xref: /openbmc/linux/arch/x86/kernel/cpu/bugs.c (revision 5fa2481c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20 
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36 
37 #include "cpu.h"
38 
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init retbleed_select_mitigation(void);
42 static void __init spectre_v2_user_select_mitigation(void);
43 static void __init ssb_select_mitigation(void);
44 static void __init l1tf_select_mitigation(void);
45 static void __init mds_select_mitigation(void);
46 static void __init md_clear_update_mitigation(void);
47 static void __init md_clear_select_mitigation(void);
48 static void __init taa_select_mitigation(void);
49 static void __init mmio_select_mitigation(void);
50 static void __init srbds_select_mitigation(void);
51 static void __init l1d_flush_select_mitigation(void);
52 
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56 
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60 
61 static DEFINE_MUTEX(spec_ctrl_mutex);
62 
63 /*
64  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
65  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
66  */
67 void write_spec_ctrl_current(u64 val, bool force)
68 {
69 	if (this_cpu_read(x86_spec_ctrl_current) == val)
70 		return;
71 
72 	this_cpu_write(x86_spec_ctrl_current, val);
73 
74 	/*
75 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
76 	 * forced the update can be delayed until that time.
77 	 */
78 	if (force || !cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
79 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
80 }
81 
82 u64 spec_ctrl_current(void)
83 {
84 	return this_cpu_read(x86_spec_ctrl_current);
85 }
86 EXPORT_SYMBOL_GPL(spec_ctrl_current);
87 
88 /*
89  * AMD specific MSR info for Speculative Store Bypass control.
90  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
91  */
92 u64 __ro_after_init x86_amd_ls_cfg_base;
93 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
94 
95 /* Control conditional STIBP in switch_to() */
96 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
97 /* Control conditional IBPB in switch_mm() */
98 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
99 /* Control unconditional IBPB in switch_mm() */
100 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
101 
102 /* Control MDS CPU buffer clear before returning to user space */
103 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
104 EXPORT_SYMBOL_GPL(mds_user_clear);
105 /* Control MDS CPU buffer clear before idling (halt, mwait) */
106 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
107 EXPORT_SYMBOL_GPL(mds_idle_clear);
108 
109 /*
110  * Controls whether l1d flush based mitigations are enabled,
111  * based on hw features and admin setting via boot parameter
112  * defaults to false
113  */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
115 
116 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
117 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
118 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
119 
120 void __init check_bugs(void)
121 {
122 	identify_boot_cpu();
123 
124 	/*
125 	 * identify_boot_cpu() initialized SMT support information, let the
126 	 * core code know.
127 	 */
128 	cpu_smt_check_topology();
129 
130 	if (!IS_ENABLED(CONFIG_SMP)) {
131 		pr_info("CPU: ");
132 		print_cpu_info(&boot_cpu_data);
133 	}
134 
135 	/*
136 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
137 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
138 	 * init code as it is not enumerated and depends on the family.
139 	 */
140 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
141 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
142 
143 	/* Select the proper CPU mitigations before patching alternatives: */
144 	spectre_v1_select_mitigation();
145 	spectre_v2_select_mitigation();
146 	/*
147 	 * retbleed_select_mitigation() relies on the state set by
148 	 * spectre_v2_select_mitigation(); specifically it wants to know about
149 	 * spectre_v2=ibrs.
150 	 */
151 	retbleed_select_mitigation();
152 	/*
153 	 * spectre_v2_user_select_mitigation() relies on the state set by
154 	 * retbleed_select_mitigation(); specifically the STIBP selection is
155 	 * forced for UNRET.
156 	 */
157 	spectre_v2_user_select_mitigation();
158 	ssb_select_mitigation();
159 	l1tf_select_mitigation();
160 	md_clear_select_mitigation();
161 	srbds_select_mitigation();
162 	l1d_flush_select_mitigation();
163 
164 	arch_smt_update();
165 
166 #ifdef CONFIG_X86_32
167 	/*
168 	 * Check whether we are able to run this kernel safely on SMP.
169 	 *
170 	 * - i386 is no longer supported.
171 	 * - In order to run on anything without a TSC, we need to be
172 	 *   compiled for a i486.
173 	 */
174 	if (boot_cpu_data.x86 < 4)
175 		panic("Kernel requires i486+ for 'invlpg' and other features");
176 
177 	init_utsname()->machine[1] =
178 		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
179 	alternative_instructions();
180 
181 	fpu__init_check_bugs();
182 #else /* CONFIG_X86_64 */
183 	alternative_instructions();
184 
185 	/*
186 	 * Make sure the first 2MB area is not mapped by huge pages
187 	 * There are typically fixed size MTRRs in there and overlapping
188 	 * MTRRs into large pages causes slow downs.
189 	 *
190 	 * Right now we don't do that with gbpages because there seems
191 	 * very little benefit for that case.
192 	 */
193 	if (!direct_gbpages)
194 		set_memory_4k((unsigned long)__va(0), 1);
195 #endif
196 }
197 
198 /*
199  * NOTE: This function is *only* called for SVM.  VMX spec_ctrl handling is
200  * done in vmenter.S.
201  */
202 void
203 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
204 {
205 	u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current();
206 	struct thread_info *ti = current_thread_info();
207 
208 	if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
209 		if (hostval != guestval) {
210 			msrval = setguest ? guestval : hostval;
211 			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
212 		}
213 	}
214 
215 	/*
216 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
217 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
218 	 */
219 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
220 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
221 		return;
222 
223 	/*
224 	 * If the host has SSBD mitigation enabled, force it in the host's
225 	 * virtual MSR value. If its not permanently enabled, evaluate
226 	 * current's TIF_SSBD thread flag.
227 	 */
228 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
229 		hostval = SPEC_CTRL_SSBD;
230 	else
231 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
232 
233 	/* Sanitize the guest value */
234 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
235 
236 	if (hostval != guestval) {
237 		unsigned long tif;
238 
239 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
240 				 ssbd_spec_ctrl_to_tif(hostval);
241 
242 		speculation_ctrl_update(tif);
243 	}
244 }
245 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
246 
247 static void x86_amd_ssb_disable(void)
248 {
249 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
250 
251 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
252 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
253 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
254 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
255 }
256 
257 #undef pr_fmt
258 #define pr_fmt(fmt)	"MDS: " fmt
259 
260 /* Default mitigation for MDS-affected CPUs */
261 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
262 static bool mds_nosmt __ro_after_init = false;
263 
264 static const char * const mds_strings[] = {
265 	[MDS_MITIGATION_OFF]	= "Vulnerable",
266 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
267 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
268 };
269 
270 static void __init mds_select_mitigation(void)
271 {
272 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
273 		mds_mitigation = MDS_MITIGATION_OFF;
274 		return;
275 	}
276 
277 	if (mds_mitigation == MDS_MITIGATION_FULL) {
278 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
279 			mds_mitigation = MDS_MITIGATION_VMWERV;
280 
281 		static_branch_enable(&mds_user_clear);
282 
283 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
284 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
285 			cpu_smt_disable(false);
286 	}
287 }
288 
289 static int __init mds_cmdline(char *str)
290 {
291 	if (!boot_cpu_has_bug(X86_BUG_MDS))
292 		return 0;
293 
294 	if (!str)
295 		return -EINVAL;
296 
297 	if (!strcmp(str, "off"))
298 		mds_mitigation = MDS_MITIGATION_OFF;
299 	else if (!strcmp(str, "full"))
300 		mds_mitigation = MDS_MITIGATION_FULL;
301 	else if (!strcmp(str, "full,nosmt")) {
302 		mds_mitigation = MDS_MITIGATION_FULL;
303 		mds_nosmt = true;
304 	}
305 
306 	return 0;
307 }
308 early_param("mds", mds_cmdline);
309 
310 #undef pr_fmt
311 #define pr_fmt(fmt)	"TAA: " fmt
312 
313 enum taa_mitigations {
314 	TAA_MITIGATION_OFF,
315 	TAA_MITIGATION_UCODE_NEEDED,
316 	TAA_MITIGATION_VERW,
317 	TAA_MITIGATION_TSX_DISABLED,
318 };
319 
320 /* Default mitigation for TAA-affected CPUs */
321 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
322 static bool taa_nosmt __ro_after_init;
323 
324 static const char * const taa_strings[] = {
325 	[TAA_MITIGATION_OFF]		= "Vulnerable",
326 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
327 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
328 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
329 };
330 
331 static void __init taa_select_mitigation(void)
332 {
333 	u64 ia32_cap;
334 
335 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
336 		taa_mitigation = TAA_MITIGATION_OFF;
337 		return;
338 	}
339 
340 	/* TSX previously disabled by tsx=off */
341 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
342 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
343 		return;
344 	}
345 
346 	if (cpu_mitigations_off()) {
347 		taa_mitigation = TAA_MITIGATION_OFF;
348 		return;
349 	}
350 
351 	/*
352 	 * TAA mitigation via VERW is turned off if both
353 	 * tsx_async_abort=off and mds=off are specified.
354 	 */
355 	if (taa_mitigation == TAA_MITIGATION_OFF &&
356 	    mds_mitigation == MDS_MITIGATION_OFF)
357 		return;
358 
359 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
360 		taa_mitigation = TAA_MITIGATION_VERW;
361 	else
362 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
363 
364 	/*
365 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
366 	 * A microcode update fixes this behavior to clear CPU buffers. It also
367 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
368 	 * ARCH_CAP_TSX_CTRL_MSR bit.
369 	 *
370 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
371 	 * update is required.
372 	 */
373 	ia32_cap = x86_read_arch_cap_msr();
374 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
375 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
376 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
377 
378 	/*
379 	 * TSX is enabled, select alternate mitigation for TAA which is
380 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
381 	 *
382 	 * For guests that can't determine whether the correct microcode is
383 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
384 	 */
385 	static_branch_enable(&mds_user_clear);
386 
387 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
388 		cpu_smt_disable(false);
389 }
390 
391 static int __init tsx_async_abort_parse_cmdline(char *str)
392 {
393 	if (!boot_cpu_has_bug(X86_BUG_TAA))
394 		return 0;
395 
396 	if (!str)
397 		return -EINVAL;
398 
399 	if (!strcmp(str, "off")) {
400 		taa_mitigation = TAA_MITIGATION_OFF;
401 	} else if (!strcmp(str, "full")) {
402 		taa_mitigation = TAA_MITIGATION_VERW;
403 	} else if (!strcmp(str, "full,nosmt")) {
404 		taa_mitigation = TAA_MITIGATION_VERW;
405 		taa_nosmt = true;
406 	}
407 
408 	return 0;
409 }
410 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
411 
412 #undef pr_fmt
413 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
414 
415 enum mmio_mitigations {
416 	MMIO_MITIGATION_OFF,
417 	MMIO_MITIGATION_UCODE_NEEDED,
418 	MMIO_MITIGATION_VERW,
419 };
420 
421 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
422 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
423 static bool mmio_nosmt __ro_after_init = false;
424 
425 static const char * const mmio_strings[] = {
426 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
427 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
428 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
429 };
430 
431 static void __init mmio_select_mitigation(void)
432 {
433 	u64 ia32_cap;
434 
435 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
436 	    cpu_mitigations_off()) {
437 		mmio_mitigation = MMIO_MITIGATION_OFF;
438 		return;
439 	}
440 
441 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
442 		return;
443 
444 	ia32_cap = x86_read_arch_cap_msr();
445 
446 	/*
447 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
448 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
449 	 */
450 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
451 					      boot_cpu_has(X86_FEATURE_RTM)))
452 		static_branch_enable(&mds_user_clear);
453 	else
454 		static_branch_enable(&mmio_stale_data_clear);
455 
456 	/*
457 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
458 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
459 	 * is required irrespective of SMT state.
460 	 */
461 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
462 		static_branch_enable(&mds_idle_clear);
463 
464 	/*
465 	 * Check if the system has the right microcode.
466 	 *
467 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
468 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
469 	 * affected systems.
470 	 */
471 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
472 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
473 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
474 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
475 		mmio_mitigation = MMIO_MITIGATION_VERW;
476 	else
477 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
478 
479 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
480 		cpu_smt_disable(false);
481 }
482 
483 static int __init mmio_stale_data_parse_cmdline(char *str)
484 {
485 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
486 		return 0;
487 
488 	if (!str)
489 		return -EINVAL;
490 
491 	if (!strcmp(str, "off")) {
492 		mmio_mitigation = MMIO_MITIGATION_OFF;
493 	} else if (!strcmp(str, "full")) {
494 		mmio_mitigation = MMIO_MITIGATION_VERW;
495 	} else if (!strcmp(str, "full,nosmt")) {
496 		mmio_mitigation = MMIO_MITIGATION_VERW;
497 		mmio_nosmt = true;
498 	}
499 
500 	return 0;
501 }
502 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
503 
504 #undef pr_fmt
505 #define pr_fmt(fmt)     "" fmt
506 
507 static void __init md_clear_update_mitigation(void)
508 {
509 	if (cpu_mitigations_off())
510 		return;
511 
512 	if (!static_key_enabled(&mds_user_clear))
513 		goto out;
514 
515 	/*
516 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
517 	 * mitigation, if necessary.
518 	 */
519 	if (mds_mitigation == MDS_MITIGATION_OFF &&
520 	    boot_cpu_has_bug(X86_BUG_MDS)) {
521 		mds_mitigation = MDS_MITIGATION_FULL;
522 		mds_select_mitigation();
523 	}
524 	if (taa_mitigation == TAA_MITIGATION_OFF &&
525 	    boot_cpu_has_bug(X86_BUG_TAA)) {
526 		taa_mitigation = TAA_MITIGATION_VERW;
527 		taa_select_mitigation();
528 	}
529 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
530 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
531 		mmio_mitigation = MMIO_MITIGATION_VERW;
532 		mmio_select_mitigation();
533 	}
534 out:
535 	if (boot_cpu_has_bug(X86_BUG_MDS))
536 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
537 	if (boot_cpu_has_bug(X86_BUG_TAA))
538 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
539 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
540 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
541 }
542 
543 static void __init md_clear_select_mitigation(void)
544 {
545 	mds_select_mitigation();
546 	taa_select_mitigation();
547 	mmio_select_mitigation();
548 
549 	/*
550 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
551 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
552 	 * mitigation selection is done.
553 	 */
554 	md_clear_update_mitigation();
555 }
556 
557 #undef pr_fmt
558 #define pr_fmt(fmt)	"SRBDS: " fmt
559 
560 enum srbds_mitigations {
561 	SRBDS_MITIGATION_OFF,
562 	SRBDS_MITIGATION_UCODE_NEEDED,
563 	SRBDS_MITIGATION_FULL,
564 	SRBDS_MITIGATION_TSX_OFF,
565 	SRBDS_MITIGATION_HYPERVISOR,
566 };
567 
568 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
569 
570 static const char * const srbds_strings[] = {
571 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
572 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
573 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
574 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
575 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
576 };
577 
578 static bool srbds_off;
579 
580 void update_srbds_msr(void)
581 {
582 	u64 mcu_ctrl;
583 
584 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
585 		return;
586 
587 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
588 		return;
589 
590 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
591 		return;
592 
593 	/*
594 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
595 	 * being disabled and it hasn't received the SRBDS MSR microcode.
596 	 */
597 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
598 		return;
599 
600 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
601 
602 	switch (srbds_mitigation) {
603 	case SRBDS_MITIGATION_OFF:
604 	case SRBDS_MITIGATION_TSX_OFF:
605 		mcu_ctrl |= RNGDS_MITG_DIS;
606 		break;
607 	case SRBDS_MITIGATION_FULL:
608 		mcu_ctrl &= ~RNGDS_MITG_DIS;
609 		break;
610 	default:
611 		break;
612 	}
613 
614 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
615 }
616 
617 static void __init srbds_select_mitigation(void)
618 {
619 	u64 ia32_cap;
620 
621 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
622 		return;
623 
624 	/*
625 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
626 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
627 	 * by Processor MMIO Stale Data vulnerability.
628 	 */
629 	ia32_cap = x86_read_arch_cap_msr();
630 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
631 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
632 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
633 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
634 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
635 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
636 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
637 	else if (cpu_mitigations_off() || srbds_off)
638 		srbds_mitigation = SRBDS_MITIGATION_OFF;
639 
640 	update_srbds_msr();
641 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
642 }
643 
644 static int __init srbds_parse_cmdline(char *str)
645 {
646 	if (!str)
647 		return -EINVAL;
648 
649 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
650 		return 0;
651 
652 	srbds_off = !strcmp(str, "off");
653 	return 0;
654 }
655 early_param("srbds", srbds_parse_cmdline);
656 
657 #undef pr_fmt
658 #define pr_fmt(fmt)     "L1D Flush : " fmt
659 
660 enum l1d_flush_mitigations {
661 	L1D_FLUSH_OFF = 0,
662 	L1D_FLUSH_ON,
663 };
664 
665 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
666 
667 static void __init l1d_flush_select_mitigation(void)
668 {
669 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
670 		return;
671 
672 	static_branch_enable(&switch_mm_cond_l1d_flush);
673 	pr_info("Conditional flush on switch_mm() enabled\n");
674 }
675 
676 static int __init l1d_flush_parse_cmdline(char *str)
677 {
678 	if (!strcmp(str, "on"))
679 		l1d_flush_mitigation = L1D_FLUSH_ON;
680 
681 	return 0;
682 }
683 early_param("l1d_flush", l1d_flush_parse_cmdline);
684 
685 #undef pr_fmt
686 #define pr_fmt(fmt)     "Spectre V1 : " fmt
687 
688 enum spectre_v1_mitigation {
689 	SPECTRE_V1_MITIGATION_NONE,
690 	SPECTRE_V1_MITIGATION_AUTO,
691 };
692 
693 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
694 	SPECTRE_V1_MITIGATION_AUTO;
695 
696 static const char * const spectre_v1_strings[] = {
697 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
698 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
699 };
700 
701 /*
702  * Does SMAP provide full mitigation against speculative kernel access to
703  * userspace?
704  */
705 static bool smap_works_speculatively(void)
706 {
707 	if (!boot_cpu_has(X86_FEATURE_SMAP))
708 		return false;
709 
710 	/*
711 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
712 	 * prevent speculative access to user data in the L1 cache.
713 	 * Consider SMAP to be non-functional as a mitigation on these
714 	 * CPUs.
715 	 */
716 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
717 		return false;
718 
719 	return true;
720 }
721 
722 static void __init spectre_v1_select_mitigation(void)
723 {
724 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
725 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
726 		return;
727 	}
728 
729 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
730 		/*
731 		 * With Spectre v1, a user can speculatively control either
732 		 * path of a conditional swapgs with a user-controlled GS
733 		 * value.  The mitigation is to add lfences to both code paths.
734 		 *
735 		 * If FSGSBASE is enabled, the user can put a kernel address in
736 		 * GS, in which case SMAP provides no protection.
737 		 *
738 		 * If FSGSBASE is disabled, the user can only put a user space
739 		 * address in GS.  That makes an attack harder, but still
740 		 * possible if there's no SMAP protection.
741 		 */
742 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
743 		    !smap_works_speculatively()) {
744 			/*
745 			 * Mitigation can be provided from SWAPGS itself or
746 			 * PTI as the CR3 write in the Meltdown mitigation
747 			 * is serializing.
748 			 *
749 			 * If neither is there, mitigate with an LFENCE to
750 			 * stop speculation through swapgs.
751 			 */
752 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
753 			    !boot_cpu_has(X86_FEATURE_PTI))
754 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
755 
756 			/*
757 			 * Enable lfences in the kernel entry (non-swapgs)
758 			 * paths, to prevent user entry from speculatively
759 			 * skipping swapgs.
760 			 */
761 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
762 		}
763 	}
764 
765 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
766 }
767 
768 static int __init nospectre_v1_cmdline(char *str)
769 {
770 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
771 	return 0;
772 }
773 early_param("nospectre_v1", nospectre_v1_cmdline);
774 
775 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
776 	SPECTRE_V2_NONE;
777 
778 #undef pr_fmt
779 #define pr_fmt(fmt)     "RETBleed: " fmt
780 
781 enum retbleed_mitigation {
782 	RETBLEED_MITIGATION_NONE,
783 	RETBLEED_MITIGATION_UNRET,
784 	RETBLEED_MITIGATION_IBPB,
785 	RETBLEED_MITIGATION_IBRS,
786 	RETBLEED_MITIGATION_EIBRS,
787 };
788 
789 enum retbleed_mitigation_cmd {
790 	RETBLEED_CMD_OFF,
791 	RETBLEED_CMD_AUTO,
792 	RETBLEED_CMD_UNRET,
793 	RETBLEED_CMD_IBPB,
794 };
795 
796 static const char * const retbleed_strings[] = {
797 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
798 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
799 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
800 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
801 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
802 };
803 
804 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
805 	RETBLEED_MITIGATION_NONE;
806 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
807 	RETBLEED_CMD_AUTO;
808 
809 static int __ro_after_init retbleed_nosmt = false;
810 
811 static int __init retbleed_parse_cmdline(char *str)
812 {
813 	if (!str)
814 		return -EINVAL;
815 
816 	while (str) {
817 		char *next = strchr(str, ',');
818 		if (next) {
819 			*next = 0;
820 			next++;
821 		}
822 
823 		if (!strcmp(str, "off")) {
824 			retbleed_cmd = RETBLEED_CMD_OFF;
825 		} else if (!strcmp(str, "auto")) {
826 			retbleed_cmd = RETBLEED_CMD_AUTO;
827 		} else if (!strcmp(str, "unret")) {
828 			retbleed_cmd = RETBLEED_CMD_UNRET;
829 		} else if (!strcmp(str, "ibpb")) {
830 			retbleed_cmd = RETBLEED_CMD_IBPB;
831 		} else if (!strcmp(str, "nosmt")) {
832 			retbleed_nosmt = true;
833 		} else {
834 			pr_err("Ignoring unknown retbleed option (%s).", str);
835 		}
836 
837 		str = next;
838 	}
839 
840 	return 0;
841 }
842 early_param("retbleed", retbleed_parse_cmdline);
843 
844 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
845 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
846 
847 static void __init retbleed_select_mitigation(void)
848 {
849 	bool mitigate_smt = false;
850 
851 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
852 		return;
853 
854 	switch (retbleed_cmd) {
855 	case RETBLEED_CMD_OFF:
856 		return;
857 
858 	case RETBLEED_CMD_UNRET:
859 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
860 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
861 		} else {
862 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
863 			goto do_cmd_auto;
864 		}
865 		break;
866 
867 	case RETBLEED_CMD_IBPB:
868 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
869 			pr_err("WARNING: CPU does not support IBPB.\n");
870 			goto do_cmd_auto;
871 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
872 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
873 		} else {
874 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
875 			goto do_cmd_auto;
876 		}
877 		break;
878 
879 do_cmd_auto:
880 	case RETBLEED_CMD_AUTO:
881 	default:
882 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
883 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
884 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
885 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
886 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
887 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
888 		}
889 
890 		/*
891 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
892 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
893 		 * be set accordingly below.
894 		 */
895 
896 		break;
897 	}
898 
899 	switch (retbleed_mitigation) {
900 	case RETBLEED_MITIGATION_UNRET:
901 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
902 		setup_force_cpu_cap(X86_FEATURE_UNRET);
903 
904 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
905 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
906 			pr_err(RETBLEED_UNTRAIN_MSG);
907 
908 		mitigate_smt = true;
909 		break;
910 
911 	case RETBLEED_MITIGATION_IBPB:
912 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
913 		mitigate_smt = true;
914 		break;
915 
916 	default:
917 		break;
918 	}
919 
920 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
921 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
922 		cpu_smt_disable(false);
923 
924 	/*
925 	 * Let IBRS trump all on Intel without affecting the effects of the
926 	 * retbleed= cmdline option.
927 	 */
928 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
929 		switch (spectre_v2_enabled) {
930 		case SPECTRE_V2_IBRS:
931 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
932 			break;
933 		case SPECTRE_V2_EIBRS:
934 		case SPECTRE_V2_EIBRS_RETPOLINE:
935 		case SPECTRE_V2_EIBRS_LFENCE:
936 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
937 			break;
938 		default:
939 			pr_err(RETBLEED_INTEL_MSG);
940 		}
941 	}
942 
943 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
944 }
945 
946 #undef pr_fmt
947 #define pr_fmt(fmt)     "Spectre V2 : " fmt
948 
949 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
950 	SPECTRE_V2_USER_NONE;
951 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
952 	SPECTRE_V2_USER_NONE;
953 
954 #ifdef CONFIG_RETPOLINE
955 static bool spectre_v2_bad_module;
956 
957 bool retpoline_module_ok(bool has_retpoline)
958 {
959 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
960 		return true;
961 
962 	pr_err("System may be vulnerable to spectre v2\n");
963 	spectre_v2_bad_module = true;
964 	return false;
965 }
966 
967 static inline const char *spectre_v2_module_string(void)
968 {
969 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
970 }
971 #else
972 static inline const char *spectre_v2_module_string(void) { return ""; }
973 #endif
974 
975 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
976 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
977 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
978 
979 #ifdef CONFIG_BPF_SYSCALL
980 void unpriv_ebpf_notify(int new_state)
981 {
982 	if (new_state)
983 		return;
984 
985 	/* Unprivileged eBPF is enabled */
986 
987 	switch (spectre_v2_enabled) {
988 	case SPECTRE_V2_EIBRS:
989 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
990 		break;
991 	case SPECTRE_V2_EIBRS_LFENCE:
992 		if (sched_smt_active())
993 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
994 		break;
995 	default:
996 		break;
997 	}
998 }
999 #endif
1000 
1001 static inline bool match_option(const char *arg, int arglen, const char *opt)
1002 {
1003 	int len = strlen(opt);
1004 
1005 	return len == arglen && !strncmp(arg, opt, len);
1006 }
1007 
1008 /* The kernel command line selection for spectre v2 */
1009 enum spectre_v2_mitigation_cmd {
1010 	SPECTRE_V2_CMD_NONE,
1011 	SPECTRE_V2_CMD_AUTO,
1012 	SPECTRE_V2_CMD_FORCE,
1013 	SPECTRE_V2_CMD_RETPOLINE,
1014 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1015 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1016 	SPECTRE_V2_CMD_EIBRS,
1017 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1018 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1019 	SPECTRE_V2_CMD_IBRS,
1020 };
1021 
1022 enum spectre_v2_user_cmd {
1023 	SPECTRE_V2_USER_CMD_NONE,
1024 	SPECTRE_V2_USER_CMD_AUTO,
1025 	SPECTRE_V2_USER_CMD_FORCE,
1026 	SPECTRE_V2_USER_CMD_PRCTL,
1027 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1028 	SPECTRE_V2_USER_CMD_SECCOMP,
1029 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1030 };
1031 
1032 static const char * const spectre_v2_user_strings[] = {
1033 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1034 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1035 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1036 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1037 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1038 };
1039 
1040 static const struct {
1041 	const char			*option;
1042 	enum spectre_v2_user_cmd	cmd;
1043 	bool				secure;
1044 } v2_user_options[] __initconst = {
1045 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1046 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1047 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1048 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1049 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1050 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1051 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1052 };
1053 
1054 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1055 {
1056 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1057 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1058 }
1059 
1060 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1061 
1062 static enum spectre_v2_user_cmd __init
1063 spectre_v2_parse_user_cmdline(void)
1064 {
1065 	char arg[20];
1066 	int ret, i;
1067 
1068 	switch (spectre_v2_cmd) {
1069 	case SPECTRE_V2_CMD_NONE:
1070 		return SPECTRE_V2_USER_CMD_NONE;
1071 	case SPECTRE_V2_CMD_FORCE:
1072 		return SPECTRE_V2_USER_CMD_FORCE;
1073 	default:
1074 		break;
1075 	}
1076 
1077 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1078 				  arg, sizeof(arg));
1079 	if (ret < 0)
1080 		return SPECTRE_V2_USER_CMD_AUTO;
1081 
1082 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1083 		if (match_option(arg, ret, v2_user_options[i].option)) {
1084 			spec_v2_user_print_cond(v2_user_options[i].option,
1085 						v2_user_options[i].secure);
1086 			return v2_user_options[i].cmd;
1087 		}
1088 	}
1089 
1090 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1091 	return SPECTRE_V2_USER_CMD_AUTO;
1092 }
1093 
1094 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1095 {
1096 	return mode == SPECTRE_V2_IBRS ||
1097 	       mode == SPECTRE_V2_EIBRS ||
1098 	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1099 	       mode == SPECTRE_V2_EIBRS_LFENCE;
1100 }
1101 
1102 static void __init
1103 spectre_v2_user_select_mitigation(void)
1104 {
1105 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1106 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1107 	enum spectre_v2_user_cmd cmd;
1108 
1109 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1110 		return;
1111 
1112 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1113 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1114 		smt_possible = false;
1115 
1116 	cmd = spectre_v2_parse_user_cmdline();
1117 	switch (cmd) {
1118 	case SPECTRE_V2_USER_CMD_NONE:
1119 		goto set_mode;
1120 	case SPECTRE_V2_USER_CMD_FORCE:
1121 		mode = SPECTRE_V2_USER_STRICT;
1122 		break;
1123 	case SPECTRE_V2_USER_CMD_AUTO:
1124 	case SPECTRE_V2_USER_CMD_PRCTL:
1125 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1126 		mode = SPECTRE_V2_USER_PRCTL;
1127 		break;
1128 	case SPECTRE_V2_USER_CMD_SECCOMP:
1129 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1130 		if (IS_ENABLED(CONFIG_SECCOMP))
1131 			mode = SPECTRE_V2_USER_SECCOMP;
1132 		else
1133 			mode = SPECTRE_V2_USER_PRCTL;
1134 		break;
1135 	}
1136 
1137 	/* Initialize Indirect Branch Prediction Barrier */
1138 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1139 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1140 
1141 		spectre_v2_user_ibpb = mode;
1142 		switch (cmd) {
1143 		case SPECTRE_V2_USER_CMD_FORCE:
1144 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1145 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1146 			static_branch_enable(&switch_mm_always_ibpb);
1147 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1148 			break;
1149 		case SPECTRE_V2_USER_CMD_PRCTL:
1150 		case SPECTRE_V2_USER_CMD_AUTO:
1151 		case SPECTRE_V2_USER_CMD_SECCOMP:
1152 			static_branch_enable(&switch_mm_cond_ibpb);
1153 			break;
1154 		default:
1155 			break;
1156 		}
1157 
1158 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1159 			static_key_enabled(&switch_mm_always_ibpb) ?
1160 			"always-on" : "conditional");
1161 	}
1162 
1163 	/*
1164 	 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1165 	 * STIBP is not required.
1166 	 */
1167 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1168 	    !smt_possible ||
1169 	    spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1170 		return;
1171 
1172 	/*
1173 	 * At this point, an STIBP mode other than "off" has been set.
1174 	 * If STIBP support is not being forced, check if STIBP always-on
1175 	 * is preferred.
1176 	 */
1177 	if (mode != SPECTRE_V2_USER_STRICT &&
1178 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1179 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1180 
1181 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET) {
1182 		if (mode != SPECTRE_V2_USER_STRICT &&
1183 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1184 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1185 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1186 	}
1187 
1188 	spectre_v2_user_stibp = mode;
1189 
1190 set_mode:
1191 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1192 }
1193 
1194 static const char * const spectre_v2_strings[] = {
1195 	[SPECTRE_V2_NONE]			= "Vulnerable",
1196 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1197 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1198 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1199 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1200 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1201 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1202 };
1203 
1204 static const struct {
1205 	const char *option;
1206 	enum spectre_v2_mitigation_cmd cmd;
1207 	bool secure;
1208 } mitigation_options[] __initconst = {
1209 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1210 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1211 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1212 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1213 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1214 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1215 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1216 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1217 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1218 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1219 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1220 };
1221 
1222 static void __init spec_v2_print_cond(const char *reason, bool secure)
1223 {
1224 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1225 		pr_info("%s selected on command line.\n", reason);
1226 }
1227 
1228 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1229 {
1230 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1231 	char arg[20];
1232 	int ret, i;
1233 
1234 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1235 	    cpu_mitigations_off())
1236 		return SPECTRE_V2_CMD_NONE;
1237 
1238 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1239 	if (ret < 0)
1240 		return SPECTRE_V2_CMD_AUTO;
1241 
1242 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1243 		if (!match_option(arg, ret, mitigation_options[i].option))
1244 			continue;
1245 		cmd = mitigation_options[i].cmd;
1246 		break;
1247 	}
1248 
1249 	if (i >= ARRAY_SIZE(mitigation_options)) {
1250 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1251 		return SPECTRE_V2_CMD_AUTO;
1252 	}
1253 
1254 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1255 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1256 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1257 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1258 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1259 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1260 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1261 		       mitigation_options[i].option);
1262 		return SPECTRE_V2_CMD_AUTO;
1263 	}
1264 
1265 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1266 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1267 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1268 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1269 		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1270 		       mitigation_options[i].option);
1271 		return SPECTRE_V2_CMD_AUTO;
1272 	}
1273 
1274 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1275 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1276 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1277 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1278 		       mitigation_options[i].option);
1279 		return SPECTRE_V2_CMD_AUTO;
1280 	}
1281 
1282 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1283 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1284 		       mitigation_options[i].option);
1285 		return SPECTRE_V2_CMD_AUTO;
1286 	}
1287 
1288 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1289 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1290 		       mitigation_options[i].option);
1291 		return SPECTRE_V2_CMD_AUTO;
1292 	}
1293 
1294 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1295 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1296 		       mitigation_options[i].option);
1297 		return SPECTRE_V2_CMD_AUTO;
1298 	}
1299 
1300 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) {
1301 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1302 		       mitigation_options[i].option);
1303 		return SPECTRE_V2_CMD_AUTO;
1304 	}
1305 
1306 	spec_v2_print_cond(mitigation_options[i].option,
1307 			   mitigation_options[i].secure);
1308 	return cmd;
1309 }
1310 
1311 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1312 {
1313 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1314 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1315 		return SPECTRE_V2_NONE;
1316 	}
1317 
1318 	return SPECTRE_V2_RETPOLINE;
1319 }
1320 
1321 /* Disable in-kernel use of non-RSB RET predictors */
1322 static void __init spec_ctrl_disable_kernel_rrsba(void)
1323 {
1324 	u64 ia32_cap;
1325 
1326 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1327 		return;
1328 
1329 	ia32_cap = x86_read_arch_cap_msr();
1330 
1331 	if (ia32_cap & ARCH_CAP_RRSBA) {
1332 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1333 		write_spec_ctrl_current(x86_spec_ctrl_base, true);
1334 	}
1335 }
1336 
1337 static void __init spectre_v2_select_mitigation(void)
1338 {
1339 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1340 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1341 
1342 	/*
1343 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1344 	 * then nothing to do.
1345 	 */
1346 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1347 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1348 		return;
1349 
1350 	switch (cmd) {
1351 	case SPECTRE_V2_CMD_NONE:
1352 		return;
1353 
1354 	case SPECTRE_V2_CMD_FORCE:
1355 	case SPECTRE_V2_CMD_AUTO:
1356 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1357 			mode = SPECTRE_V2_EIBRS;
1358 			break;
1359 		}
1360 
1361 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1362 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1363 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1364 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1365 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1366 			mode = SPECTRE_V2_IBRS;
1367 			break;
1368 		}
1369 
1370 		mode = spectre_v2_select_retpoline();
1371 		break;
1372 
1373 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1374 		pr_err(SPECTRE_V2_LFENCE_MSG);
1375 		mode = SPECTRE_V2_LFENCE;
1376 		break;
1377 
1378 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1379 		mode = SPECTRE_V2_RETPOLINE;
1380 		break;
1381 
1382 	case SPECTRE_V2_CMD_RETPOLINE:
1383 		mode = spectre_v2_select_retpoline();
1384 		break;
1385 
1386 	case SPECTRE_V2_CMD_IBRS:
1387 		mode = SPECTRE_V2_IBRS;
1388 		break;
1389 
1390 	case SPECTRE_V2_CMD_EIBRS:
1391 		mode = SPECTRE_V2_EIBRS;
1392 		break;
1393 
1394 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1395 		mode = SPECTRE_V2_EIBRS_LFENCE;
1396 		break;
1397 
1398 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1399 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1400 		break;
1401 	}
1402 
1403 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1404 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1405 
1406 	if (spectre_v2_in_ibrs_mode(mode)) {
1407 		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1408 		write_spec_ctrl_current(x86_spec_ctrl_base, true);
1409 	}
1410 
1411 	switch (mode) {
1412 	case SPECTRE_V2_NONE:
1413 	case SPECTRE_V2_EIBRS:
1414 		break;
1415 
1416 	case SPECTRE_V2_IBRS:
1417 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1418 		break;
1419 
1420 	case SPECTRE_V2_LFENCE:
1421 	case SPECTRE_V2_EIBRS_LFENCE:
1422 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1423 		fallthrough;
1424 
1425 	case SPECTRE_V2_RETPOLINE:
1426 	case SPECTRE_V2_EIBRS_RETPOLINE:
1427 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1428 		break;
1429 	}
1430 
1431 	/*
1432 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1433 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1434 	 * prediction from a non-RSB predictor is still a risk.
1435 	 */
1436 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1437 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1438 	    mode == SPECTRE_V2_RETPOLINE)
1439 		spec_ctrl_disable_kernel_rrsba();
1440 
1441 	spectre_v2_enabled = mode;
1442 	pr_info("%s\n", spectre_v2_strings[mode]);
1443 
1444 	/*
1445 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1446 	 * context switch.  In general there are two types of RSB attacks
1447 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1448 	 *
1449 	 * 1) RSB underflow
1450 	 *
1451 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1452 	 *    speculated return targets may come from the branch predictor,
1453 	 *    which could have a user-poisoned BTB or BHB entry.
1454 	 *
1455 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1456 	 *    regardless of the state of the RSB.
1457 	 *
1458 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1459 	 *    scenario is mitigated by the IBRS branch prediction isolation
1460 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1461 	 *    protect against this type of attack.
1462 	 *
1463 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1464 	 *
1465 	 * 2) Poisoned RSB entry
1466 	 *
1467 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1468 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1469 	 *    entry.
1470 	 *
1471 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1472 	 *    eIBRS.
1473 	 *
1474 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1475 	 *    RSB clearing.
1476 	 *
1477 	 * So to mitigate all cases, unconditionally fill RSB on context
1478 	 * switches.
1479 	 *
1480 	 * FIXME: Is this pointless for retbleed-affected AMD?
1481 	 */
1482 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1483 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1484 
1485 	/*
1486 	 * Similar to context switches, there are two types of RSB attacks
1487 	 * after vmexit:
1488 	 *
1489 	 * 1) RSB underflow
1490 	 *
1491 	 * 2) Poisoned RSB entry
1492 	 *
1493 	 * When retpoline is enabled, both are mitigated by filling/clearing
1494 	 * the RSB.
1495 	 *
1496 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1497 	 * prediction isolation protections, RSB still needs to be cleared
1498 	 * because of #2.  Note that SMEP provides no protection here, unlike
1499 	 * user-space-poisoned RSB entries.
1500 	 *
1501 	 * eIBRS, on the other hand, has RSB-poisoning protections, so it
1502 	 * doesn't need RSB clearing after vmexit.
1503 	 */
1504 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) ||
1505 	    boot_cpu_has(X86_FEATURE_KERNEL_IBRS))
1506 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1507 
1508 	/*
1509 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1510 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1511 	 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1512 	 * enabled.
1513 	 *
1514 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1515 	 * the user might select retpoline on the kernel command line and if
1516 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1517 	 * enable IBRS around firmware calls.
1518 	 */
1519 	if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1520 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1521 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1522 	}
1523 
1524 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1525 	spectre_v2_cmd = cmd;
1526 }
1527 
1528 static void update_stibp_msr(void * __unused)
1529 {
1530 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1531 	write_spec_ctrl_current(val, true);
1532 }
1533 
1534 /* Update x86_spec_ctrl_base in case SMT state changed. */
1535 static void update_stibp_strict(void)
1536 {
1537 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1538 
1539 	if (sched_smt_active())
1540 		mask |= SPEC_CTRL_STIBP;
1541 
1542 	if (mask == x86_spec_ctrl_base)
1543 		return;
1544 
1545 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1546 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1547 	x86_spec_ctrl_base = mask;
1548 	on_each_cpu(update_stibp_msr, NULL, 1);
1549 }
1550 
1551 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1552 static void update_indir_branch_cond(void)
1553 {
1554 	if (sched_smt_active())
1555 		static_branch_enable(&switch_to_cond_stibp);
1556 	else
1557 		static_branch_disable(&switch_to_cond_stibp);
1558 }
1559 
1560 #undef pr_fmt
1561 #define pr_fmt(fmt) fmt
1562 
1563 /* Update the static key controlling the MDS CPU buffer clear in idle */
1564 static void update_mds_branch_idle(void)
1565 {
1566 	u64 ia32_cap = x86_read_arch_cap_msr();
1567 
1568 	/*
1569 	 * Enable the idle clearing if SMT is active on CPUs which are
1570 	 * affected only by MSBDS and not any other MDS variant.
1571 	 *
1572 	 * The other variants cannot be mitigated when SMT is enabled, so
1573 	 * clearing the buffers on idle just to prevent the Store Buffer
1574 	 * repartitioning leak would be a window dressing exercise.
1575 	 */
1576 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1577 		return;
1578 
1579 	if (sched_smt_active()) {
1580 		static_branch_enable(&mds_idle_clear);
1581 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1582 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1583 		static_branch_disable(&mds_idle_clear);
1584 	}
1585 }
1586 
1587 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1588 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1589 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1590 
1591 void cpu_bugs_smt_update(void)
1592 {
1593 	mutex_lock(&spec_ctrl_mutex);
1594 
1595 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1596 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1597 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1598 
1599 	switch (spectre_v2_user_stibp) {
1600 	case SPECTRE_V2_USER_NONE:
1601 		break;
1602 	case SPECTRE_V2_USER_STRICT:
1603 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1604 		update_stibp_strict();
1605 		break;
1606 	case SPECTRE_V2_USER_PRCTL:
1607 	case SPECTRE_V2_USER_SECCOMP:
1608 		update_indir_branch_cond();
1609 		break;
1610 	}
1611 
1612 	switch (mds_mitigation) {
1613 	case MDS_MITIGATION_FULL:
1614 	case MDS_MITIGATION_VMWERV:
1615 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1616 			pr_warn_once(MDS_MSG_SMT);
1617 		update_mds_branch_idle();
1618 		break;
1619 	case MDS_MITIGATION_OFF:
1620 		break;
1621 	}
1622 
1623 	switch (taa_mitigation) {
1624 	case TAA_MITIGATION_VERW:
1625 	case TAA_MITIGATION_UCODE_NEEDED:
1626 		if (sched_smt_active())
1627 			pr_warn_once(TAA_MSG_SMT);
1628 		break;
1629 	case TAA_MITIGATION_TSX_DISABLED:
1630 	case TAA_MITIGATION_OFF:
1631 		break;
1632 	}
1633 
1634 	switch (mmio_mitigation) {
1635 	case MMIO_MITIGATION_VERW:
1636 	case MMIO_MITIGATION_UCODE_NEEDED:
1637 		if (sched_smt_active())
1638 			pr_warn_once(MMIO_MSG_SMT);
1639 		break;
1640 	case MMIO_MITIGATION_OFF:
1641 		break;
1642 	}
1643 
1644 	mutex_unlock(&spec_ctrl_mutex);
1645 }
1646 
1647 #undef pr_fmt
1648 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1649 
1650 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1651 
1652 /* The kernel command line selection */
1653 enum ssb_mitigation_cmd {
1654 	SPEC_STORE_BYPASS_CMD_NONE,
1655 	SPEC_STORE_BYPASS_CMD_AUTO,
1656 	SPEC_STORE_BYPASS_CMD_ON,
1657 	SPEC_STORE_BYPASS_CMD_PRCTL,
1658 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1659 };
1660 
1661 static const char * const ssb_strings[] = {
1662 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1663 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1664 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1665 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1666 };
1667 
1668 static const struct {
1669 	const char *option;
1670 	enum ssb_mitigation_cmd cmd;
1671 } ssb_mitigation_options[]  __initconst = {
1672 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1673 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1674 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1675 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1676 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1677 };
1678 
1679 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1680 {
1681 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1682 	char arg[20];
1683 	int ret, i;
1684 
1685 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1686 	    cpu_mitigations_off()) {
1687 		return SPEC_STORE_BYPASS_CMD_NONE;
1688 	} else {
1689 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1690 					  arg, sizeof(arg));
1691 		if (ret < 0)
1692 			return SPEC_STORE_BYPASS_CMD_AUTO;
1693 
1694 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1695 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1696 				continue;
1697 
1698 			cmd = ssb_mitigation_options[i].cmd;
1699 			break;
1700 		}
1701 
1702 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1703 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1704 			return SPEC_STORE_BYPASS_CMD_AUTO;
1705 		}
1706 	}
1707 
1708 	return cmd;
1709 }
1710 
1711 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1712 {
1713 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1714 	enum ssb_mitigation_cmd cmd;
1715 
1716 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1717 		return mode;
1718 
1719 	cmd = ssb_parse_cmdline();
1720 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1721 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1722 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1723 		return mode;
1724 
1725 	switch (cmd) {
1726 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1727 		/*
1728 		 * Choose prctl+seccomp as the default mode if seccomp is
1729 		 * enabled.
1730 		 */
1731 		if (IS_ENABLED(CONFIG_SECCOMP))
1732 			mode = SPEC_STORE_BYPASS_SECCOMP;
1733 		else
1734 			mode = SPEC_STORE_BYPASS_PRCTL;
1735 		break;
1736 	case SPEC_STORE_BYPASS_CMD_ON:
1737 		mode = SPEC_STORE_BYPASS_DISABLE;
1738 		break;
1739 	case SPEC_STORE_BYPASS_CMD_AUTO:
1740 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1741 		mode = SPEC_STORE_BYPASS_PRCTL;
1742 		break;
1743 	case SPEC_STORE_BYPASS_CMD_NONE:
1744 		break;
1745 	}
1746 
1747 	/*
1748 	 * We have three CPU feature flags that are in play here:
1749 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1750 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1751 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1752 	 */
1753 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1754 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1755 		/*
1756 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1757 		 * use a completely different MSR and bit dependent on family.
1758 		 */
1759 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1760 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1761 			x86_amd_ssb_disable();
1762 		} else {
1763 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1764 			write_spec_ctrl_current(x86_spec_ctrl_base, true);
1765 		}
1766 	}
1767 
1768 	return mode;
1769 }
1770 
1771 static void ssb_select_mitigation(void)
1772 {
1773 	ssb_mode = __ssb_select_mitigation();
1774 
1775 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1776 		pr_info("%s\n", ssb_strings[ssb_mode]);
1777 }
1778 
1779 #undef pr_fmt
1780 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1781 
1782 static void task_update_spec_tif(struct task_struct *tsk)
1783 {
1784 	/* Force the update of the real TIF bits */
1785 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1786 
1787 	/*
1788 	 * Immediately update the speculation control MSRs for the current
1789 	 * task, but for a non-current task delay setting the CPU
1790 	 * mitigation until it is scheduled next.
1791 	 *
1792 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1793 	 * always the current task.
1794 	 */
1795 	if (tsk == current)
1796 		speculation_ctrl_update_current();
1797 }
1798 
1799 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1800 {
1801 
1802 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1803 		return -EPERM;
1804 
1805 	switch (ctrl) {
1806 	case PR_SPEC_ENABLE:
1807 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1808 		return 0;
1809 	case PR_SPEC_DISABLE:
1810 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1811 		return 0;
1812 	default:
1813 		return -ERANGE;
1814 	}
1815 }
1816 
1817 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1818 {
1819 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1820 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1821 		return -ENXIO;
1822 
1823 	switch (ctrl) {
1824 	case PR_SPEC_ENABLE:
1825 		/* If speculation is force disabled, enable is not allowed */
1826 		if (task_spec_ssb_force_disable(task))
1827 			return -EPERM;
1828 		task_clear_spec_ssb_disable(task);
1829 		task_clear_spec_ssb_noexec(task);
1830 		task_update_spec_tif(task);
1831 		break;
1832 	case PR_SPEC_DISABLE:
1833 		task_set_spec_ssb_disable(task);
1834 		task_clear_spec_ssb_noexec(task);
1835 		task_update_spec_tif(task);
1836 		break;
1837 	case PR_SPEC_FORCE_DISABLE:
1838 		task_set_spec_ssb_disable(task);
1839 		task_set_spec_ssb_force_disable(task);
1840 		task_clear_spec_ssb_noexec(task);
1841 		task_update_spec_tif(task);
1842 		break;
1843 	case PR_SPEC_DISABLE_NOEXEC:
1844 		if (task_spec_ssb_force_disable(task))
1845 			return -EPERM;
1846 		task_set_spec_ssb_disable(task);
1847 		task_set_spec_ssb_noexec(task);
1848 		task_update_spec_tif(task);
1849 		break;
1850 	default:
1851 		return -ERANGE;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static bool is_spec_ib_user_controlled(void)
1857 {
1858 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1859 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1860 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1861 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1862 }
1863 
1864 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1865 {
1866 	switch (ctrl) {
1867 	case PR_SPEC_ENABLE:
1868 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1869 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1870 			return 0;
1871 
1872 		/*
1873 		 * With strict mode for both IBPB and STIBP, the instruction
1874 		 * code paths avoid checking this task flag and instead,
1875 		 * unconditionally run the instruction. However, STIBP and IBPB
1876 		 * are independent and either can be set to conditionally
1877 		 * enabled regardless of the mode of the other.
1878 		 *
1879 		 * If either is set to conditional, allow the task flag to be
1880 		 * updated, unless it was force-disabled by a previous prctl
1881 		 * call. Currently, this is possible on an AMD CPU which has the
1882 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1883 		 * kernel is booted with 'spectre_v2_user=seccomp', then
1884 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1885 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1886 		 */
1887 		if (!is_spec_ib_user_controlled() ||
1888 		    task_spec_ib_force_disable(task))
1889 			return -EPERM;
1890 
1891 		task_clear_spec_ib_disable(task);
1892 		task_update_spec_tif(task);
1893 		break;
1894 	case PR_SPEC_DISABLE:
1895 	case PR_SPEC_FORCE_DISABLE:
1896 		/*
1897 		 * Indirect branch speculation is always allowed when
1898 		 * mitigation is force disabled.
1899 		 */
1900 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1901 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1902 			return -EPERM;
1903 
1904 		if (!is_spec_ib_user_controlled())
1905 			return 0;
1906 
1907 		task_set_spec_ib_disable(task);
1908 		if (ctrl == PR_SPEC_FORCE_DISABLE)
1909 			task_set_spec_ib_force_disable(task);
1910 		task_update_spec_tif(task);
1911 		break;
1912 	default:
1913 		return -ERANGE;
1914 	}
1915 	return 0;
1916 }
1917 
1918 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1919 			     unsigned long ctrl)
1920 {
1921 	switch (which) {
1922 	case PR_SPEC_STORE_BYPASS:
1923 		return ssb_prctl_set(task, ctrl);
1924 	case PR_SPEC_INDIRECT_BRANCH:
1925 		return ib_prctl_set(task, ctrl);
1926 	case PR_SPEC_L1D_FLUSH:
1927 		return l1d_flush_prctl_set(task, ctrl);
1928 	default:
1929 		return -ENODEV;
1930 	}
1931 }
1932 
1933 #ifdef CONFIG_SECCOMP
1934 void arch_seccomp_spec_mitigate(struct task_struct *task)
1935 {
1936 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1937 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1938 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1939 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1940 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1941 }
1942 #endif
1943 
1944 static int l1d_flush_prctl_get(struct task_struct *task)
1945 {
1946 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1947 		return PR_SPEC_FORCE_DISABLE;
1948 
1949 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1950 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1951 	else
1952 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1953 }
1954 
1955 static int ssb_prctl_get(struct task_struct *task)
1956 {
1957 	switch (ssb_mode) {
1958 	case SPEC_STORE_BYPASS_DISABLE:
1959 		return PR_SPEC_DISABLE;
1960 	case SPEC_STORE_BYPASS_SECCOMP:
1961 	case SPEC_STORE_BYPASS_PRCTL:
1962 		if (task_spec_ssb_force_disable(task))
1963 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1964 		if (task_spec_ssb_noexec(task))
1965 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1966 		if (task_spec_ssb_disable(task))
1967 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1968 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1969 	default:
1970 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1971 			return PR_SPEC_ENABLE;
1972 		return PR_SPEC_NOT_AFFECTED;
1973 	}
1974 }
1975 
1976 static int ib_prctl_get(struct task_struct *task)
1977 {
1978 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1979 		return PR_SPEC_NOT_AFFECTED;
1980 
1981 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1982 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1983 		return PR_SPEC_ENABLE;
1984 	else if (is_spec_ib_user_controlled()) {
1985 		if (task_spec_ib_force_disable(task))
1986 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1987 		if (task_spec_ib_disable(task))
1988 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1989 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1990 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1991 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1992 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1993 		return PR_SPEC_DISABLE;
1994 	else
1995 		return PR_SPEC_NOT_AFFECTED;
1996 }
1997 
1998 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1999 {
2000 	switch (which) {
2001 	case PR_SPEC_STORE_BYPASS:
2002 		return ssb_prctl_get(task);
2003 	case PR_SPEC_INDIRECT_BRANCH:
2004 		return ib_prctl_get(task);
2005 	case PR_SPEC_L1D_FLUSH:
2006 		return l1d_flush_prctl_get(task);
2007 	default:
2008 		return -ENODEV;
2009 	}
2010 }
2011 
2012 void x86_spec_ctrl_setup_ap(void)
2013 {
2014 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2015 		write_spec_ctrl_current(x86_spec_ctrl_base, true);
2016 
2017 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2018 		x86_amd_ssb_disable();
2019 }
2020 
2021 bool itlb_multihit_kvm_mitigation;
2022 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2023 
2024 #undef pr_fmt
2025 #define pr_fmt(fmt)	"L1TF: " fmt
2026 
2027 /* Default mitigation for L1TF-affected CPUs */
2028 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2029 #if IS_ENABLED(CONFIG_KVM_INTEL)
2030 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2031 #endif
2032 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2033 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2034 
2035 /*
2036  * These CPUs all support 44bits physical address space internally in the
2037  * cache but CPUID can report a smaller number of physical address bits.
2038  *
2039  * The L1TF mitigation uses the top most address bit for the inversion of
2040  * non present PTEs. When the installed memory reaches into the top most
2041  * address bit due to memory holes, which has been observed on machines
2042  * which report 36bits physical address bits and have 32G RAM installed,
2043  * then the mitigation range check in l1tf_select_mitigation() triggers.
2044  * This is a false positive because the mitigation is still possible due to
2045  * the fact that the cache uses 44bit internally. Use the cache bits
2046  * instead of the reported physical bits and adjust them on the affected
2047  * machines to 44bit if the reported bits are less than 44.
2048  */
2049 static void override_cache_bits(struct cpuinfo_x86 *c)
2050 {
2051 	if (c->x86 != 6)
2052 		return;
2053 
2054 	switch (c->x86_model) {
2055 	case INTEL_FAM6_NEHALEM:
2056 	case INTEL_FAM6_WESTMERE:
2057 	case INTEL_FAM6_SANDYBRIDGE:
2058 	case INTEL_FAM6_IVYBRIDGE:
2059 	case INTEL_FAM6_HASWELL:
2060 	case INTEL_FAM6_HASWELL_L:
2061 	case INTEL_FAM6_HASWELL_G:
2062 	case INTEL_FAM6_BROADWELL:
2063 	case INTEL_FAM6_BROADWELL_G:
2064 	case INTEL_FAM6_SKYLAKE_L:
2065 	case INTEL_FAM6_SKYLAKE:
2066 	case INTEL_FAM6_KABYLAKE_L:
2067 	case INTEL_FAM6_KABYLAKE:
2068 		if (c->x86_cache_bits < 44)
2069 			c->x86_cache_bits = 44;
2070 		break;
2071 	}
2072 }
2073 
2074 static void __init l1tf_select_mitigation(void)
2075 {
2076 	u64 half_pa;
2077 
2078 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2079 		return;
2080 
2081 	if (cpu_mitigations_off())
2082 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2083 	else if (cpu_mitigations_auto_nosmt())
2084 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2085 
2086 	override_cache_bits(&boot_cpu_data);
2087 
2088 	switch (l1tf_mitigation) {
2089 	case L1TF_MITIGATION_OFF:
2090 	case L1TF_MITIGATION_FLUSH_NOWARN:
2091 	case L1TF_MITIGATION_FLUSH:
2092 		break;
2093 	case L1TF_MITIGATION_FLUSH_NOSMT:
2094 	case L1TF_MITIGATION_FULL:
2095 		cpu_smt_disable(false);
2096 		break;
2097 	case L1TF_MITIGATION_FULL_FORCE:
2098 		cpu_smt_disable(true);
2099 		break;
2100 	}
2101 
2102 #if CONFIG_PGTABLE_LEVELS == 2
2103 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2104 	return;
2105 #endif
2106 
2107 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2108 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2109 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2110 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2111 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2112 				half_pa);
2113 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2114 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2115 		return;
2116 	}
2117 
2118 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2119 }
2120 
2121 static int __init l1tf_cmdline(char *str)
2122 {
2123 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2124 		return 0;
2125 
2126 	if (!str)
2127 		return -EINVAL;
2128 
2129 	if (!strcmp(str, "off"))
2130 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2131 	else if (!strcmp(str, "flush,nowarn"))
2132 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2133 	else if (!strcmp(str, "flush"))
2134 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2135 	else if (!strcmp(str, "flush,nosmt"))
2136 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2137 	else if (!strcmp(str, "full"))
2138 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2139 	else if (!strcmp(str, "full,force"))
2140 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2141 
2142 	return 0;
2143 }
2144 early_param("l1tf", l1tf_cmdline);
2145 
2146 #undef pr_fmt
2147 #define pr_fmt(fmt) fmt
2148 
2149 #ifdef CONFIG_SYSFS
2150 
2151 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2152 
2153 #if IS_ENABLED(CONFIG_KVM_INTEL)
2154 static const char * const l1tf_vmx_states[] = {
2155 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2156 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2157 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2158 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2159 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2160 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2161 };
2162 
2163 static ssize_t l1tf_show_state(char *buf)
2164 {
2165 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2166 		return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2167 
2168 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2169 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2170 	     sched_smt_active())) {
2171 		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2172 			       l1tf_vmx_states[l1tf_vmx_mitigation]);
2173 	}
2174 
2175 	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2176 		       l1tf_vmx_states[l1tf_vmx_mitigation],
2177 		       sched_smt_active() ? "vulnerable" : "disabled");
2178 }
2179 
2180 static ssize_t itlb_multihit_show_state(char *buf)
2181 {
2182 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2183 	    !boot_cpu_has(X86_FEATURE_VMX))
2184 		return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
2185 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2186 		return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
2187 	else if (itlb_multihit_kvm_mitigation)
2188 		return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
2189 	else
2190 		return sprintf(buf, "KVM: Vulnerable\n");
2191 }
2192 #else
2193 static ssize_t l1tf_show_state(char *buf)
2194 {
2195 	return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2196 }
2197 
2198 static ssize_t itlb_multihit_show_state(char *buf)
2199 {
2200 	return sprintf(buf, "Processor vulnerable\n");
2201 }
2202 #endif
2203 
2204 static ssize_t mds_show_state(char *buf)
2205 {
2206 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2207 		return sprintf(buf, "%s; SMT Host state unknown\n",
2208 			       mds_strings[mds_mitigation]);
2209 	}
2210 
2211 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2212 		return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2213 			       (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2214 			        sched_smt_active() ? "mitigated" : "disabled"));
2215 	}
2216 
2217 	return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2218 		       sched_smt_active() ? "vulnerable" : "disabled");
2219 }
2220 
2221 static ssize_t tsx_async_abort_show_state(char *buf)
2222 {
2223 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2224 	    (taa_mitigation == TAA_MITIGATION_OFF))
2225 		return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
2226 
2227 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2228 		return sprintf(buf, "%s; SMT Host state unknown\n",
2229 			       taa_strings[taa_mitigation]);
2230 	}
2231 
2232 	return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2233 		       sched_smt_active() ? "vulnerable" : "disabled");
2234 }
2235 
2236 static ssize_t mmio_stale_data_show_state(char *buf)
2237 {
2238 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2239 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2240 
2241 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2242 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2243 				  mmio_strings[mmio_mitigation]);
2244 	}
2245 
2246 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2247 			  sched_smt_active() ? "vulnerable" : "disabled");
2248 }
2249 
2250 static char *stibp_state(void)
2251 {
2252 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2253 		return "";
2254 
2255 	switch (spectre_v2_user_stibp) {
2256 	case SPECTRE_V2_USER_NONE:
2257 		return ", STIBP: disabled";
2258 	case SPECTRE_V2_USER_STRICT:
2259 		return ", STIBP: forced";
2260 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2261 		return ", STIBP: always-on";
2262 	case SPECTRE_V2_USER_PRCTL:
2263 	case SPECTRE_V2_USER_SECCOMP:
2264 		if (static_key_enabled(&switch_to_cond_stibp))
2265 			return ", STIBP: conditional";
2266 	}
2267 	return "";
2268 }
2269 
2270 static char *ibpb_state(void)
2271 {
2272 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2273 		if (static_key_enabled(&switch_mm_always_ibpb))
2274 			return ", IBPB: always-on";
2275 		if (static_key_enabled(&switch_mm_cond_ibpb))
2276 			return ", IBPB: conditional";
2277 		return ", IBPB: disabled";
2278 	}
2279 	return "";
2280 }
2281 
2282 static ssize_t spectre_v2_show_state(char *buf)
2283 {
2284 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2285 		return sprintf(buf, "Vulnerable: LFENCE\n");
2286 
2287 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2288 		return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2289 
2290 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2291 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2292 		return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2293 
2294 	return sprintf(buf, "%s%s%s%s%s%s\n",
2295 		       spectre_v2_strings[spectre_v2_enabled],
2296 		       ibpb_state(),
2297 		       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2298 		       stibp_state(),
2299 		       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2300 		       spectre_v2_module_string());
2301 }
2302 
2303 static ssize_t srbds_show_state(char *buf)
2304 {
2305 	return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
2306 }
2307 
2308 static ssize_t retbleed_show_state(char *buf)
2309 {
2310 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET) {
2311 	    if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2312 		boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2313 		    return sprintf(buf, "Vulnerable: untrained return thunk on non-Zen uarch\n");
2314 
2315 	    return sprintf(buf, "%s; SMT %s\n",
2316 			   retbleed_strings[retbleed_mitigation],
2317 			   !sched_smt_active() ? "disabled" :
2318 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2319 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2320 			   "enabled with STIBP protection" : "vulnerable");
2321 	}
2322 
2323 	return sprintf(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2324 }
2325 
2326 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2327 			       char *buf, unsigned int bug)
2328 {
2329 	if (!boot_cpu_has_bug(bug))
2330 		return sprintf(buf, "Not affected\n");
2331 
2332 	switch (bug) {
2333 	case X86_BUG_CPU_MELTDOWN:
2334 		if (boot_cpu_has(X86_FEATURE_PTI))
2335 			return sprintf(buf, "Mitigation: PTI\n");
2336 
2337 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2338 			return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2339 
2340 		break;
2341 
2342 	case X86_BUG_SPECTRE_V1:
2343 		return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2344 
2345 	case X86_BUG_SPECTRE_V2:
2346 		return spectre_v2_show_state(buf);
2347 
2348 	case X86_BUG_SPEC_STORE_BYPASS:
2349 		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2350 
2351 	case X86_BUG_L1TF:
2352 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2353 			return l1tf_show_state(buf);
2354 		break;
2355 
2356 	case X86_BUG_MDS:
2357 		return mds_show_state(buf);
2358 
2359 	case X86_BUG_TAA:
2360 		return tsx_async_abort_show_state(buf);
2361 
2362 	case X86_BUG_ITLB_MULTIHIT:
2363 		return itlb_multihit_show_state(buf);
2364 
2365 	case X86_BUG_SRBDS:
2366 		return srbds_show_state(buf);
2367 
2368 	case X86_BUG_MMIO_STALE_DATA:
2369 		return mmio_stale_data_show_state(buf);
2370 
2371 	case X86_BUG_RETBLEED:
2372 		return retbleed_show_state(buf);
2373 
2374 	default:
2375 		break;
2376 	}
2377 
2378 	return sprintf(buf, "Vulnerable\n");
2379 }
2380 
2381 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2382 {
2383 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2384 }
2385 
2386 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2387 {
2388 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2389 }
2390 
2391 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2392 {
2393 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2394 }
2395 
2396 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2397 {
2398 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2399 }
2400 
2401 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2402 {
2403 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2404 }
2405 
2406 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2407 {
2408 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2409 }
2410 
2411 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2412 {
2413 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2414 }
2415 
2416 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2417 {
2418 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2419 }
2420 
2421 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2422 {
2423 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2424 }
2425 
2426 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2427 {
2428 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2429 }
2430 
2431 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2432 {
2433 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2434 }
2435 #endif
2436