202 void 203 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest) 204 { 205 u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current(); 206 struct thread_info *ti = current_thread_info(); 207 208 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) { 209 if (hostval != guestval) { 210 msrval = setguest ? guestval : hostval; 211 wrmsrl(MSR_IA32_SPEC_CTRL, msrval); 212 } 213 } 214 215 /* 216 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 217 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 218 */ 219 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 220 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 221 return; 222 223 /* 224 * If the host has SSBD mitigation enabled, force it in the host's 225 * virtual MSR value. If its not permanently enabled, evaluate 226 * current's TIF_SSBD thread flag. 227 */ 228 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 229 hostval = SPEC_CTRL_SSBD; 230 else 231 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 232 233 /* Sanitize the guest value */ 234 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 235 236 if (hostval != guestval) { 237 unsigned long tif; 238 239 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 240 ssbd_spec_ctrl_to_tif(hostval); 241 242 speculation_ctrl_update(tif); 243 } 244 } 245 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); 246 247 static void x86_amd_ssb_disable(void) 248 { 249 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 250 251 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 252 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 253 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 254 wrmsrl(MSR_AMD64_LS_CFG, msrval); 255 } 256 257 #undef pr_fmt 258 #define pr_fmt(fmt) "MDS: " fmt 259 260 /* Default mitigation for MDS-affected CPUs */ 261 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; 262 static bool mds_nosmt __ro_after_init = false; 263 264 static const char * const mds_strings[] = { 265 [MDS_MITIGATION_OFF] = "Vulnerable", 266 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 267 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 268 }; 269 270 static void __init mds_select_mitigation(void) 271 { 272 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { 273 mds_mitigation = MDS_MITIGATION_OFF; 274 return; 275 } 276 277 if (mds_mitigation == MDS_MITIGATION_FULL) { 278 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 279 mds_mitigation = MDS_MITIGATION_VMWERV; 280 281 static_branch_enable(&mds_user_clear); 282 283 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 284 (mds_nosmt || cpu_mitigations_auto_nosmt())) 285 cpu_smt_disable(false); 286 } 287 } 288 289 static int __init mds_cmdline(char *str) 290 { 291 if (!boot_cpu_has_bug(X86_BUG_MDS)) 292 return 0; 293 294 if (!str) 295 return -EINVAL; 296 297 if (!strcmp(str, "off")) 298 mds_mitigation = MDS_MITIGATION_OFF; 299 else if (!strcmp(str, "full")) 300 mds_mitigation = MDS_MITIGATION_FULL; 301 else if (!strcmp(str, "full,nosmt")) { 302 mds_mitigation = MDS_MITIGATION_FULL; 303 mds_nosmt = true; 304 } 305 306 return 0; 307 } 308 early_param("mds", mds_cmdline); 309 310 #undef pr_fmt 311 #define pr_fmt(fmt) "TAA: " fmt 312 313 enum taa_mitigations { 314 TAA_MITIGATION_OFF, 315 TAA_MITIGATION_UCODE_NEEDED, 316 TAA_MITIGATION_VERW, 317 TAA_MITIGATION_TSX_DISABLED, 318 }; 319 320 /* Default mitigation for TAA-affected CPUs */ 321 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; 322 static bool taa_nosmt __ro_after_init; 323 324 static const char * const taa_strings[] = { 325 [TAA_MITIGATION_OFF] = "Vulnerable", 326 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 327 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 328 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 329 }; 330 331 static void __init taa_select_mitigation(void) 332 { 333 u64 ia32_cap; 334 335 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 336 taa_mitigation = TAA_MITIGATION_OFF; 337 return; 338 } 339 340 /* TSX previously disabled by tsx=off */ 341 if (!boot_cpu_has(X86_FEATURE_RTM)) { 342 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 343 return; 344 } 345 346 if (cpu_mitigations_off()) { 347 taa_mitigation = TAA_MITIGATION_OFF; 348 return; 349 } 350 351 /* 352 * TAA mitigation via VERW is turned off if both 353 * tsx_async_abort=off and mds=off are specified. 354 */ 355 if (taa_mitigation == TAA_MITIGATION_OFF && 356 mds_mitigation == MDS_MITIGATION_OFF) 357 return; 358 359 if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) 360 taa_mitigation = TAA_MITIGATION_VERW; 361 else 362 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 363 364 /* 365 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 366 * A microcode update fixes this behavior to clear CPU buffers. It also 367 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 368 * ARCH_CAP_TSX_CTRL_MSR bit. 369 * 370 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 371 * update is required. 372 */ 373 ia32_cap = x86_read_arch_cap_msr(); 374 if ( (ia32_cap & ARCH_CAP_MDS_NO) && 375 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)) 376 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 377 378 /* 379 * TSX is enabled, select alternate mitigation for TAA which is 380 * the same as MDS. Enable MDS static branch to clear CPU buffers. 381 * 382 * For guests that can't determine whether the correct microcode is 383 * present on host, enable the mitigation for UCODE_NEEDED as well. 384 */ 385 static_branch_enable(&mds_user_clear); 386 387 if (taa_nosmt || cpu_mitigations_auto_nosmt()) 388 cpu_smt_disable(false); 389 } 390 391 static int __init tsx_async_abort_parse_cmdline(char *str) 392 { 393 if (!boot_cpu_has_bug(X86_BUG_TAA)) 394 return 0; 395 396 if (!str) 397 return -EINVAL; 398 399 if (!strcmp(str, "off")) { 400 taa_mitigation = TAA_MITIGATION_OFF; 401 } else if (!strcmp(str, "full")) { 402 taa_mitigation = TAA_MITIGATION_VERW; 403 } else if (!strcmp(str, "full,nosmt")) { 404 taa_mitigation = TAA_MITIGATION_VERW; 405 taa_nosmt = true; 406 } 407 408 return 0; 409 } 410 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 411 412 #undef pr_fmt 413 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 414 415 enum mmio_mitigations { 416 MMIO_MITIGATION_OFF, 417 MMIO_MITIGATION_UCODE_NEEDED, 418 MMIO_MITIGATION_VERW, 419 }; 420 421 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 422 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; 423 static bool mmio_nosmt __ro_after_init = false; 424 425 static const char * const mmio_strings[] = { 426 [MMIO_MITIGATION_OFF] = "Vulnerable", 427 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 428 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 429 }; 430 431 static void __init mmio_select_mitigation(void) 432 { 433 u64 ia32_cap; 434 435 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || 436 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || 437 cpu_mitigations_off()) { 438 mmio_mitigation = MMIO_MITIGATION_OFF; 439 return; 440 } 441 442 if (mmio_mitigation == MMIO_MITIGATION_OFF) 443 return; 444 445 ia32_cap = x86_read_arch_cap_msr(); 446 447 /* 448 * Enable CPU buffer clear mitigation for host and VMM, if also affected 449 * by MDS or TAA. Otherwise, enable mitigation for VMM only. 450 */ 451 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && 452 boot_cpu_has(X86_FEATURE_RTM))) 453 static_branch_enable(&mds_user_clear); 454 else 455 static_branch_enable(&mmio_stale_data_clear); 456 457 /* 458 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 459 * be propagated to uncore buffers, clearing the Fill buffers on idle 460 * is required irrespective of SMT state. 461 */ 462 if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) 463 static_branch_enable(&mds_idle_clear); 464 465 /* 466 * Check if the system has the right microcode. 467 * 468 * CPU Fill buffer clear mitigation is enumerated by either an explicit 469 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 470 * affected systems. 471 */ 472 if ((ia32_cap & ARCH_CAP_FB_CLEAR) || 473 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 474 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 475 !(ia32_cap & ARCH_CAP_MDS_NO))) 476 mmio_mitigation = MMIO_MITIGATION_VERW; 477 else 478 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 479 480 if (mmio_nosmt || cpu_mitigations_auto_nosmt()) 481 cpu_smt_disable(false); 482 } 483 484 static int __init mmio_stale_data_parse_cmdline(char *str) 485 { 486 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 487 return 0; 488 489 if (!str) 490 return -EINVAL; 491 492 if (!strcmp(str, "off")) { 493 mmio_mitigation = MMIO_MITIGATION_OFF; 494 } else if (!strcmp(str, "full")) { 495 mmio_mitigation = MMIO_MITIGATION_VERW; 496 } else if (!strcmp(str, "full,nosmt")) { 497 mmio_mitigation = MMIO_MITIGATION_VERW; 498 mmio_nosmt = true; 499 } 500 501 return 0; 502 } 503 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 504 505 #undef pr_fmt 506 #define pr_fmt(fmt) "" fmt 507 508 static void __init md_clear_update_mitigation(void) 509 { 510 if (cpu_mitigations_off()) 511 return; 512 513 if (!static_key_enabled(&mds_user_clear)) 514 goto out; 515 516 /* 517 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data 518 * mitigation, if necessary. 519 */ 520 if (mds_mitigation == MDS_MITIGATION_OFF && 521 boot_cpu_has_bug(X86_BUG_MDS)) { 522 mds_mitigation = MDS_MITIGATION_FULL; 523 mds_select_mitigation(); 524 } 525 if (taa_mitigation == TAA_MITIGATION_OFF && 526 boot_cpu_has_bug(X86_BUG_TAA)) { 527 taa_mitigation = TAA_MITIGATION_VERW; 528 taa_select_mitigation(); 529 } 530 if (mmio_mitigation == MMIO_MITIGATION_OFF && 531 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 532 mmio_mitigation = MMIO_MITIGATION_VERW; 533 mmio_select_mitigation(); 534 } 535 out: 536 if (boot_cpu_has_bug(X86_BUG_MDS)) 537 pr_info("MDS: %s\n", mds_strings[mds_mitigation]); 538 if (boot_cpu_has_bug(X86_BUG_TAA)) 539 pr_info("TAA: %s\n", taa_strings[taa_mitigation]); 540 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 541 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); 542 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 543 pr_info("MMIO Stale Data: Unknown: No mitigations\n"); 544 } 545 546 static void __init md_clear_select_mitigation(void) 547 { 548 mds_select_mitigation(); 549 taa_select_mitigation(); 550 mmio_select_mitigation(); 551 552 /* 553 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update 554 * and print their mitigation after MDS, TAA and MMIO Stale Data 555 * mitigation selection is done. 556 */ 557 md_clear_update_mitigation(); 558 } 559 560 #undef pr_fmt 561 #define pr_fmt(fmt) "SRBDS: " fmt 562 563 enum srbds_mitigations { 564 SRBDS_MITIGATION_OFF, 565 SRBDS_MITIGATION_UCODE_NEEDED, 566 SRBDS_MITIGATION_FULL, 567 SRBDS_MITIGATION_TSX_OFF, 568 SRBDS_MITIGATION_HYPERVISOR, 569 }; 570 571 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; 572 573 static const char * const srbds_strings[] = { 574 [SRBDS_MITIGATION_OFF] = "Vulnerable", 575 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 576 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 577 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 578 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 579 }; 580 581 static bool srbds_off; 582 583 void update_srbds_msr(void) 584 { 585 u64 mcu_ctrl; 586 587 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 588 return; 589 590 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 591 return; 592 593 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 594 return; 595 596 /* 597 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 598 * being disabled and it hasn't received the SRBDS MSR microcode. 599 */ 600 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 601 return; 602 603 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 604 605 switch (srbds_mitigation) { 606 case SRBDS_MITIGATION_OFF: 607 case SRBDS_MITIGATION_TSX_OFF: 608 mcu_ctrl |= RNGDS_MITG_DIS; 609 break; 610 case SRBDS_MITIGATION_FULL: 611 mcu_ctrl &= ~RNGDS_MITG_DIS; 612 break; 613 default: 614 break; 615 } 616 617 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 618 } 619 620 static void __init srbds_select_mitigation(void) 621 { 622 u64 ia32_cap; 623 624 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 625 return; 626 627 /* 628 * Check to see if this is one of the MDS_NO systems supporting TSX that 629 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 630 * by Processor MMIO Stale Data vulnerability. 631 */ 632 ia32_cap = x86_read_arch_cap_msr(); 633 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 634 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 635 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 636 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 637 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 638 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 639 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 640 else if (cpu_mitigations_off() || srbds_off) 641 srbds_mitigation = SRBDS_MITIGATION_OFF; 642 643 update_srbds_msr(); 644 pr_info("%s\n", srbds_strings[srbds_mitigation]); 645 } 646 647 static int __init srbds_parse_cmdline(char *str) 648 { 649 if (!str) 650 return -EINVAL; 651 652 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 653 return 0; 654 655 srbds_off = !strcmp(str, "off"); 656 return 0; 657 } 658 early_param("srbds", srbds_parse_cmdline); 659 660 #undef pr_fmt 661 #define pr_fmt(fmt) "L1D Flush : " fmt 662 663 enum l1d_flush_mitigations { 664 L1D_FLUSH_OFF = 0, 665 L1D_FLUSH_ON, 666 }; 667 668 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 669 670 static void __init l1d_flush_select_mitigation(void) 671 { 672 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 673 return; 674 675 static_branch_enable(&switch_mm_cond_l1d_flush); 676 pr_info("Conditional flush on switch_mm() enabled\n"); 677 } 678 679 static int __init l1d_flush_parse_cmdline(char *str) 680 { 681 if (!strcmp(str, "on")) 682 l1d_flush_mitigation = L1D_FLUSH_ON; 683 684 return 0; 685 } 686 early_param("l1d_flush", l1d_flush_parse_cmdline); 687 688 #undef pr_fmt 689 #define pr_fmt(fmt) "Spectre V1 : " fmt 690 691 enum spectre_v1_mitigation { 692 SPECTRE_V1_MITIGATION_NONE, 693 SPECTRE_V1_MITIGATION_AUTO, 694 }; 695 696 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 697 SPECTRE_V1_MITIGATION_AUTO; 698 699 static const char * const spectre_v1_strings[] = { 700 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 701 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 702 }; 703 704 /* 705 * Does SMAP provide full mitigation against speculative kernel access to 706 * userspace? 707 */ 708 static bool smap_works_speculatively(void) 709 { 710 if (!boot_cpu_has(X86_FEATURE_SMAP)) 711 return false; 712 713 /* 714 * On CPUs which are vulnerable to Meltdown, SMAP does not 715 * prevent speculative access to user data in the L1 cache. 716 * Consider SMAP to be non-functional as a mitigation on these 717 * CPUs. 718 */ 719 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 720 return false; 721 722 return true; 723 } 724 725 static void __init spectre_v1_select_mitigation(void) 726 { 727 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { 728 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 729 return; 730 } 731 732 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 733 /* 734 * With Spectre v1, a user can speculatively control either 735 * path of a conditional swapgs with a user-controlled GS 736 * value. The mitigation is to add lfences to both code paths. 737 * 738 * If FSGSBASE is enabled, the user can put a kernel address in 739 * GS, in which case SMAP provides no protection. 740 * 741 * If FSGSBASE is disabled, the user can only put a user space 742 * address in GS. That makes an attack harder, but still 743 * possible if there's no SMAP protection. 744 */ 745 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 746 !smap_works_speculatively()) { 747 /* 748 * Mitigation can be provided from SWAPGS itself or 749 * PTI as the CR3 write in the Meltdown mitigation 750 * is serializing. 751 * 752 * If neither is there, mitigate with an LFENCE to 753 * stop speculation through swapgs. 754 */ 755 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 756 !boot_cpu_has(X86_FEATURE_PTI)) 757 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 758 759 /* 760 * Enable lfences in the kernel entry (non-swapgs) 761 * paths, to prevent user entry from speculatively 762 * skipping swapgs. 763 */ 764 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 765 } 766 } 767 768 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 769 } 770 771 static int __init nospectre_v1_cmdline(char *str) 772 { 773 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 774 return 0; 775 } 776 early_param("nospectre_v1", nospectre_v1_cmdline); 777 778 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = 779 SPECTRE_V2_NONE; 780 781 #undef pr_fmt 782 #define pr_fmt(fmt) "RETBleed: " fmt 783 784 enum retbleed_mitigation { 785 RETBLEED_MITIGATION_NONE, 786 RETBLEED_MITIGATION_UNRET, 787 RETBLEED_MITIGATION_IBPB, 788 RETBLEED_MITIGATION_IBRS, 789 RETBLEED_MITIGATION_EIBRS, 790 }; 791 792 enum retbleed_mitigation_cmd { 793 RETBLEED_CMD_OFF, 794 RETBLEED_CMD_AUTO, 795 RETBLEED_CMD_UNRET, 796 RETBLEED_CMD_IBPB, 797 }; 798 799 static const char * const retbleed_strings[] = { 800 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 801 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 802 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 803 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 804 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 805 }; 806 807 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 808 RETBLEED_MITIGATION_NONE; 809 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = 810 RETBLEED_CMD_AUTO; 811 812 static int __ro_after_init retbleed_nosmt = false; 813 814 static int __init retbleed_parse_cmdline(char *str) 815 { 816 if (!str) 817 return -EINVAL; 818 819 while (str) { 820 char *next = strchr(str, ','); 821 if (next) { 822 *next = 0; 823 next++; 824 } 825 826 if (!strcmp(str, "off")) { 827 retbleed_cmd = RETBLEED_CMD_OFF; 828 } else if (!strcmp(str, "auto")) { 829 retbleed_cmd = RETBLEED_CMD_AUTO; 830 } else if (!strcmp(str, "unret")) { 831 retbleed_cmd = RETBLEED_CMD_UNRET; 832 } else if (!strcmp(str, "ibpb")) { 833 retbleed_cmd = RETBLEED_CMD_IBPB; 834 } else if (!strcmp(str, "nosmt")) { 835 retbleed_nosmt = true; 836 } else { 837 pr_err("Ignoring unknown retbleed option (%s).", str); 838 } 839 840 str = next; 841 } 842 843 return 0; 844 } 845 early_param("retbleed", retbleed_parse_cmdline); 846 847 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 848 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 849 850 static void __init retbleed_select_mitigation(void) 851 { 852 bool mitigate_smt = false; 853 854 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) 855 return; 856 857 switch (retbleed_cmd) { 858 case RETBLEED_CMD_OFF: 859 return; 860 861 case RETBLEED_CMD_UNRET: 862 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) { 863 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 864 } else { 865 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n"); 866 goto do_cmd_auto; 867 } 868 break; 869 870 case RETBLEED_CMD_IBPB: 871 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 872 pr_err("WARNING: CPU does not support IBPB.\n"); 873 goto do_cmd_auto; 874 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) { 875 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 876 } else { 877 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n"); 878 goto do_cmd_auto; 879 } 880 break; 881 882 do_cmd_auto: 883 case RETBLEED_CMD_AUTO: 884 default: 885 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 886 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 887 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) 888 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 889 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB)) 890 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 891 } 892 893 /* 894 * The Intel mitigation (IBRS or eIBRS) was already selected in 895 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will 896 * be set accordingly below. 897 */ 898 899 break; 900 } 901 902 switch (retbleed_mitigation) { 903 case RETBLEED_MITIGATION_UNRET: 904 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 905 setup_force_cpu_cap(X86_FEATURE_UNRET); 906 907 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 908 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 909 pr_err(RETBLEED_UNTRAIN_MSG); 910 911 mitigate_smt = true; 912 break; 913 914 case RETBLEED_MITIGATION_IBPB: 915 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 916 mitigate_smt = true; 917 break; 918 919 default: 920 break; 921 } 922 923 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 924 (retbleed_nosmt || cpu_mitigations_auto_nosmt())) 925 cpu_smt_disable(false); 926 927 /* 928 * Let IBRS trump all on Intel without affecting the effects of the 929 * retbleed= cmdline option. 930 */ 931 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 932 switch (spectre_v2_enabled) { 933 case SPECTRE_V2_IBRS: 934 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 935 break; 936 case SPECTRE_V2_EIBRS: 937 case SPECTRE_V2_EIBRS_RETPOLINE: 938 case SPECTRE_V2_EIBRS_LFENCE: 939 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 940 break; 941 default: 942 pr_err(RETBLEED_INTEL_MSG); 943 } 944 } 945 946 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 947 } 948 949 #undef pr_fmt 950 #define pr_fmt(fmt) "Spectre V2 : " fmt 951 952 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 953 SPECTRE_V2_USER_NONE; 954 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 955 SPECTRE_V2_USER_NONE; 956 957 #ifdef CONFIG_RETPOLINE 958 static bool spectre_v2_bad_module; 959 960 bool retpoline_module_ok(bool has_retpoline) 961 { 962 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 963 return true; 964 965 pr_err("System may be vulnerable to spectre v2\n"); 966 spectre_v2_bad_module = true; 967 return false; 968 } 969 970 static inline const char *spectre_v2_module_string(void) 971 { 972 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 973 } 974 #else 975 static inline const char *spectre_v2_module_string(void) { return ""; } 976 #endif 977 978 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 979 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 980 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 981 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 982 983 #ifdef CONFIG_BPF_SYSCALL 984 void unpriv_ebpf_notify(int new_state) 985 { 986 if (new_state) 987 return; 988 989 /* Unprivileged eBPF is enabled */ 990 991 switch (spectre_v2_enabled) { 992 case SPECTRE_V2_EIBRS: 993 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 994 break; 995 case SPECTRE_V2_EIBRS_LFENCE: 996 if (sched_smt_active()) 997 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 998 break; 999 default: 1000 break; 1001 } 1002 } 1003 #endif 1004 1005 static inline bool match_option(const char *arg, int arglen, const char *opt) 1006 { 1007 int len = strlen(opt); 1008 1009 return len == arglen && !strncmp(arg, opt, len); 1010 } 1011 1012 /* The kernel command line selection for spectre v2 */ 1013 enum spectre_v2_mitigation_cmd { 1014 SPECTRE_V2_CMD_NONE, 1015 SPECTRE_V2_CMD_AUTO, 1016 SPECTRE_V2_CMD_FORCE, 1017 SPECTRE_V2_CMD_RETPOLINE, 1018 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1019 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1020 SPECTRE_V2_CMD_EIBRS, 1021 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1022 SPECTRE_V2_CMD_EIBRS_LFENCE, 1023 SPECTRE_V2_CMD_IBRS, 1024 }; 1025 1026 enum spectre_v2_user_cmd { 1027 SPECTRE_V2_USER_CMD_NONE, 1028 SPECTRE_V2_USER_CMD_AUTO, 1029 SPECTRE_V2_USER_CMD_FORCE, 1030 SPECTRE_V2_USER_CMD_PRCTL, 1031 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1032 SPECTRE_V2_USER_CMD_SECCOMP, 1033 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1034 }; 1035 1036 static const char * const spectre_v2_user_strings[] = { 1037 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1038 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1039 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1040 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1041 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1042 }; 1043 1044 static const struct { 1045 const char *option; 1046 enum spectre_v2_user_cmd cmd; 1047 bool secure; 1048 } v2_user_options[] __initconst = { 1049 { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, 1050 { "off", SPECTRE_V2_USER_CMD_NONE, false }, 1051 { "on", SPECTRE_V2_USER_CMD_FORCE, true }, 1052 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, 1053 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, 1054 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, 1055 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, 1056 }; 1057 1058 static void __init spec_v2_user_print_cond(const char *reason, bool secure) 1059 { 1060 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1061 pr_info("spectre_v2_user=%s forced on command line.\n", reason); 1062 } 1063 1064 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; 1065 1066 static enum spectre_v2_user_cmd __init 1067 spectre_v2_parse_user_cmdline(void) 1068 { 1069 char arg[20]; 1070 int ret, i; 1071 1072 switch (spectre_v2_cmd) { 1073 case SPECTRE_V2_CMD_NONE: 1074 return SPECTRE_V2_USER_CMD_NONE; 1075 case SPECTRE_V2_CMD_FORCE: 1076 return SPECTRE_V2_USER_CMD_FORCE; 1077 default: 1078 break; 1079 } 1080 1081 ret = cmdline_find_option(boot_command_line, "spectre_v2_user", 1082 arg, sizeof(arg)); 1083 if (ret < 0) 1084 return SPECTRE_V2_USER_CMD_AUTO; 1085 1086 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { 1087 if (match_option(arg, ret, v2_user_options[i].option)) { 1088 spec_v2_user_print_cond(v2_user_options[i].option, 1089 v2_user_options[i].secure); 1090 return v2_user_options[i].cmd; 1091 } 1092 } 1093 1094 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); 1095 return SPECTRE_V2_USER_CMD_AUTO; 1096 } 1097 1098 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1099 { 1100 return mode == SPECTRE_V2_IBRS || 1101 mode == SPECTRE_V2_EIBRS || 1102 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1103 mode == SPECTRE_V2_EIBRS_LFENCE; 1104 } 1105 1106 static void __init 1107 spectre_v2_user_select_mitigation(void) 1108 { 1109 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; 1110 bool smt_possible = IS_ENABLED(CONFIG_SMP); 1111 enum spectre_v2_user_cmd cmd; 1112 1113 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1114 return; 1115 1116 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 1117 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 1118 smt_possible = false; 1119 1120 cmd = spectre_v2_parse_user_cmdline(); 1121 switch (cmd) { 1122 case SPECTRE_V2_USER_CMD_NONE: 1123 goto set_mode; 1124 case SPECTRE_V2_USER_CMD_FORCE: 1125 mode = SPECTRE_V2_USER_STRICT; 1126 break; 1127 case SPECTRE_V2_USER_CMD_AUTO: 1128 case SPECTRE_V2_USER_CMD_PRCTL: 1129 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1130 mode = SPECTRE_V2_USER_PRCTL; 1131 break; 1132 case SPECTRE_V2_USER_CMD_SECCOMP: 1133 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1134 if (IS_ENABLED(CONFIG_SECCOMP)) 1135 mode = SPECTRE_V2_USER_SECCOMP; 1136 else 1137 mode = SPECTRE_V2_USER_PRCTL; 1138 break; 1139 } 1140 1141 /* Initialize Indirect Branch Prediction Barrier */ 1142 if (boot_cpu_has(X86_FEATURE_IBPB)) { 1143 setup_force_cpu_cap(X86_FEATURE_USE_IBPB); 1144 1145 spectre_v2_user_ibpb = mode; 1146 switch (cmd) { 1147 case SPECTRE_V2_USER_CMD_FORCE: 1148 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1149 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1150 static_branch_enable(&switch_mm_always_ibpb); 1151 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1152 break; 1153 case SPECTRE_V2_USER_CMD_PRCTL: 1154 case SPECTRE_V2_USER_CMD_AUTO: 1155 case SPECTRE_V2_USER_CMD_SECCOMP: 1156 static_branch_enable(&switch_mm_cond_ibpb); 1157 break; 1158 default: 1159 break; 1160 } 1161 1162 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1163 static_key_enabled(&switch_mm_always_ibpb) ? 1164 "always-on" : "conditional"); 1165 } 1166 1167 /* 1168 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible, 1169 * STIBP is not required. 1170 */ 1171 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1172 !smt_possible || 1173 spectre_v2_in_ibrs_mode(spectre_v2_enabled)) 1174 return; 1175 1176 /* 1177 * At this point, an STIBP mode other than "off" has been set. 1178 * If STIBP support is not being forced, check if STIBP always-on 1179 * is preferred. 1180 */ 1181 if (mode != SPECTRE_V2_USER_STRICT && 1182 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1183 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1184 1185 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1186 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 1187 if (mode != SPECTRE_V2_USER_STRICT && 1188 mode != SPECTRE_V2_USER_STRICT_PREFERRED) 1189 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1190 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1191 } 1192 1193 spectre_v2_user_stibp = mode; 1194 1195 set_mode: 1196 pr_info("%s\n", spectre_v2_user_strings[mode]); 1197 } 1198 1199 static const char * const spectre_v2_strings[] = { 1200 [SPECTRE_V2_NONE] = "Vulnerable", 1201 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1202 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", 1203 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS", 1204 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE", 1205 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines", 1206 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1207 }; 1208 1209 static const struct { 1210 const char *option; 1211 enum spectre_v2_mitigation_cmd cmd; 1212 bool secure; 1213 } mitigation_options[] __initconst = { 1214 { "off", SPECTRE_V2_CMD_NONE, false }, 1215 { "on", SPECTRE_V2_CMD_FORCE, true }, 1216 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, 1217 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1218 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1219 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, 1220 { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, 1221 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, 1222 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, 1223 { "auto", SPECTRE_V2_CMD_AUTO, false }, 1224 { "ibrs", SPECTRE_V2_CMD_IBRS, false }, 1225 }; 1226 1227 static void __init spec_v2_print_cond(const char *reason, bool secure) 1228 { 1229 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1230 pr_info("%s selected on command line.\n", reason); 1231 } 1232 1233 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) 1234 { 1235 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; 1236 char arg[20]; 1237 int ret, i; 1238 1239 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || 1240 cpu_mitigations_off()) 1241 return SPECTRE_V2_CMD_NONE; 1242 1243 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); 1244 if (ret < 0) 1245 return SPECTRE_V2_CMD_AUTO; 1246 1247 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { 1248 if (!match_option(arg, ret, mitigation_options[i].option)) 1249 continue; 1250 cmd = mitigation_options[i].cmd; 1251 break; 1252 } 1253 1254 if (i >= ARRAY_SIZE(mitigation_options)) { 1255 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1256 return SPECTRE_V2_CMD_AUTO; 1257 } 1258 1259 if ((cmd == SPECTRE_V2_CMD_RETPOLINE || 1260 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1261 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 1262 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1263 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1264 !IS_ENABLED(CONFIG_RETPOLINE)) { 1265 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1266 mitigation_options[i].option); 1267 return SPECTRE_V2_CMD_AUTO; 1268 } 1269 1270 if ((cmd == SPECTRE_V2_CMD_EIBRS || 1271 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1272 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1273 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1274 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n", 1275 mitigation_options[i].option); 1276 return SPECTRE_V2_CMD_AUTO; 1277 } 1278 1279 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1280 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 1281 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 1282 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", 1283 mitigation_options[i].option); 1284 return SPECTRE_V2_CMD_AUTO; 1285 } 1286 1287 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) { 1288 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1289 mitigation_options[i].option); 1290 return SPECTRE_V2_CMD_AUTO; 1291 } 1292 1293 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1294 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", 1295 mitigation_options[i].option); 1296 return SPECTRE_V2_CMD_AUTO; 1297 } 1298 1299 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 1300 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", 1301 mitigation_options[i].option); 1302 return SPECTRE_V2_CMD_AUTO; 1303 } 1304 1305 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) { 1306 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", 1307 mitigation_options[i].option); 1308 return SPECTRE_V2_CMD_AUTO; 1309 } 1310 1311 spec_v2_print_cond(mitigation_options[i].option, 1312 mitigation_options[i].secure); 1313 return cmd; 1314 } 1315 1316 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1317 { 1318 if (!IS_ENABLED(CONFIG_RETPOLINE)) { 1319 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1320 return SPECTRE_V2_NONE; 1321 } 1322 1323 return SPECTRE_V2_RETPOLINE; 1324 } 1325 1326 /* Disable in-kernel use of non-RSB RET predictors */ 1327 static void __init spec_ctrl_disable_kernel_rrsba(void) 1328 { 1329 u64 ia32_cap; 1330 1331 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1332 return; 1333 1334 ia32_cap = x86_read_arch_cap_msr(); 1335 1336 if (ia32_cap & ARCH_CAP_RRSBA) { 1337 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1338 write_spec_ctrl_current(x86_spec_ctrl_base, true); 1339 } 1340 } 1341 1342 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) 1343 { 1344 /* 1345 * Similar to context switches, there are two types of RSB attacks 1346 * after VM exit: 1347 * 1348 * 1) RSB underflow 1349 * 1350 * 2) Poisoned RSB entry 1351 * 1352 * When retpoline is enabled, both are mitigated by filling/clearing 1353 * the RSB. 1354 * 1355 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch 1356 * prediction isolation protections, RSB still needs to be cleared 1357 * because of #2. Note that SMEP provides no protection here, unlike 1358 * user-space-poisoned RSB entries. 1359 * 1360 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB 1361 * bug is present then a LITE version of RSB protection is required, 1362 * just a single call needs to retire before a RET is executed. 1363 */ 1364 switch (mode) { 1365 case SPECTRE_V2_NONE: 1366 return; 1367 1368 case SPECTRE_V2_EIBRS_LFENCE: 1369 case SPECTRE_V2_EIBRS: 1370 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 1371 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 1372 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 1373 } 1374 return; 1375 1376 case SPECTRE_V2_EIBRS_RETPOLINE: 1377 case SPECTRE_V2_RETPOLINE: 1378 case SPECTRE_V2_LFENCE: 1379 case SPECTRE_V2_IBRS: 1380 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1381 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); 1382 return; 1383 } 1384 1385 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); 1386 dump_stack(); 1387 } 1388 1389 static void __init spectre_v2_select_mitigation(void) 1390 { 1391 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); 1392 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; 1393 1394 /* 1395 * If the CPU is not affected and the command line mode is NONE or AUTO 1396 * then nothing to do. 1397 */ 1398 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && 1399 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) 1400 return; 1401 1402 switch (cmd) { 1403 case SPECTRE_V2_CMD_NONE: 1404 return; 1405 1406 case SPECTRE_V2_CMD_FORCE: 1407 case SPECTRE_V2_CMD_AUTO: 1408 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1409 mode = SPECTRE_V2_EIBRS; 1410 break; 1411 } 1412 1413 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) && 1414 boot_cpu_has_bug(X86_BUG_RETBLEED) && 1415 retbleed_cmd != RETBLEED_CMD_OFF && 1416 boot_cpu_has(X86_FEATURE_IBRS) && 1417 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1418 mode = SPECTRE_V2_IBRS; 1419 break; 1420 } 1421 1422 mode = spectre_v2_select_retpoline(); 1423 break; 1424 1425 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 1426 pr_err(SPECTRE_V2_LFENCE_MSG); 1427 mode = SPECTRE_V2_LFENCE; 1428 break; 1429 1430 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 1431 mode = SPECTRE_V2_RETPOLINE; 1432 break; 1433 1434 case SPECTRE_V2_CMD_RETPOLINE: 1435 mode = spectre_v2_select_retpoline(); 1436 break; 1437 1438 case SPECTRE_V2_CMD_IBRS: 1439 mode = SPECTRE_V2_IBRS; 1440 break; 1441 1442 case SPECTRE_V2_CMD_EIBRS: 1443 mode = SPECTRE_V2_EIBRS; 1444 break; 1445 1446 case SPECTRE_V2_CMD_EIBRS_LFENCE: 1447 mode = SPECTRE_V2_EIBRS_LFENCE; 1448 break; 1449 1450 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 1451 mode = SPECTRE_V2_EIBRS_RETPOLINE; 1452 break; 1453 } 1454 1455 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 1456 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1457 1458 if (spectre_v2_in_ibrs_mode(mode)) { 1459 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 1460 write_spec_ctrl_current(x86_spec_ctrl_base, true); 1461 } 1462 1463 switch (mode) { 1464 case SPECTRE_V2_NONE: 1465 case SPECTRE_V2_EIBRS: 1466 break; 1467 1468 case SPECTRE_V2_IBRS: 1469 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 1470 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1471 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 1472 break; 1473 1474 case SPECTRE_V2_LFENCE: 1475 case SPECTRE_V2_EIBRS_LFENCE: 1476 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 1477 fallthrough; 1478 1479 case SPECTRE_V2_RETPOLINE: 1480 case SPECTRE_V2_EIBRS_RETPOLINE: 1481 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 1482 break; 1483 } 1484 1485 /* 1486 * Disable alternate RSB predictions in kernel when indirect CALLs and 1487 * JMPs gets protection against BHI and Intramode-BTI, but RET 1488 * prediction from a non-RSB predictor is still a risk. 1489 */ 1490 if (mode == SPECTRE_V2_EIBRS_LFENCE || 1491 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1492 mode == SPECTRE_V2_RETPOLINE) 1493 spec_ctrl_disable_kernel_rrsba(); 1494 1495 spectre_v2_enabled = mode; 1496 pr_info("%s\n", spectre_v2_strings[mode]); 1497 1498 /* 1499 * If Spectre v2 protection has been enabled, fill the RSB during a 1500 * context switch. In general there are two types of RSB attacks 1501 * across context switches, for which the CALLs/RETs may be unbalanced. 1502 * 1503 * 1) RSB underflow 1504 * 1505 * Some Intel parts have "bottomless RSB". When the RSB is empty, 1506 * speculated return targets may come from the branch predictor, 1507 * which could have a user-poisoned BTB or BHB entry. 1508 * 1509 * AMD has it even worse: *all* returns are speculated from the BTB, 1510 * regardless of the state of the RSB. 1511 * 1512 * When IBRS or eIBRS is enabled, the "user -> kernel" attack 1513 * scenario is mitigated by the IBRS branch prediction isolation 1514 * properties, so the RSB buffer filling wouldn't be necessary to 1515 * protect against this type of attack. 1516 * 1517 * The "user -> user" attack scenario is mitigated by RSB filling. 1518 * 1519 * 2) Poisoned RSB entry 1520 * 1521 * If the 'next' in-kernel return stack is shorter than 'prev', 1522 * 'next' could be tricked into speculating with a user-poisoned RSB 1523 * entry. 1524 * 1525 * The "user -> kernel" attack scenario is mitigated by SMEP and 1526 * eIBRS. 1527 * 1528 * The "user -> user" scenario, also known as SpectreBHB, requires 1529 * RSB clearing. 1530 * 1531 * So to mitigate all cases, unconditionally fill RSB on context 1532 * switches. 1533 * 1534 * FIXME: Is this pointless for retbleed-affected AMD? 1535 */ 1536 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 1537 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); 1538 1539 spectre_v2_determine_rsb_fill_type_at_vmexit(mode); 1540 1541 /* 1542 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 1543 * and Enhanced IBRS protect firmware too, so enable IBRS around 1544 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise 1545 * enabled. 1546 * 1547 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because 1548 * the user might select retpoline on the kernel command line and if 1549 * the CPU supports Enhanced IBRS, kernel might un-intentionally not 1550 * enable IBRS around firmware calls. 1551 */ 1552 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 1553 boot_cpu_has(X86_FEATURE_IBPB) && 1554 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1555 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 1556 1557 if (retbleed_cmd != RETBLEED_CMD_IBPB) { 1558 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 1559 pr_info("Enabling Speculation Barrier for firmware calls\n"); 1560 } 1561 1562 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { 1563 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 1564 pr_info("Enabling Restricted Speculation for firmware calls\n"); 1565 } 1566 1567 /* Set up IBPB and STIBP depending on the general spectre V2 command */ 1568 spectre_v2_cmd = cmd; 1569 } 1570 1571 static void update_stibp_msr(void * __unused) 1572 { 1573 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 1574 write_spec_ctrl_current(val, true); 1575 } 1576 1577 /* Update x86_spec_ctrl_base in case SMT state changed. */ 1578 static void update_stibp_strict(void) 1579 { 1580 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 1581 1582 if (sched_smt_active()) 1583 mask |= SPEC_CTRL_STIBP; 1584 1585 if (mask == x86_spec_ctrl_base) 1586 return; 1587 1588 pr_info("Update user space SMT mitigation: STIBP %s\n", 1589 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 1590 x86_spec_ctrl_base = mask; 1591 on_each_cpu(update_stibp_msr, NULL, 1); 1592 } 1593 1594 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 1595 static void update_indir_branch_cond(void) 1596 { 1597 if (sched_smt_active()) 1598 static_branch_enable(&switch_to_cond_stibp); 1599 else 1600 static_branch_disable(&switch_to_cond_stibp); 1601 } 1602 1603 #undef pr_fmt 1604 #define pr_fmt(fmt) fmt 1605 1606 /* Update the static key controlling the MDS CPU buffer clear in idle */ 1607 static void update_mds_branch_idle(void) 1608 { 1609 u64 ia32_cap = x86_read_arch_cap_msr(); 1610 1611 /* 1612 * Enable the idle clearing if SMT is active on CPUs which are 1613 * affected only by MSBDS and not any other MDS variant. 1614 * 1615 * The other variants cannot be mitigated when SMT is enabled, so 1616 * clearing the buffers on idle just to prevent the Store Buffer 1617 * repartitioning leak would be a window dressing exercise. 1618 */ 1619 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 1620 return; 1621 1622 if (sched_smt_active()) { 1623 static_branch_enable(&mds_idle_clear); 1624 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 1625 (ia32_cap & ARCH_CAP_FBSDP_NO)) { 1626 static_branch_disable(&mds_idle_clear); 1627 } 1628 } 1629 1630 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 1631 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 1632 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 1633 1634 void cpu_bugs_smt_update(void) 1635 { 1636 mutex_lock(&spec_ctrl_mutex); 1637 1638 if (sched_smt_active() && unprivileged_ebpf_enabled() && 1639 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 1640 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1641 1642 switch (spectre_v2_user_stibp) { 1643 case SPECTRE_V2_USER_NONE: 1644 break; 1645 case SPECTRE_V2_USER_STRICT: 1646 case SPECTRE_V2_USER_STRICT_PREFERRED: 1647 update_stibp_strict(); 1648 break; 1649 case SPECTRE_V2_USER_PRCTL: 1650 case SPECTRE_V2_USER_SECCOMP: 1651 update_indir_branch_cond(); 1652 break; 1653 } 1654 1655 switch (mds_mitigation) { 1656 case MDS_MITIGATION_FULL: 1657 case MDS_MITIGATION_VMWERV: 1658 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 1659 pr_warn_once(MDS_MSG_SMT); 1660 update_mds_branch_idle(); 1661 break; 1662 case MDS_MITIGATION_OFF: 1663 break; 1664 } 1665 1666 switch (taa_mitigation) { 1667 case TAA_MITIGATION_VERW: 1668 case TAA_MITIGATION_UCODE_NEEDED: 1669 if (sched_smt_active()) 1670 pr_warn_once(TAA_MSG_SMT); 1671 break; 1672 case TAA_MITIGATION_TSX_DISABLED: 1673 case TAA_MITIGATION_OFF: 1674 break; 1675 } 1676 1677 switch (mmio_mitigation) { 1678 case MMIO_MITIGATION_VERW: 1679 case MMIO_MITIGATION_UCODE_NEEDED: 1680 if (sched_smt_active()) 1681 pr_warn_once(MMIO_MSG_SMT); 1682 break; 1683 case MMIO_MITIGATION_OFF: 1684 break; 1685 } 1686 1687 mutex_unlock(&spec_ctrl_mutex); 1688 } 1689 1690 #undef pr_fmt 1691 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 1692 1693 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; 1694 1695 /* The kernel command line selection */ 1696 enum ssb_mitigation_cmd { 1697 SPEC_STORE_BYPASS_CMD_NONE, 1698 SPEC_STORE_BYPASS_CMD_AUTO, 1699 SPEC_STORE_BYPASS_CMD_ON, 1700 SPEC_STORE_BYPASS_CMD_PRCTL, 1701 SPEC_STORE_BYPASS_CMD_SECCOMP, 1702 }; 1703 1704 static const char * const ssb_strings[] = { 1705 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 1706 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 1707 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 1708 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 1709 }; 1710 1711 static const struct { 1712 const char *option; 1713 enum ssb_mitigation_cmd cmd; 1714 } ssb_mitigation_options[] __initconst = { 1715 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ 1716 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ 1717 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ 1718 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ 1719 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ 1720 }; 1721 1722 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) 1723 { 1724 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; 1725 char arg[20]; 1726 int ret, i; 1727 1728 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || 1729 cpu_mitigations_off()) { 1730 return SPEC_STORE_BYPASS_CMD_NONE; 1731 } else { 1732 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", 1733 arg, sizeof(arg)); 1734 if (ret < 0) 1735 return SPEC_STORE_BYPASS_CMD_AUTO; 1736 1737 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { 1738 if (!match_option(arg, ret, ssb_mitigation_options[i].option)) 1739 continue; 1740 1741 cmd = ssb_mitigation_options[i].cmd; 1742 break; 1743 } 1744 1745 if (i >= ARRAY_SIZE(ssb_mitigation_options)) { 1746 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1747 return SPEC_STORE_BYPASS_CMD_AUTO; 1748 } 1749 } 1750 1751 return cmd; 1752 } 1753 1754 static enum ssb_mitigation __init __ssb_select_mitigation(void) 1755 { 1756 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; 1757 enum ssb_mitigation_cmd cmd; 1758 1759 if (!boot_cpu_has(X86_FEATURE_SSBD)) 1760 return mode; 1761 1762 cmd = ssb_parse_cmdline(); 1763 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && 1764 (cmd == SPEC_STORE_BYPASS_CMD_NONE || 1765 cmd == SPEC_STORE_BYPASS_CMD_AUTO)) 1766 return mode; 1767 1768 switch (cmd) { 1769 case SPEC_STORE_BYPASS_CMD_SECCOMP: 1770 /* 1771 * Choose prctl+seccomp as the default mode if seccomp is 1772 * enabled. 1773 */ 1774 if (IS_ENABLED(CONFIG_SECCOMP)) 1775 mode = SPEC_STORE_BYPASS_SECCOMP; 1776 else 1777 mode = SPEC_STORE_BYPASS_PRCTL; 1778 break; 1779 case SPEC_STORE_BYPASS_CMD_ON: 1780 mode = SPEC_STORE_BYPASS_DISABLE; 1781 break; 1782 case SPEC_STORE_BYPASS_CMD_AUTO: 1783 case SPEC_STORE_BYPASS_CMD_PRCTL: 1784 mode = SPEC_STORE_BYPASS_PRCTL; 1785 break; 1786 case SPEC_STORE_BYPASS_CMD_NONE: 1787 break; 1788 } 1789 1790 /* 1791 * We have three CPU feature flags that are in play here: 1792 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 1793 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 1794 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 1795 */ 1796 if (mode == SPEC_STORE_BYPASS_DISABLE) { 1797 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 1798 /* 1799 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 1800 * use a completely different MSR and bit dependent on family. 1801 */ 1802 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 1803 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 1804 x86_amd_ssb_disable(); 1805 } else { 1806 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 1807 write_spec_ctrl_current(x86_spec_ctrl_base, true); 1808 } 1809 } 1810 1811 return mode; 1812 } 1813 1814 static void ssb_select_mitigation(void) 1815 { 1816 ssb_mode = __ssb_select_mitigation(); 1817 1818 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1819 pr_info("%s\n", ssb_strings[ssb_mode]); 1820 } 1821 1822 #undef pr_fmt 1823 #define pr_fmt(fmt) "Speculation prctl: " fmt 1824 1825 static void task_update_spec_tif(struct task_struct *tsk) 1826 { 1827 /* Force the update of the real TIF bits */ 1828 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 1829 1830 /* 1831 * Immediately update the speculation control MSRs for the current 1832 * task, but for a non-current task delay setting the CPU 1833 * mitigation until it is scheduled next. 1834 * 1835 * This can only happen for SECCOMP mitigation. For PRCTL it's 1836 * always the current task. 1837 */ 1838 if (tsk == current) 1839 speculation_ctrl_update_current(); 1840 } 1841 1842 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 1843 { 1844 1845 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 1846 return -EPERM; 1847 1848 switch (ctrl) { 1849 case PR_SPEC_ENABLE: 1850 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 1851 return 0; 1852 case PR_SPEC_DISABLE: 1853 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 1854 return 0; 1855 default: 1856 return -ERANGE; 1857 } 1858 } 1859 1860 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 1861 { 1862 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 1863 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 1864 return -ENXIO; 1865 1866 switch (ctrl) { 1867 case PR_SPEC_ENABLE: 1868 /* If speculation is force disabled, enable is not allowed */ 1869 if (task_spec_ssb_force_disable(task)) 1870 return -EPERM; 1871 task_clear_spec_ssb_disable(task); 1872 task_clear_spec_ssb_noexec(task); 1873 task_update_spec_tif(task); 1874 break; 1875 case PR_SPEC_DISABLE: 1876 task_set_spec_ssb_disable(task); 1877 task_clear_spec_ssb_noexec(task); 1878 task_update_spec_tif(task); 1879 break; 1880 case PR_SPEC_FORCE_DISABLE: 1881 task_set_spec_ssb_disable(task); 1882 task_set_spec_ssb_force_disable(task); 1883 task_clear_spec_ssb_noexec(task); 1884 task_update_spec_tif(task); 1885 break; 1886 case PR_SPEC_DISABLE_NOEXEC: 1887 if (task_spec_ssb_force_disable(task)) 1888 return -EPERM; 1889 task_set_spec_ssb_disable(task); 1890 task_set_spec_ssb_noexec(task); 1891 task_update_spec_tif(task); 1892 break; 1893 default: 1894 return -ERANGE; 1895 } 1896 return 0; 1897 } 1898 1899 static bool is_spec_ib_user_controlled(void) 1900 { 1901 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 1902 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 1903 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 1904 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 1905 } 1906 1907 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 1908 { 1909 switch (ctrl) { 1910 case PR_SPEC_ENABLE: 1911 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 1912 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 1913 return 0; 1914 1915 /* 1916 * With strict mode for both IBPB and STIBP, the instruction 1917 * code paths avoid checking this task flag and instead, 1918 * unconditionally run the instruction. However, STIBP and IBPB 1919 * are independent and either can be set to conditionally 1920 * enabled regardless of the mode of the other. 1921 * 1922 * If either is set to conditional, allow the task flag to be 1923 * updated, unless it was force-disabled by a previous prctl 1924 * call. Currently, this is possible on an AMD CPU which has the 1925 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 1926 * kernel is booted with 'spectre_v2_user=seccomp', then 1927 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 1928 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 1929 */ 1930 if (!is_spec_ib_user_controlled() || 1931 task_spec_ib_force_disable(task)) 1932 return -EPERM; 1933 1934 task_clear_spec_ib_disable(task); 1935 task_update_spec_tif(task); 1936 break; 1937 case PR_SPEC_DISABLE: 1938 case PR_SPEC_FORCE_DISABLE: 1939 /* 1940 * Indirect branch speculation is always allowed when 1941 * mitigation is force disabled. 1942 */ 1943 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 1944 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 1945 return -EPERM; 1946 1947 if (!is_spec_ib_user_controlled()) 1948 return 0; 1949 1950 task_set_spec_ib_disable(task); 1951 if (ctrl == PR_SPEC_FORCE_DISABLE) 1952 task_set_spec_ib_force_disable(task); 1953 task_update_spec_tif(task); 1954 break; 1955 default: 1956 return -ERANGE; 1957 } 1958 return 0; 1959 } 1960 1961 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 1962 unsigned long ctrl) 1963 { 1964 switch (which) { 1965 case PR_SPEC_STORE_BYPASS: 1966 return ssb_prctl_set(task, ctrl); 1967 case PR_SPEC_INDIRECT_BRANCH: 1968 return ib_prctl_set(task, ctrl); 1969 case PR_SPEC_L1D_FLUSH: 1970 return l1d_flush_prctl_set(task, ctrl); 1971 default: 1972 return -ENODEV; 1973 } 1974 } 1975 1976 #ifdef CONFIG_SECCOMP 1977 void arch_seccomp_spec_mitigate(struct task_struct *task) 1978 { 1979 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 1980 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 1981 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 1982 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 1983 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 1984 } 1985 #endif 1986 1987 static int l1d_flush_prctl_get(struct task_struct *task) 1988 { 1989 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 1990 return PR_SPEC_FORCE_DISABLE; 1991 1992 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 1993 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 1994 else 1995 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 1996 } 1997 1998 static int ssb_prctl_get(struct task_struct *task) 1999 { 2000 switch (ssb_mode) { 2001 case SPEC_STORE_BYPASS_DISABLE: 2002 return PR_SPEC_DISABLE; 2003 case SPEC_STORE_BYPASS_SECCOMP: 2004 case SPEC_STORE_BYPASS_PRCTL: 2005 if (task_spec_ssb_force_disable(task)) 2006 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2007 if (task_spec_ssb_noexec(task)) 2008 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2009 if (task_spec_ssb_disable(task)) 2010 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2011 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2012 default: 2013 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2014 return PR_SPEC_ENABLE; 2015 return PR_SPEC_NOT_AFFECTED; 2016 } 2017 } 2018 2019 static int ib_prctl_get(struct task_struct *task) 2020 { 2021 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2022 return PR_SPEC_NOT_AFFECTED; 2023 2024 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2025 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2026 return PR_SPEC_ENABLE; 2027 else if (is_spec_ib_user_controlled()) { 2028 if (task_spec_ib_force_disable(task)) 2029 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2030 if (task_spec_ib_disable(task)) 2031 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2032 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2033 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2034 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2035 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2036 return PR_SPEC_DISABLE; 2037 else 2038 return PR_SPEC_NOT_AFFECTED; 2039 } 2040 2041 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2042 { 2043 switch (which) { 2044 case PR_SPEC_STORE_BYPASS: 2045 return ssb_prctl_get(task); 2046 case PR_SPEC_INDIRECT_BRANCH: 2047 return ib_prctl_get(task); 2048 case PR_SPEC_L1D_FLUSH: 2049 return l1d_flush_prctl_get(task); 2050 default: 2051 return -ENODEV; 2052 } 2053 } 2054 2055 void x86_spec_ctrl_setup_ap(void) 2056 { 2057 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2058 write_spec_ctrl_current(x86_spec_ctrl_base, true); 2059 2060 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2061 x86_amd_ssb_disable(); 2062 } 2063 2064 bool itlb_multihit_kvm_mitigation; 2065 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); 2066 2067 #undef pr_fmt 2068 #define pr_fmt(fmt) "L1TF: " fmt 2069 2070 /* Default mitigation for L1TF-affected CPUs */ 2071 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; 2072 #if IS_ENABLED(CONFIG_KVM_INTEL) 2073 EXPORT_SYMBOL_GPL(l1tf_mitigation); 2074 #endif 2075 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2076 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); 2077 2078 /* 2079 * These CPUs all support 44bits physical address space internally in the 2080 * cache but CPUID can report a smaller number of physical address bits. 2081 * 2082 * The L1TF mitigation uses the top most address bit for the inversion of 2083 * non present PTEs. When the installed memory reaches into the top most 2084 * address bit due to memory holes, which has been observed on machines 2085 * which report 36bits physical address bits and have 32G RAM installed, 2086 * then the mitigation range check in l1tf_select_mitigation() triggers. 2087 * This is a false positive because the mitigation is still possible due to 2088 * the fact that the cache uses 44bit internally. Use the cache bits 2089 * instead of the reported physical bits and adjust them on the affected 2090 * machines to 44bit if the reported bits are less than 44. 2091 */ 2092 static void override_cache_bits(struct cpuinfo_x86 *c) 2093 { 2094 if (c->x86 != 6) 2095 return; 2096 2097 switch (c->x86_model) { 2098 case INTEL_FAM6_NEHALEM: 2099 case INTEL_FAM6_WESTMERE: 2100 case INTEL_FAM6_SANDYBRIDGE: 2101 case INTEL_FAM6_IVYBRIDGE: 2102 case INTEL_FAM6_HASWELL: 2103 case INTEL_FAM6_HASWELL_L: 2104 case INTEL_FAM6_HASWELL_G: 2105 case INTEL_FAM6_BROADWELL: 2106 case INTEL_FAM6_BROADWELL_G: 2107 case INTEL_FAM6_SKYLAKE_L: 2108 case INTEL_FAM6_SKYLAKE: 2109 case INTEL_FAM6_KABYLAKE_L: 2110 case INTEL_FAM6_KABYLAKE: 2111 if (c->x86_cache_bits < 44) 2112 c->x86_cache_bits = 44; 2113 break; 2114 } 2115 } 2116 2117 static void __init l1tf_select_mitigation(void) 2118 { 2119 u64 half_pa; 2120 2121 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2122 return; 2123 2124 if (cpu_mitigations_off()) 2125 l1tf_mitigation = L1TF_MITIGATION_OFF; 2126 else if (cpu_mitigations_auto_nosmt()) 2127 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2128 2129 override_cache_bits(&boot_cpu_data); 2130 2131 switch (l1tf_mitigation) { 2132 case L1TF_MITIGATION_OFF: 2133 case L1TF_MITIGATION_FLUSH_NOWARN: 2134 case L1TF_MITIGATION_FLUSH: 2135 break; 2136 case L1TF_MITIGATION_FLUSH_NOSMT: 2137 case L1TF_MITIGATION_FULL: 2138 cpu_smt_disable(false); 2139 break; 2140 case L1TF_MITIGATION_FULL_FORCE: 2141 cpu_smt_disable(true); 2142 break; 2143 } 2144 2145 #if CONFIG_PGTABLE_LEVELS == 2 2146 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2147 return; 2148 #endif 2149 2150 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2151 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2152 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2153 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2154 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2155 half_pa); 2156 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2157 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2158 return; 2159 } 2160 2161 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2162 } 2163 2164 static int __init l1tf_cmdline(char *str) 2165 { 2166 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2167 return 0; 2168 2169 if (!str) 2170 return -EINVAL; 2171 2172 if (!strcmp(str, "off")) 2173 l1tf_mitigation = L1TF_MITIGATION_OFF; 2174 else if (!strcmp(str, "flush,nowarn")) 2175 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2176 else if (!strcmp(str, "flush")) 2177 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2178 else if (!strcmp(str, "flush,nosmt")) 2179 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2180 else if (!strcmp(str, "full")) 2181 l1tf_mitigation = L1TF_MITIGATION_FULL; 2182 else if (!strcmp(str, "full,force")) 2183 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2184 2185 return 0; 2186 } 2187 early_param("l1tf", l1tf_cmdline); 2188 2189 #undef pr_fmt 2190 #define pr_fmt(fmt) fmt 2191 2192 #ifdef CONFIG_SYSFS 2193 2194 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 2195 2196 #if IS_ENABLED(CONFIG_KVM_INTEL) 2197 static const char * const l1tf_vmx_states[] = { 2198 [VMENTER_L1D_FLUSH_AUTO] = "auto", 2199 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 2200 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 2201 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 2202 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 2203 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 2204 }; 2205 2206 static ssize_t l1tf_show_state(char *buf) 2207 { 2208 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 2209 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG); 2210 2211 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 2212 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 2213 sched_smt_active())) { 2214 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 2215 l1tf_vmx_states[l1tf_vmx_mitigation]); 2216 } 2217 2218 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 2219 l1tf_vmx_states[l1tf_vmx_mitigation], 2220 sched_smt_active() ? "vulnerable" : "disabled"); 2221 } 2222 2223 static ssize_t itlb_multihit_show_state(char *buf) 2224 { 2225 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2226 !boot_cpu_has(X86_FEATURE_VMX)) 2227 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n"); 2228 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 2229 return sprintf(buf, "KVM: Mitigation: VMX disabled\n"); 2230 else if (itlb_multihit_kvm_mitigation) 2231 return sprintf(buf, "KVM: Mitigation: Split huge pages\n"); 2232 else 2233 return sprintf(buf, "KVM: Vulnerable\n"); 2234 } 2235 #else 2236 static ssize_t l1tf_show_state(char *buf) 2237 { 2238 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG); 2239 } 2240 2241 static ssize_t itlb_multihit_show_state(char *buf) 2242 { 2243 return sprintf(buf, "Processor vulnerable\n"); 2244 } 2245 #endif 2246 2247 static ssize_t mds_show_state(char *buf) 2248 { 2249 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2250 return sprintf(buf, "%s; SMT Host state unknown\n", 2251 mds_strings[mds_mitigation]); 2252 } 2253 2254 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 2255 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2256 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 2257 sched_smt_active() ? "mitigated" : "disabled")); 2258 } 2259 2260 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2261 sched_smt_active() ? "vulnerable" : "disabled"); 2262 } 2263 2264 static ssize_t tsx_async_abort_show_state(char *buf) 2265 { 2266 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 2267 (taa_mitigation == TAA_MITIGATION_OFF)) 2268 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]); 2269 2270 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2271 return sprintf(buf, "%s; SMT Host state unknown\n", 2272 taa_strings[taa_mitigation]); 2273 } 2274 2275 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 2276 sched_smt_active() ? "vulnerable" : "disabled"); 2277 } 2278 2279 static ssize_t mmio_stale_data_show_state(char *buf) 2280 { 2281 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2282 return sysfs_emit(buf, "Unknown: No mitigations\n"); 2283 2284 if (mmio_mitigation == MMIO_MITIGATION_OFF) 2285 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 2286 2287 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2288 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2289 mmio_strings[mmio_mitigation]); 2290 } 2291 2292 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 2293 sched_smt_active() ? "vulnerable" : "disabled"); 2294 } 2295 2296 static char *stibp_state(void) 2297 { 2298 if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) 2299 return ""; 2300 2301 switch (spectre_v2_user_stibp) { 2302 case SPECTRE_V2_USER_NONE: 2303 return ", STIBP: disabled"; 2304 case SPECTRE_V2_USER_STRICT: 2305 return ", STIBP: forced"; 2306 case SPECTRE_V2_USER_STRICT_PREFERRED: 2307 return ", STIBP: always-on"; 2308 case SPECTRE_V2_USER_PRCTL: 2309 case SPECTRE_V2_USER_SECCOMP: 2310 if (static_key_enabled(&switch_to_cond_stibp)) 2311 return ", STIBP: conditional"; 2312 } 2313 return ""; 2314 } 2315 2316 static char *ibpb_state(void) 2317 { 2318 if (boot_cpu_has(X86_FEATURE_IBPB)) { 2319 if (static_key_enabled(&switch_mm_always_ibpb)) 2320 return ", IBPB: always-on"; 2321 if (static_key_enabled(&switch_mm_cond_ibpb)) 2322 return ", IBPB: conditional"; 2323 return ", IBPB: disabled"; 2324 } 2325 return ""; 2326 } 2327 2328 static char *pbrsb_eibrs_state(void) 2329 { 2330 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2331 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 2332 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 2333 return ", PBRSB-eIBRS: SW sequence"; 2334 else 2335 return ", PBRSB-eIBRS: Vulnerable"; 2336 } else { 2337 return ", PBRSB-eIBRS: Not affected"; 2338 } 2339 } 2340 2341 static ssize_t spectre_v2_show_state(char *buf) 2342 { 2343 if (spectre_v2_enabled == SPECTRE_V2_LFENCE) 2344 return sprintf(buf, "Vulnerable: LFENCE\n"); 2345 2346 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 2347 return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 2348 2349 if (sched_smt_active() && unprivileged_ebpf_enabled() && 2350 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 2351 return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 2352 2353 return sprintf(buf, "%s%s%s%s%s%s%s\n", 2354 spectre_v2_strings[spectre_v2_enabled], 2355 ibpb_state(), 2356 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "", 2357 stibp_state(), 2358 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "", 2359 pbrsb_eibrs_state(), 2360 spectre_v2_module_string()); 2361 } 2362 2363 static ssize_t srbds_show_state(char *buf) 2364 { 2365 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]); 2366 } 2367 2368 static ssize_t retbleed_show_state(char *buf) 2369 { 2370 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 2371 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2372 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 2373 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 2374 return sprintf(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 2375 2376 return sprintf(buf, "%s; SMT %s\n", 2377 retbleed_strings[retbleed_mitigation], 2378 !sched_smt_active() ? "disabled" : 2379 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2380 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 2381 "enabled with STIBP protection" : "vulnerable"); 2382 } 2383 2384 return sprintf(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 2385 } 2386 2387 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 2388 char *buf, unsigned int bug) 2389 { 2390 if (!boot_cpu_has_bug(bug)) 2391 return sprintf(buf, "Not affected\n"); 2392 2393 switch (bug) { 2394 case X86_BUG_CPU_MELTDOWN: 2395 if (boot_cpu_has(X86_FEATURE_PTI)) 2396 return sprintf(buf, "Mitigation: PTI\n"); 2397 2398 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 2399 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 2400 2401 break; 2402 2403 case X86_BUG_SPECTRE_V1: 2404 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 2405 2406 case X86_BUG_SPECTRE_V2: 2407 return spectre_v2_show_state(buf); 2408 2409 case X86_BUG_SPEC_STORE_BYPASS: 2410 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]); 2411 2412 case X86_BUG_L1TF: 2413 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 2414 return l1tf_show_state(buf); 2415 break; 2416 2417 case X86_BUG_MDS: 2418 return mds_show_state(buf); 2419 2420 case X86_BUG_TAA: 2421 return tsx_async_abort_show_state(buf); 2422 2423 case X86_BUG_ITLB_MULTIHIT: 2424 return itlb_multihit_show_state(buf); 2425 2426 case X86_BUG_SRBDS: 2427 return srbds_show_state(buf); 2428 2429 case X86_BUG_MMIO_STALE_DATA: 2430 case X86_BUG_MMIO_UNKNOWN: 2431 return mmio_stale_data_show_state(buf); 2432 2433 case X86_BUG_RETBLEED: 2434 return retbleed_show_state(buf); 2435 2436 default: 2437 break; 2438 } 2439 2440 return sprintf(buf, "Vulnerable\n"); 2441 } 2442 2443 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 2444 { 2445 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 2446 } 2447 2448 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 2449 { 2450 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 2451 } 2452 2453 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 2454 { 2455 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 2456 } 2457 2458 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 2459 { 2460 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 2461 } 2462 2463 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 2464 { 2465 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 2466 } 2467 2468 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 2469 { 2470 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 2471 } 2472 2473 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 2474 { 2475 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 2476 } 2477 2478 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 2479 { 2480 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 2481 } 2482 2483 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 2484 { 2485 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 2486 } 2487 2488 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 2489 { 2490 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2491 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); 2492 else 2493 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 2494 } 2495 2496 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 2497 { 2498 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 2499 } 2500 #endif 2501