xref: /openbmc/linux/arch/x86/kernel/cpu/bugs.c (revision c04670df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56 
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60 
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63 
64 static u64 __ro_after_init x86_arch_cap_msr;
65 
66 static DEFINE_MUTEX(spec_ctrl_mutex);
67 
68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69 
70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
71 static void update_spec_ctrl(u64 val)
72 {
73 	this_cpu_write(x86_spec_ctrl_current, val);
74 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
75 }
76 
77 /*
78  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80  */
81 void update_spec_ctrl_cond(u64 val)
82 {
83 	if (this_cpu_read(x86_spec_ctrl_current) == val)
84 		return;
85 
86 	this_cpu_write(x86_spec_ctrl_current, val);
87 
88 	/*
89 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 	 * forced the update can be delayed until that time.
91 	 */
92 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
94 }
95 
96 noinstr u64 spec_ctrl_current(void)
97 {
98 	return this_cpu_read(x86_spec_ctrl_current);
99 }
100 EXPORT_SYMBOL_GPL(spec_ctrl_current);
101 
102 /*
103  * AMD specific MSR info for Speculative Store Bypass control.
104  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105  */
106 u64 __ro_after_init x86_amd_ls_cfg_base;
107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108 
109 /* Control conditional STIBP in switch_to() */
110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111 /* Control conditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113 /* Control unconditional IBPB in switch_mm() */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115 
116 /* Control MDS CPU buffer clear before idling (halt, mwait) */
117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118 EXPORT_SYMBOL_GPL(mds_idle_clear);
119 
120 /*
121  * Controls whether l1d flush based mitigations are enabled,
122  * based on hw features and admin setting via boot parameter
123  * defaults to false
124  */
125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126 
127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130 
131 void __init cpu_select_mitigations(void)
132 {
133 	/*
134 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 	 * init code as it is not enumerated and depends on the family.
137 	 */
138 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140 
141 		/*
142 		 * Previously running kernel (kexec), may have some controls
143 		 * turned ON. Clear them and let the mitigations setup below
144 		 * rediscover them based on configuration.
145 		 */
146 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 	}
148 
149 	x86_arch_cap_msr = x86_read_arch_cap_msr();
150 
151 	/* Select the proper CPU mitigations before patching alternatives: */
152 	spectre_v1_select_mitigation();
153 	spectre_v2_select_mitigation();
154 	/*
155 	 * retbleed_select_mitigation() relies on the state set by
156 	 * spectre_v2_select_mitigation(); specifically it wants to know about
157 	 * spectre_v2=ibrs.
158 	 */
159 	retbleed_select_mitigation();
160 	/*
161 	 * spectre_v2_user_select_mitigation() relies on the state set by
162 	 * retbleed_select_mitigation(); specifically the STIBP selection is
163 	 * forced for UNRET or IBPB.
164 	 */
165 	spectre_v2_user_select_mitigation();
166 	ssb_select_mitigation();
167 	l1tf_select_mitigation();
168 	md_clear_select_mitigation();
169 	srbds_select_mitigation();
170 	l1d_flush_select_mitigation();
171 
172 	/*
173 	 * srso_select_mitigation() depends and must run after
174 	 * retbleed_select_mitigation().
175 	 */
176 	srso_select_mitigation();
177 	gds_select_mitigation();
178 }
179 
180 /*
181  * NOTE: This function is *only* called for SVM, since Intel uses
182  * MSR_IA32_SPEC_CTRL for SSBD.
183  */
184 void
185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186 {
187 	u64 guestval, hostval;
188 	struct thread_info *ti = current_thread_info();
189 
190 	/*
191 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 	 */
194 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 		return;
197 
198 	/*
199 	 * If the host has SSBD mitigation enabled, force it in the host's
200 	 * virtual MSR value. If its not permanently enabled, evaluate
201 	 * current's TIF_SSBD thread flag.
202 	 */
203 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 		hostval = SPEC_CTRL_SSBD;
205 	else
206 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207 
208 	/* Sanitize the guest value */
209 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210 
211 	if (hostval != guestval) {
212 		unsigned long tif;
213 
214 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215 				 ssbd_spec_ctrl_to_tif(hostval);
216 
217 		speculation_ctrl_update(tif);
218 	}
219 }
220 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221 
222 static void x86_amd_ssb_disable(void)
223 {
224 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225 
226 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
230 }
231 
232 #undef pr_fmt
233 #define pr_fmt(fmt)	"MDS: " fmt
234 
235 /* Default mitigation for MDS-affected CPUs */
236 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
237 static bool mds_nosmt __ro_after_init = false;
238 
239 static const char * const mds_strings[] = {
240 	[MDS_MITIGATION_OFF]	= "Vulnerable",
241 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
242 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
243 };
244 
245 static void __init mds_select_mitigation(void)
246 {
247 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
248 		mds_mitigation = MDS_MITIGATION_OFF;
249 		return;
250 	}
251 
252 	if (mds_mitigation == MDS_MITIGATION_FULL) {
253 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
254 			mds_mitigation = MDS_MITIGATION_VMWERV;
255 
256 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
257 
258 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
259 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
260 			cpu_smt_disable(false);
261 	}
262 }
263 
264 static int __init mds_cmdline(char *str)
265 {
266 	if (!boot_cpu_has_bug(X86_BUG_MDS))
267 		return 0;
268 
269 	if (!str)
270 		return -EINVAL;
271 
272 	if (!strcmp(str, "off"))
273 		mds_mitigation = MDS_MITIGATION_OFF;
274 	else if (!strcmp(str, "full"))
275 		mds_mitigation = MDS_MITIGATION_FULL;
276 	else if (!strcmp(str, "full,nosmt")) {
277 		mds_mitigation = MDS_MITIGATION_FULL;
278 		mds_nosmt = true;
279 	}
280 
281 	return 0;
282 }
283 early_param("mds", mds_cmdline);
284 
285 #undef pr_fmt
286 #define pr_fmt(fmt)	"TAA: " fmt
287 
288 enum taa_mitigations {
289 	TAA_MITIGATION_OFF,
290 	TAA_MITIGATION_UCODE_NEEDED,
291 	TAA_MITIGATION_VERW,
292 	TAA_MITIGATION_TSX_DISABLED,
293 };
294 
295 /* Default mitigation for TAA-affected CPUs */
296 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
297 static bool taa_nosmt __ro_after_init;
298 
299 static const char * const taa_strings[] = {
300 	[TAA_MITIGATION_OFF]		= "Vulnerable",
301 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
302 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
303 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
304 };
305 
306 static void __init taa_select_mitigation(void)
307 {
308 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
309 		taa_mitigation = TAA_MITIGATION_OFF;
310 		return;
311 	}
312 
313 	/* TSX previously disabled by tsx=off */
314 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
315 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
316 		return;
317 	}
318 
319 	if (cpu_mitigations_off()) {
320 		taa_mitigation = TAA_MITIGATION_OFF;
321 		return;
322 	}
323 
324 	/*
325 	 * TAA mitigation via VERW is turned off if both
326 	 * tsx_async_abort=off and mds=off are specified.
327 	 */
328 	if (taa_mitigation == TAA_MITIGATION_OFF &&
329 	    mds_mitigation == MDS_MITIGATION_OFF)
330 		return;
331 
332 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
333 		taa_mitigation = TAA_MITIGATION_VERW;
334 	else
335 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
336 
337 	/*
338 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
339 	 * A microcode update fixes this behavior to clear CPU buffers. It also
340 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
341 	 * ARCH_CAP_TSX_CTRL_MSR bit.
342 	 *
343 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
344 	 * update is required.
345 	 */
346 	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
347 	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
348 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
349 
350 	/*
351 	 * TSX is enabled, select alternate mitigation for TAA which is
352 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
353 	 *
354 	 * For guests that can't determine whether the correct microcode is
355 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
356 	 */
357 	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
358 
359 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
360 		cpu_smt_disable(false);
361 }
362 
363 static int __init tsx_async_abort_parse_cmdline(char *str)
364 {
365 	if (!boot_cpu_has_bug(X86_BUG_TAA))
366 		return 0;
367 
368 	if (!str)
369 		return -EINVAL;
370 
371 	if (!strcmp(str, "off")) {
372 		taa_mitigation = TAA_MITIGATION_OFF;
373 	} else if (!strcmp(str, "full")) {
374 		taa_mitigation = TAA_MITIGATION_VERW;
375 	} else if (!strcmp(str, "full,nosmt")) {
376 		taa_mitigation = TAA_MITIGATION_VERW;
377 		taa_nosmt = true;
378 	}
379 
380 	return 0;
381 }
382 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
383 
384 #undef pr_fmt
385 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
386 
387 enum mmio_mitigations {
388 	MMIO_MITIGATION_OFF,
389 	MMIO_MITIGATION_UCODE_NEEDED,
390 	MMIO_MITIGATION_VERW,
391 };
392 
393 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
394 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
395 static bool mmio_nosmt __ro_after_init = false;
396 
397 static const char * const mmio_strings[] = {
398 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
399 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
400 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
401 };
402 
403 static void __init mmio_select_mitigation(void)
404 {
405 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
406 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
407 	     cpu_mitigations_off()) {
408 		mmio_mitigation = MMIO_MITIGATION_OFF;
409 		return;
410 	}
411 
412 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
413 		return;
414 
415 	/*
416 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
417 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
418 	 */
419 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
420 					      boot_cpu_has(X86_FEATURE_RTM)))
421 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
422 
423 	/*
424 	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
425 	 * mitigations, disable KVM-only mitigation in that case.
426 	 */
427 	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
428 		static_branch_disable(&mmio_stale_data_clear);
429 	else
430 		static_branch_enable(&mmio_stale_data_clear);
431 
432 	/*
433 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
434 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
435 	 * is required irrespective of SMT state.
436 	 */
437 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
438 		static_branch_enable(&mds_idle_clear);
439 
440 	/*
441 	 * Check if the system has the right microcode.
442 	 *
443 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
444 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
445 	 * affected systems.
446 	 */
447 	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
448 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
449 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
450 	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
451 		mmio_mitigation = MMIO_MITIGATION_VERW;
452 	else
453 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
454 
455 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
456 		cpu_smt_disable(false);
457 }
458 
459 static int __init mmio_stale_data_parse_cmdline(char *str)
460 {
461 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
462 		return 0;
463 
464 	if (!str)
465 		return -EINVAL;
466 
467 	if (!strcmp(str, "off")) {
468 		mmio_mitigation = MMIO_MITIGATION_OFF;
469 	} else if (!strcmp(str, "full")) {
470 		mmio_mitigation = MMIO_MITIGATION_VERW;
471 	} else if (!strcmp(str, "full,nosmt")) {
472 		mmio_mitigation = MMIO_MITIGATION_VERW;
473 		mmio_nosmt = true;
474 	}
475 
476 	return 0;
477 }
478 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
479 
480 #undef pr_fmt
481 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
482 
483 enum rfds_mitigations {
484 	RFDS_MITIGATION_OFF,
485 	RFDS_MITIGATION_VERW,
486 	RFDS_MITIGATION_UCODE_NEEDED,
487 };
488 
489 /* Default mitigation for Register File Data Sampling */
490 static enum rfds_mitigations rfds_mitigation __ro_after_init =
491 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
492 
493 static const char * const rfds_strings[] = {
494 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
495 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
496 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
497 };
498 
499 static void __init rfds_select_mitigation(void)
500 {
501 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
502 		rfds_mitigation = RFDS_MITIGATION_OFF;
503 		return;
504 	}
505 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
506 		return;
507 
508 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
509 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
510 	else
511 		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
512 }
513 
514 static __init int rfds_parse_cmdline(char *str)
515 {
516 	if (!str)
517 		return -EINVAL;
518 
519 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
520 		return 0;
521 
522 	if (!strcmp(str, "off"))
523 		rfds_mitigation = RFDS_MITIGATION_OFF;
524 	else if (!strcmp(str, "on"))
525 		rfds_mitigation = RFDS_MITIGATION_VERW;
526 
527 	return 0;
528 }
529 early_param("reg_file_data_sampling", rfds_parse_cmdline);
530 
531 #undef pr_fmt
532 #define pr_fmt(fmt)     "" fmt
533 
534 static void __init md_clear_update_mitigation(void)
535 {
536 	if (cpu_mitigations_off())
537 		return;
538 
539 	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
540 		goto out;
541 
542 	/*
543 	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
544 	 * Stale Data mitigation, if necessary.
545 	 */
546 	if (mds_mitigation == MDS_MITIGATION_OFF &&
547 	    boot_cpu_has_bug(X86_BUG_MDS)) {
548 		mds_mitigation = MDS_MITIGATION_FULL;
549 		mds_select_mitigation();
550 	}
551 	if (taa_mitigation == TAA_MITIGATION_OFF &&
552 	    boot_cpu_has_bug(X86_BUG_TAA)) {
553 		taa_mitigation = TAA_MITIGATION_VERW;
554 		taa_select_mitigation();
555 	}
556 	/*
557 	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
558 	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
559 	 */
560 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
561 		mmio_mitigation = MMIO_MITIGATION_VERW;
562 		mmio_select_mitigation();
563 	}
564 	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
565 	    boot_cpu_has_bug(X86_BUG_RFDS)) {
566 		rfds_mitigation = RFDS_MITIGATION_VERW;
567 		rfds_select_mitigation();
568 	}
569 out:
570 	if (boot_cpu_has_bug(X86_BUG_MDS))
571 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
572 	if (boot_cpu_has_bug(X86_BUG_TAA))
573 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
574 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
575 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
576 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
577 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
578 	if (boot_cpu_has_bug(X86_BUG_RFDS))
579 		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
580 }
581 
582 static void __init md_clear_select_mitigation(void)
583 {
584 	mds_select_mitigation();
585 	taa_select_mitigation();
586 	mmio_select_mitigation();
587 	rfds_select_mitigation();
588 
589 	/*
590 	 * As these mitigations are inter-related and rely on VERW instruction
591 	 * to clear the microarchitural buffers, update and print their status
592 	 * after mitigation selection is done for each of these vulnerabilities.
593 	 */
594 	md_clear_update_mitigation();
595 }
596 
597 #undef pr_fmt
598 #define pr_fmt(fmt)	"SRBDS: " fmt
599 
600 enum srbds_mitigations {
601 	SRBDS_MITIGATION_OFF,
602 	SRBDS_MITIGATION_UCODE_NEEDED,
603 	SRBDS_MITIGATION_FULL,
604 	SRBDS_MITIGATION_TSX_OFF,
605 	SRBDS_MITIGATION_HYPERVISOR,
606 };
607 
608 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
609 
610 static const char * const srbds_strings[] = {
611 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
612 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
613 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
614 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
615 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
616 };
617 
618 static bool srbds_off;
619 
620 void update_srbds_msr(void)
621 {
622 	u64 mcu_ctrl;
623 
624 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 		return;
626 
627 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628 		return;
629 
630 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
631 		return;
632 
633 	/*
634 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
635 	 * being disabled and it hasn't received the SRBDS MSR microcode.
636 	 */
637 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
638 		return;
639 
640 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
641 
642 	switch (srbds_mitigation) {
643 	case SRBDS_MITIGATION_OFF:
644 	case SRBDS_MITIGATION_TSX_OFF:
645 		mcu_ctrl |= RNGDS_MITG_DIS;
646 		break;
647 	case SRBDS_MITIGATION_FULL:
648 		mcu_ctrl &= ~RNGDS_MITG_DIS;
649 		break;
650 	default:
651 		break;
652 	}
653 
654 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
655 }
656 
657 static void __init srbds_select_mitigation(void)
658 {
659 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
660 		return;
661 
662 	/*
663 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
664 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
665 	 * by Processor MMIO Stale Data vulnerability.
666 	 */
667 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
668 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
669 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
670 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
671 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
672 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
673 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
674 	else if (cpu_mitigations_off() || srbds_off)
675 		srbds_mitigation = SRBDS_MITIGATION_OFF;
676 
677 	update_srbds_msr();
678 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
679 }
680 
681 static int __init srbds_parse_cmdline(char *str)
682 {
683 	if (!str)
684 		return -EINVAL;
685 
686 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
687 		return 0;
688 
689 	srbds_off = !strcmp(str, "off");
690 	return 0;
691 }
692 early_param("srbds", srbds_parse_cmdline);
693 
694 #undef pr_fmt
695 #define pr_fmt(fmt)     "L1D Flush : " fmt
696 
697 enum l1d_flush_mitigations {
698 	L1D_FLUSH_OFF = 0,
699 	L1D_FLUSH_ON,
700 };
701 
702 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
703 
704 static void __init l1d_flush_select_mitigation(void)
705 {
706 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
707 		return;
708 
709 	static_branch_enable(&switch_mm_cond_l1d_flush);
710 	pr_info("Conditional flush on switch_mm() enabled\n");
711 }
712 
713 static int __init l1d_flush_parse_cmdline(char *str)
714 {
715 	if (!strcmp(str, "on"))
716 		l1d_flush_mitigation = L1D_FLUSH_ON;
717 
718 	return 0;
719 }
720 early_param("l1d_flush", l1d_flush_parse_cmdline);
721 
722 #undef pr_fmt
723 #define pr_fmt(fmt)	"GDS: " fmt
724 
725 enum gds_mitigations {
726 	GDS_MITIGATION_OFF,
727 	GDS_MITIGATION_UCODE_NEEDED,
728 	GDS_MITIGATION_FORCE,
729 	GDS_MITIGATION_FULL,
730 	GDS_MITIGATION_FULL_LOCKED,
731 	GDS_MITIGATION_HYPERVISOR,
732 };
733 
734 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
735 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
736 #else
737 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
738 #endif
739 
740 static const char * const gds_strings[] = {
741 	[GDS_MITIGATION_OFF]		= "Vulnerable",
742 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
743 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
744 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
745 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
746 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
747 };
748 
749 bool gds_ucode_mitigated(void)
750 {
751 	return (gds_mitigation == GDS_MITIGATION_FULL ||
752 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
753 }
754 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
755 
756 void update_gds_msr(void)
757 {
758 	u64 mcu_ctrl_after;
759 	u64 mcu_ctrl;
760 
761 	switch (gds_mitigation) {
762 	case GDS_MITIGATION_OFF:
763 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
764 		mcu_ctrl |= GDS_MITG_DIS;
765 		break;
766 	case GDS_MITIGATION_FULL_LOCKED:
767 		/*
768 		 * The LOCKED state comes from the boot CPU. APs might not have
769 		 * the same state. Make sure the mitigation is enabled on all
770 		 * CPUs.
771 		 */
772 	case GDS_MITIGATION_FULL:
773 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774 		mcu_ctrl &= ~GDS_MITG_DIS;
775 		break;
776 	case GDS_MITIGATION_FORCE:
777 	case GDS_MITIGATION_UCODE_NEEDED:
778 	case GDS_MITIGATION_HYPERVISOR:
779 		return;
780 	};
781 
782 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
783 
784 	/*
785 	 * Check to make sure that the WRMSR value was not ignored. Writes to
786 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
787 	 * processor was not.
788 	 */
789 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
790 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
791 }
792 
793 static void __init gds_select_mitigation(void)
794 {
795 	u64 mcu_ctrl;
796 
797 	if (!boot_cpu_has_bug(X86_BUG_GDS))
798 		return;
799 
800 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
801 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
802 		goto out;
803 	}
804 
805 	if (cpu_mitigations_off())
806 		gds_mitigation = GDS_MITIGATION_OFF;
807 	/* Will verify below that mitigation _can_ be disabled */
808 
809 	/* No microcode */
810 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
811 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
812 			/*
813 			 * This only needs to be done on the boot CPU so do it
814 			 * here rather than in update_gds_msr()
815 			 */
816 			setup_clear_cpu_cap(X86_FEATURE_AVX);
817 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
818 		} else {
819 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
820 		}
821 		goto out;
822 	}
823 
824 	/* Microcode has mitigation, use it */
825 	if (gds_mitigation == GDS_MITIGATION_FORCE)
826 		gds_mitigation = GDS_MITIGATION_FULL;
827 
828 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
829 	if (mcu_ctrl & GDS_MITG_LOCKED) {
830 		if (gds_mitigation == GDS_MITIGATION_OFF)
831 			pr_warn("Mitigation locked. Disable failed.\n");
832 
833 		/*
834 		 * The mitigation is selected from the boot CPU. All other CPUs
835 		 * _should_ have the same state. If the boot CPU isn't locked
836 		 * but others are then update_gds_msr() will WARN() of the state
837 		 * mismatch. If the boot CPU is locked update_gds_msr() will
838 		 * ensure the other CPUs have the mitigation enabled.
839 		 */
840 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
841 	}
842 
843 	update_gds_msr();
844 out:
845 	pr_info("%s\n", gds_strings[gds_mitigation]);
846 }
847 
848 static int __init gds_parse_cmdline(char *str)
849 {
850 	if (!str)
851 		return -EINVAL;
852 
853 	if (!boot_cpu_has_bug(X86_BUG_GDS))
854 		return 0;
855 
856 	if (!strcmp(str, "off"))
857 		gds_mitigation = GDS_MITIGATION_OFF;
858 	else if (!strcmp(str, "force"))
859 		gds_mitigation = GDS_MITIGATION_FORCE;
860 
861 	return 0;
862 }
863 early_param("gather_data_sampling", gds_parse_cmdline);
864 
865 #undef pr_fmt
866 #define pr_fmt(fmt)     "Spectre V1 : " fmt
867 
868 enum spectre_v1_mitigation {
869 	SPECTRE_V1_MITIGATION_NONE,
870 	SPECTRE_V1_MITIGATION_AUTO,
871 };
872 
873 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
874 	SPECTRE_V1_MITIGATION_AUTO;
875 
876 static const char * const spectre_v1_strings[] = {
877 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
878 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
879 };
880 
881 /*
882  * Does SMAP provide full mitigation against speculative kernel access to
883  * userspace?
884  */
885 static bool smap_works_speculatively(void)
886 {
887 	if (!boot_cpu_has(X86_FEATURE_SMAP))
888 		return false;
889 
890 	/*
891 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
892 	 * prevent speculative access to user data in the L1 cache.
893 	 * Consider SMAP to be non-functional as a mitigation on these
894 	 * CPUs.
895 	 */
896 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
897 		return false;
898 
899 	return true;
900 }
901 
902 static void __init spectre_v1_select_mitigation(void)
903 {
904 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
905 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
906 		return;
907 	}
908 
909 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
910 		/*
911 		 * With Spectre v1, a user can speculatively control either
912 		 * path of a conditional swapgs with a user-controlled GS
913 		 * value.  The mitigation is to add lfences to both code paths.
914 		 *
915 		 * If FSGSBASE is enabled, the user can put a kernel address in
916 		 * GS, in which case SMAP provides no protection.
917 		 *
918 		 * If FSGSBASE is disabled, the user can only put a user space
919 		 * address in GS.  That makes an attack harder, but still
920 		 * possible if there's no SMAP protection.
921 		 */
922 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
923 		    !smap_works_speculatively()) {
924 			/*
925 			 * Mitigation can be provided from SWAPGS itself or
926 			 * PTI as the CR3 write in the Meltdown mitigation
927 			 * is serializing.
928 			 *
929 			 * If neither is there, mitigate with an LFENCE to
930 			 * stop speculation through swapgs.
931 			 */
932 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
933 			    !boot_cpu_has(X86_FEATURE_PTI))
934 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
935 
936 			/*
937 			 * Enable lfences in the kernel entry (non-swapgs)
938 			 * paths, to prevent user entry from speculatively
939 			 * skipping swapgs.
940 			 */
941 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
942 		}
943 	}
944 
945 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
946 }
947 
948 static int __init nospectre_v1_cmdline(char *str)
949 {
950 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
951 	return 0;
952 }
953 early_param("nospectre_v1", nospectre_v1_cmdline);
954 
955 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
956 
957 #undef pr_fmt
958 #define pr_fmt(fmt)     "RETBleed: " fmt
959 
960 enum retbleed_mitigation {
961 	RETBLEED_MITIGATION_NONE,
962 	RETBLEED_MITIGATION_UNRET,
963 	RETBLEED_MITIGATION_IBPB,
964 	RETBLEED_MITIGATION_IBRS,
965 	RETBLEED_MITIGATION_EIBRS,
966 	RETBLEED_MITIGATION_STUFF,
967 };
968 
969 enum retbleed_mitigation_cmd {
970 	RETBLEED_CMD_OFF,
971 	RETBLEED_CMD_AUTO,
972 	RETBLEED_CMD_UNRET,
973 	RETBLEED_CMD_IBPB,
974 	RETBLEED_CMD_STUFF,
975 };
976 
977 static const char * const retbleed_strings[] = {
978 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
979 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
980 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
981 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
982 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
983 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
984 };
985 
986 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
987 	RETBLEED_MITIGATION_NONE;
988 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
989 	RETBLEED_CMD_AUTO;
990 
991 static int __ro_after_init retbleed_nosmt = false;
992 
993 static int __init retbleed_parse_cmdline(char *str)
994 {
995 	if (!str)
996 		return -EINVAL;
997 
998 	while (str) {
999 		char *next = strchr(str, ',');
1000 		if (next) {
1001 			*next = 0;
1002 			next++;
1003 		}
1004 
1005 		if (!strcmp(str, "off")) {
1006 			retbleed_cmd = RETBLEED_CMD_OFF;
1007 		} else if (!strcmp(str, "auto")) {
1008 			retbleed_cmd = RETBLEED_CMD_AUTO;
1009 		} else if (!strcmp(str, "unret")) {
1010 			retbleed_cmd = RETBLEED_CMD_UNRET;
1011 		} else if (!strcmp(str, "ibpb")) {
1012 			retbleed_cmd = RETBLEED_CMD_IBPB;
1013 		} else if (!strcmp(str, "stuff")) {
1014 			retbleed_cmd = RETBLEED_CMD_STUFF;
1015 		} else if (!strcmp(str, "nosmt")) {
1016 			retbleed_nosmt = true;
1017 		} else if (!strcmp(str, "force")) {
1018 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1019 		} else {
1020 			pr_err("Ignoring unknown retbleed option (%s).", str);
1021 		}
1022 
1023 		str = next;
1024 	}
1025 
1026 	return 0;
1027 }
1028 early_param("retbleed", retbleed_parse_cmdline);
1029 
1030 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032 
1033 static void __init retbleed_select_mitigation(void)
1034 {
1035 	bool mitigate_smt = false;
1036 
1037 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038 		return;
1039 
1040 	switch (retbleed_cmd) {
1041 	case RETBLEED_CMD_OFF:
1042 		return;
1043 
1044 	case RETBLEED_CMD_UNRET:
1045 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
1046 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047 		} else {
1048 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
1049 			goto do_cmd_auto;
1050 		}
1051 		break;
1052 
1053 	case RETBLEED_CMD_IBPB:
1054 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055 			pr_err("WARNING: CPU does not support IBPB.\n");
1056 			goto do_cmd_auto;
1057 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
1058 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059 		} else {
1060 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1061 			goto do_cmd_auto;
1062 		}
1063 		break;
1064 
1065 	case RETBLEED_CMD_STUFF:
1066 		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1067 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069 
1070 		} else {
1071 			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1072 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073 			else
1074 				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1075 
1076 			goto do_cmd_auto;
1077 		}
1078 		break;
1079 
1080 do_cmd_auto:
1081 	case RETBLEED_CMD_AUTO:
1082 	default:
1083 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1084 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1085 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1086 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1087 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1088 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089 		}
1090 
1091 		/*
1092 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1094 		 * be set accordingly below.
1095 		 */
1096 
1097 		break;
1098 	}
1099 
1100 	switch (retbleed_mitigation) {
1101 	case RETBLEED_MITIGATION_UNRET:
1102 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1104 
1105 		x86_return_thunk = retbleed_return_thunk;
1106 
1107 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109 			pr_err(RETBLEED_UNTRAIN_MSG);
1110 
1111 		mitigate_smt = true;
1112 		break;
1113 
1114 	case RETBLEED_MITIGATION_IBPB:
1115 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116 
1117 		/*
1118 		 * IBPB on entry already obviates the need for
1119 		 * software-based untraining so clear those in case some
1120 		 * other mitigation like SRSO has selected them.
1121 		 */
1122 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1123 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1124 
1125 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1126 		mitigate_smt = true;
1127 
1128 		/*
1129 		 * There is no need for RSB filling: entry_ibpb() ensures
1130 		 * all predictions, including the RSB, are invalidated,
1131 		 * regardless of IBPB implementation.
1132 		 */
1133 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1134 
1135 		break;
1136 
1137 	case RETBLEED_MITIGATION_STUFF:
1138 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1139 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1140 		x86_set_skl_return_thunk();
1141 		break;
1142 
1143 	default:
1144 		break;
1145 	}
1146 
1147 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1148 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1149 		cpu_smt_disable(false);
1150 
1151 	/*
1152 	 * Let IBRS trump all on Intel without affecting the effects of the
1153 	 * retbleed= cmdline option except for call depth based stuffing
1154 	 */
1155 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1156 		switch (spectre_v2_enabled) {
1157 		case SPECTRE_V2_IBRS:
1158 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1159 			break;
1160 		case SPECTRE_V2_EIBRS:
1161 		case SPECTRE_V2_EIBRS_RETPOLINE:
1162 		case SPECTRE_V2_EIBRS_LFENCE:
1163 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1164 			break;
1165 		default:
1166 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1167 				pr_err(RETBLEED_INTEL_MSG);
1168 		}
1169 	}
1170 
1171 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1172 }
1173 
1174 #undef pr_fmt
1175 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1176 
1177 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1178 	SPECTRE_V2_USER_NONE;
1179 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1180 	SPECTRE_V2_USER_NONE;
1181 
1182 #ifdef CONFIG_RETPOLINE
1183 static bool spectre_v2_bad_module;
1184 
1185 bool retpoline_module_ok(bool has_retpoline)
1186 {
1187 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1188 		return true;
1189 
1190 	pr_err("System may be vulnerable to spectre v2\n");
1191 	spectre_v2_bad_module = true;
1192 	return false;
1193 }
1194 
1195 static inline const char *spectre_v2_module_string(void)
1196 {
1197 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1198 }
1199 #else
1200 static inline const char *spectre_v2_module_string(void) { return ""; }
1201 #endif
1202 
1203 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1204 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1205 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1206 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1207 
1208 #ifdef CONFIG_BPF_SYSCALL
1209 void unpriv_ebpf_notify(int new_state)
1210 {
1211 	if (new_state)
1212 		return;
1213 
1214 	/* Unprivileged eBPF is enabled */
1215 
1216 	switch (spectre_v2_enabled) {
1217 	case SPECTRE_V2_EIBRS:
1218 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1219 		break;
1220 	case SPECTRE_V2_EIBRS_LFENCE:
1221 		if (sched_smt_active())
1222 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 }
1228 #endif
1229 
1230 static inline bool match_option(const char *arg, int arglen, const char *opt)
1231 {
1232 	int len = strlen(opt);
1233 
1234 	return len == arglen && !strncmp(arg, opt, len);
1235 }
1236 
1237 /* The kernel command line selection for spectre v2 */
1238 enum spectre_v2_mitigation_cmd {
1239 	SPECTRE_V2_CMD_NONE,
1240 	SPECTRE_V2_CMD_AUTO,
1241 	SPECTRE_V2_CMD_FORCE,
1242 	SPECTRE_V2_CMD_RETPOLINE,
1243 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1244 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1245 	SPECTRE_V2_CMD_EIBRS,
1246 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1247 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1248 	SPECTRE_V2_CMD_IBRS,
1249 };
1250 
1251 enum spectre_v2_user_cmd {
1252 	SPECTRE_V2_USER_CMD_NONE,
1253 	SPECTRE_V2_USER_CMD_AUTO,
1254 	SPECTRE_V2_USER_CMD_FORCE,
1255 	SPECTRE_V2_USER_CMD_PRCTL,
1256 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1257 	SPECTRE_V2_USER_CMD_SECCOMP,
1258 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1259 };
1260 
1261 static const char * const spectre_v2_user_strings[] = {
1262 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1263 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1264 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1265 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1266 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1267 };
1268 
1269 static const struct {
1270 	const char			*option;
1271 	enum spectre_v2_user_cmd	cmd;
1272 	bool				secure;
1273 } v2_user_options[] __initconst = {
1274 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1275 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1276 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1277 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1278 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1279 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1280 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1281 };
1282 
1283 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1284 {
1285 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1286 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1287 }
1288 
1289 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1290 
1291 static enum spectre_v2_user_cmd __init
1292 spectre_v2_parse_user_cmdline(void)
1293 {
1294 	char arg[20];
1295 	int ret, i;
1296 
1297 	switch (spectre_v2_cmd) {
1298 	case SPECTRE_V2_CMD_NONE:
1299 		return SPECTRE_V2_USER_CMD_NONE;
1300 	case SPECTRE_V2_CMD_FORCE:
1301 		return SPECTRE_V2_USER_CMD_FORCE;
1302 	default:
1303 		break;
1304 	}
1305 
1306 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1307 				  arg, sizeof(arg));
1308 	if (ret < 0)
1309 		return SPECTRE_V2_USER_CMD_AUTO;
1310 
1311 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1312 		if (match_option(arg, ret, v2_user_options[i].option)) {
1313 			spec_v2_user_print_cond(v2_user_options[i].option,
1314 						v2_user_options[i].secure);
1315 			return v2_user_options[i].cmd;
1316 		}
1317 	}
1318 
1319 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1320 	return SPECTRE_V2_USER_CMD_AUTO;
1321 }
1322 
1323 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1324 {
1325 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1326 }
1327 
1328 static void __init
1329 spectre_v2_user_select_mitigation(void)
1330 {
1331 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1332 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1333 	enum spectre_v2_user_cmd cmd;
1334 
1335 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1336 		return;
1337 
1338 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1339 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1340 		smt_possible = false;
1341 
1342 	cmd = spectre_v2_parse_user_cmdline();
1343 	switch (cmd) {
1344 	case SPECTRE_V2_USER_CMD_NONE:
1345 		goto set_mode;
1346 	case SPECTRE_V2_USER_CMD_FORCE:
1347 		mode = SPECTRE_V2_USER_STRICT;
1348 		break;
1349 	case SPECTRE_V2_USER_CMD_AUTO:
1350 	case SPECTRE_V2_USER_CMD_PRCTL:
1351 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1352 		mode = SPECTRE_V2_USER_PRCTL;
1353 		break;
1354 	case SPECTRE_V2_USER_CMD_SECCOMP:
1355 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1356 		if (IS_ENABLED(CONFIG_SECCOMP))
1357 			mode = SPECTRE_V2_USER_SECCOMP;
1358 		else
1359 			mode = SPECTRE_V2_USER_PRCTL;
1360 		break;
1361 	}
1362 
1363 	/* Initialize Indirect Branch Prediction Barrier */
1364 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1365 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1366 
1367 		spectre_v2_user_ibpb = mode;
1368 		switch (cmd) {
1369 		case SPECTRE_V2_USER_CMD_FORCE:
1370 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1371 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1372 			static_branch_enable(&switch_mm_always_ibpb);
1373 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1374 			break;
1375 		case SPECTRE_V2_USER_CMD_PRCTL:
1376 		case SPECTRE_V2_USER_CMD_AUTO:
1377 		case SPECTRE_V2_USER_CMD_SECCOMP:
1378 			static_branch_enable(&switch_mm_cond_ibpb);
1379 			break;
1380 		default:
1381 			break;
1382 		}
1383 
1384 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1385 			static_key_enabled(&switch_mm_always_ibpb) ?
1386 			"always-on" : "conditional");
1387 	}
1388 
1389 	/*
1390 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1391 	 * is not required.
1392 	 *
1393 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1394 	 * injection in user-mode as the IBRS bit remains always set which
1395 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1396 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1397 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1398 	 * These modes therefore disable the implicit cross-thread protection,
1399 	 * so allow for STIBP to be selected in those cases.
1400 	 */
1401 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1402 	    !smt_possible ||
1403 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1404 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1405 		return;
1406 
1407 	/*
1408 	 * At this point, an STIBP mode other than "off" has been set.
1409 	 * If STIBP support is not being forced, check if STIBP always-on
1410 	 * is preferred.
1411 	 */
1412 	if (mode != SPECTRE_V2_USER_STRICT &&
1413 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1414 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1415 
1416 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1417 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1418 		if (mode != SPECTRE_V2_USER_STRICT &&
1419 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1420 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1421 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1422 	}
1423 
1424 	spectre_v2_user_stibp = mode;
1425 
1426 set_mode:
1427 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1428 }
1429 
1430 static const char * const spectre_v2_strings[] = {
1431 	[SPECTRE_V2_NONE]			= "Vulnerable",
1432 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1433 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1434 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1435 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1436 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1437 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1438 };
1439 
1440 static const struct {
1441 	const char *option;
1442 	enum spectre_v2_mitigation_cmd cmd;
1443 	bool secure;
1444 } mitigation_options[] __initconst = {
1445 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1446 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1447 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1448 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1449 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1450 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1451 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1452 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1453 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1454 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1455 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1456 };
1457 
1458 static void __init spec_v2_print_cond(const char *reason, bool secure)
1459 {
1460 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1461 		pr_info("%s selected on command line.\n", reason);
1462 }
1463 
1464 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1465 {
1466 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1467 	char arg[20];
1468 	int ret, i;
1469 
1470 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1471 	    cpu_mitigations_off())
1472 		return SPECTRE_V2_CMD_NONE;
1473 
1474 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1475 	if (ret < 0)
1476 		return SPECTRE_V2_CMD_AUTO;
1477 
1478 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1479 		if (!match_option(arg, ret, mitigation_options[i].option))
1480 			continue;
1481 		cmd = mitigation_options[i].cmd;
1482 		break;
1483 	}
1484 
1485 	if (i >= ARRAY_SIZE(mitigation_options)) {
1486 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1487 		return SPECTRE_V2_CMD_AUTO;
1488 	}
1489 
1490 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1491 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1492 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1493 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1494 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1495 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1496 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1497 		       mitigation_options[i].option);
1498 		return SPECTRE_V2_CMD_AUTO;
1499 	}
1500 
1501 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1502 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1503 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1504 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1505 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1506 		       mitigation_options[i].option);
1507 		return SPECTRE_V2_CMD_AUTO;
1508 	}
1509 
1510 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1511 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1512 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1513 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1514 		       mitigation_options[i].option);
1515 		return SPECTRE_V2_CMD_AUTO;
1516 	}
1517 
1518 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1519 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1520 		       mitigation_options[i].option);
1521 		return SPECTRE_V2_CMD_AUTO;
1522 	}
1523 
1524 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1525 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1526 		       mitigation_options[i].option);
1527 		return SPECTRE_V2_CMD_AUTO;
1528 	}
1529 
1530 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1531 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1532 		       mitigation_options[i].option);
1533 		return SPECTRE_V2_CMD_AUTO;
1534 	}
1535 
1536 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1537 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1538 		       mitigation_options[i].option);
1539 		return SPECTRE_V2_CMD_AUTO;
1540 	}
1541 
1542 	spec_v2_print_cond(mitigation_options[i].option,
1543 			   mitigation_options[i].secure);
1544 	return cmd;
1545 }
1546 
1547 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1548 {
1549 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1550 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1551 		return SPECTRE_V2_NONE;
1552 	}
1553 
1554 	return SPECTRE_V2_RETPOLINE;
1555 }
1556 
1557 static bool __ro_after_init rrsba_disabled;
1558 
1559 /* Disable in-kernel use of non-RSB RET predictors */
1560 static void __init spec_ctrl_disable_kernel_rrsba(void)
1561 {
1562 	if (rrsba_disabled)
1563 		return;
1564 
1565 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1566 		rrsba_disabled = true;
1567 		return;
1568 	}
1569 
1570 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1571 		return;
1572 
1573 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1574 	update_spec_ctrl(x86_spec_ctrl_base);
1575 	rrsba_disabled = true;
1576 }
1577 
1578 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1579 {
1580 	/*
1581 	 * Similar to context switches, there are two types of RSB attacks
1582 	 * after VM exit:
1583 	 *
1584 	 * 1) RSB underflow
1585 	 *
1586 	 * 2) Poisoned RSB entry
1587 	 *
1588 	 * When retpoline is enabled, both are mitigated by filling/clearing
1589 	 * the RSB.
1590 	 *
1591 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1592 	 * prediction isolation protections, RSB still needs to be cleared
1593 	 * because of #2.  Note that SMEP provides no protection here, unlike
1594 	 * user-space-poisoned RSB entries.
1595 	 *
1596 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1597 	 * bug is present then a LITE version of RSB protection is required,
1598 	 * just a single call needs to retire before a RET is executed.
1599 	 */
1600 	switch (mode) {
1601 	case SPECTRE_V2_NONE:
1602 		return;
1603 
1604 	case SPECTRE_V2_EIBRS_LFENCE:
1605 	case SPECTRE_V2_EIBRS:
1606 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1607 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1608 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1609 		}
1610 		return;
1611 
1612 	case SPECTRE_V2_EIBRS_RETPOLINE:
1613 	case SPECTRE_V2_RETPOLINE:
1614 	case SPECTRE_V2_LFENCE:
1615 	case SPECTRE_V2_IBRS:
1616 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1617 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1618 		return;
1619 	}
1620 
1621 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1622 	dump_stack();
1623 }
1624 
1625 /*
1626  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1627  * branch history in userspace. Not needed if BHI_NO is set.
1628  */
1629 static bool __init spec_ctrl_bhi_dis(void)
1630 {
1631 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1632 		return false;
1633 
1634 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1635 	update_spec_ctrl(x86_spec_ctrl_base);
1636 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1637 
1638 	return true;
1639 }
1640 
1641 enum bhi_mitigations {
1642 	BHI_MITIGATION_OFF,
1643 	BHI_MITIGATION_ON,
1644 };
1645 
1646 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1647 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1648 
1649 static int __init spectre_bhi_parse_cmdline(char *str)
1650 {
1651 	if (!str)
1652 		return -EINVAL;
1653 
1654 	if (!strcmp(str, "off"))
1655 		bhi_mitigation = BHI_MITIGATION_OFF;
1656 	else if (!strcmp(str, "on"))
1657 		bhi_mitigation = BHI_MITIGATION_ON;
1658 	else
1659 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1660 
1661 	return 0;
1662 }
1663 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1664 
1665 static void __init bhi_select_mitigation(void)
1666 {
1667 	if (bhi_mitigation == BHI_MITIGATION_OFF)
1668 		return;
1669 
1670 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1671 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1672 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1673 		spec_ctrl_disable_kernel_rrsba();
1674 		if (rrsba_disabled)
1675 			return;
1676 	}
1677 
1678 	if (spec_ctrl_bhi_dis())
1679 		return;
1680 
1681 	if (!IS_ENABLED(CONFIG_X86_64))
1682 		return;
1683 
1684 	/* Mitigate KVM by default */
1685 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1686 	pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1687 
1688 	/* Mitigate syscalls when the mitigation is forced =on */
1689 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1690 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1691 }
1692 
1693 static void __init spectre_v2_select_mitigation(void)
1694 {
1695 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1696 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1697 
1698 	/*
1699 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1700 	 * then nothing to do.
1701 	 */
1702 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1703 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1704 		return;
1705 
1706 	switch (cmd) {
1707 	case SPECTRE_V2_CMD_NONE:
1708 		return;
1709 
1710 	case SPECTRE_V2_CMD_FORCE:
1711 	case SPECTRE_V2_CMD_AUTO:
1712 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1713 			mode = SPECTRE_V2_EIBRS;
1714 			break;
1715 		}
1716 
1717 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1718 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1719 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1720 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1721 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1722 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1723 			mode = SPECTRE_V2_IBRS;
1724 			break;
1725 		}
1726 
1727 		mode = spectre_v2_select_retpoline();
1728 		break;
1729 
1730 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1731 		pr_err(SPECTRE_V2_LFENCE_MSG);
1732 		mode = SPECTRE_V2_LFENCE;
1733 		break;
1734 
1735 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1736 		mode = SPECTRE_V2_RETPOLINE;
1737 		break;
1738 
1739 	case SPECTRE_V2_CMD_RETPOLINE:
1740 		mode = spectre_v2_select_retpoline();
1741 		break;
1742 
1743 	case SPECTRE_V2_CMD_IBRS:
1744 		mode = SPECTRE_V2_IBRS;
1745 		break;
1746 
1747 	case SPECTRE_V2_CMD_EIBRS:
1748 		mode = SPECTRE_V2_EIBRS;
1749 		break;
1750 
1751 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1752 		mode = SPECTRE_V2_EIBRS_LFENCE;
1753 		break;
1754 
1755 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1756 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1757 		break;
1758 	}
1759 
1760 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1761 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1762 
1763 	if (spectre_v2_in_ibrs_mode(mode)) {
1764 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1765 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1766 		} else {
1767 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1768 			update_spec_ctrl(x86_spec_ctrl_base);
1769 		}
1770 	}
1771 
1772 	switch (mode) {
1773 	case SPECTRE_V2_NONE:
1774 	case SPECTRE_V2_EIBRS:
1775 		break;
1776 
1777 	case SPECTRE_V2_IBRS:
1778 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1779 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1780 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1781 		break;
1782 
1783 	case SPECTRE_V2_LFENCE:
1784 	case SPECTRE_V2_EIBRS_LFENCE:
1785 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1786 		fallthrough;
1787 
1788 	case SPECTRE_V2_RETPOLINE:
1789 	case SPECTRE_V2_EIBRS_RETPOLINE:
1790 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1791 		break;
1792 	}
1793 
1794 	/*
1795 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1796 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1797 	 * prediction from a non-RSB predictor is still a risk.
1798 	 */
1799 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1800 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1801 	    mode == SPECTRE_V2_RETPOLINE)
1802 		spec_ctrl_disable_kernel_rrsba();
1803 
1804 	if (boot_cpu_has(X86_BUG_BHI))
1805 		bhi_select_mitigation();
1806 
1807 	spectre_v2_enabled = mode;
1808 	pr_info("%s\n", spectre_v2_strings[mode]);
1809 
1810 	/*
1811 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1812 	 * context switch.  In general there are two types of RSB attacks
1813 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1814 	 *
1815 	 * 1) RSB underflow
1816 	 *
1817 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1818 	 *    speculated return targets may come from the branch predictor,
1819 	 *    which could have a user-poisoned BTB or BHB entry.
1820 	 *
1821 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1822 	 *    regardless of the state of the RSB.
1823 	 *
1824 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1825 	 *    scenario is mitigated by the IBRS branch prediction isolation
1826 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1827 	 *    protect against this type of attack.
1828 	 *
1829 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1830 	 *
1831 	 * 2) Poisoned RSB entry
1832 	 *
1833 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1834 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1835 	 *    entry.
1836 	 *
1837 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1838 	 *    eIBRS.
1839 	 *
1840 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1841 	 *    RSB clearing.
1842 	 *
1843 	 * So to mitigate all cases, unconditionally fill RSB on context
1844 	 * switches.
1845 	 *
1846 	 * FIXME: Is this pointless for retbleed-affected AMD?
1847 	 */
1848 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1849 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1850 
1851 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1852 
1853 	/*
1854 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1855 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1856 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1857 	 * otherwise enabled.
1858 	 *
1859 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1860 	 * the user might select retpoline on the kernel command line and if
1861 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1862 	 * enable IBRS around firmware calls.
1863 	 */
1864 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1865 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1866 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1867 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1868 
1869 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1870 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1871 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1872 		}
1873 
1874 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1875 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1876 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1877 	}
1878 
1879 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1880 	spectre_v2_cmd = cmd;
1881 }
1882 
1883 static void update_stibp_msr(void * __unused)
1884 {
1885 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1886 	update_spec_ctrl(val);
1887 }
1888 
1889 /* Update x86_spec_ctrl_base in case SMT state changed. */
1890 static void update_stibp_strict(void)
1891 {
1892 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1893 
1894 	if (sched_smt_active())
1895 		mask |= SPEC_CTRL_STIBP;
1896 
1897 	if (mask == x86_spec_ctrl_base)
1898 		return;
1899 
1900 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1901 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1902 	x86_spec_ctrl_base = mask;
1903 	on_each_cpu(update_stibp_msr, NULL, 1);
1904 }
1905 
1906 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1907 static void update_indir_branch_cond(void)
1908 {
1909 	if (sched_smt_active())
1910 		static_branch_enable(&switch_to_cond_stibp);
1911 	else
1912 		static_branch_disable(&switch_to_cond_stibp);
1913 }
1914 
1915 #undef pr_fmt
1916 #define pr_fmt(fmt) fmt
1917 
1918 /* Update the static key controlling the MDS CPU buffer clear in idle */
1919 static void update_mds_branch_idle(void)
1920 {
1921 	/*
1922 	 * Enable the idle clearing if SMT is active on CPUs which are
1923 	 * affected only by MSBDS and not any other MDS variant.
1924 	 *
1925 	 * The other variants cannot be mitigated when SMT is enabled, so
1926 	 * clearing the buffers on idle just to prevent the Store Buffer
1927 	 * repartitioning leak would be a window dressing exercise.
1928 	 */
1929 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1930 		return;
1931 
1932 	if (sched_smt_active()) {
1933 		static_branch_enable(&mds_idle_clear);
1934 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1935 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1936 		static_branch_disable(&mds_idle_clear);
1937 	}
1938 }
1939 
1940 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1941 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1942 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1943 
1944 void cpu_bugs_smt_update(void)
1945 {
1946 	mutex_lock(&spec_ctrl_mutex);
1947 
1948 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1949 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1950 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1951 
1952 	switch (spectre_v2_user_stibp) {
1953 	case SPECTRE_V2_USER_NONE:
1954 		break;
1955 	case SPECTRE_V2_USER_STRICT:
1956 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1957 		update_stibp_strict();
1958 		break;
1959 	case SPECTRE_V2_USER_PRCTL:
1960 	case SPECTRE_V2_USER_SECCOMP:
1961 		update_indir_branch_cond();
1962 		break;
1963 	}
1964 
1965 	switch (mds_mitigation) {
1966 	case MDS_MITIGATION_FULL:
1967 	case MDS_MITIGATION_VMWERV:
1968 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1969 			pr_warn_once(MDS_MSG_SMT);
1970 		update_mds_branch_idle();
1971 		break;
1972 	case MDS_MITIGATION_OFF:
1973 		break;
1974 	}
1975 
1976 	switch (taa_mitigation) {
1977 	case TAA_MITIGATION_VERW:
1978 	case TAA_MITIGATION_UCODE_NEEDED:
1979 		if (sched_smt_active())
1980 			pr_warn_once(TAA_MSG_SMT);
1981 		break;
1982 	case TAA_MITIGATION_TSX_DISABLED:
1983 	case TAA_MITIGATION_OFF:
1984 		break;
1985 	}
1986 
1987 	switch (mmio_mitigation) {
1988 	case MMIO_MITIGATION_VERW:
1989 	case MMIO_MITIGATION_UCODE_NEEDED:
1990 		if (sched_smt_active())
1991 			pr_warn_once(MMIO_MSG_SMT);
1992 		break;
1993 	case MMIO_MITIGATION_OFF:
1994 		break;
1995 	}
1996 
1997 	mutex_unlock(&spec_ctrl_mutex);
1998 }
1999 
2000 #undef pr_fmt
2001 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2002 
2003 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2004 
2005 /* The kernel command line selection */
2006 enum ssb_mitigation_cmd {
2007 	SPEC_STORE_BYPASS_CMD_NONE,
2008 	SPEC_STORE_BYPASS_CMD_AUTO,
2009 	SPEC_STORE_BYPASS_CMD_ON,
2010 	SPEC_STORE_BYPASS_CMD_PRCTL,
2011 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2012 };
2013 
2014 static const char * const ssb_strings[] = {
2015 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2016 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2017 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2018 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2019 };
2020 
2021 static const struct {
2022 	const char *option;
2023 	enum ssb_mitigation_cmd cmd;
2024 } ssb_mitigation_options[]  __initconst = {
2025 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2026 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2027 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2028 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2029 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2030 };
2031 
2032 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2033 {
2034 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2035 	char arg[20];
2036 	int ret, i;
2037 
2038 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2039 	    cpu_mitigations_off()) {
2040 		return SPEC_STORE_BYPASS_CMD_NONE;
2041 	} else {
2042 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2043 					  arg, sizeof(arg));
2044 		if (ret < 0)
2045 			return SPEC_STORE_BYPASS_CMD_AUTO;
2046 
2047 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2048 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2049 				continue;
2050 
2051 			cmd = ssb_mitigation_options[i].cmd;
2052 			break;
2053 		}
2054 
2055 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2056 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2057 			return SPEC_STORE_BYPASS_CMD_AUTO;
2058 		}
2059 	}
2060 
2061 	return cmd;
2062 }
2063 
2064 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2065 {
2066 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2067 	enum ssb_mitigation_cmd cmd;
2068 
2069 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2070 		return mode;
2071 
2072 	cmd = ssb_parse_cmdline();
2073 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2074 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2075 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2076 		return mode;
2077 
2078 	switch (cmd) {
2079 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2080 		/*
2081 		 * Choose prctl+seccomp as the default mode if seccomp is
2082 		 * enabled.
2083 		 */
2084 		if (IS_ENABLED(CONFIG_SECCOMP))
2085 			mode = SPEC_STORE_BYPASS_SECCOMP;
2086 		else
2087 			mode = SPEC_STORE_BYPASS_PRCTL;
2088 		break;
2089 	case SPEC_STORE_BYPASS_CMD_ON:
2090 		mode = SPEC_STORE_BYPASS_DISABLE;
2091 		break;
2092 	case SPEC_STORE_BYPASS_CMD_AUTO:
2093 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2094 		mode = SPEC_STORE_BYPASS_PRCTL;
2095 		break;
2096 	case SPEC_STORE_BYPASS_CMD_NONE:
2097 		break;
2098 	}
2099 
2100 	/*
2101 	 * We have three CPU feature flags that are in play here:
2102 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2103 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2104 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2105 	 */
2106 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2107 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2108 		/*
2109 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2110 		 * use a completely different MSR and bit dependent on family.
2111 		 */
2112 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2113 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2114 			x86_amd_ssb_disable();
2115 		} else {
2116 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2117 			update_spec_ctrl(x86_spec_ctrl_base);
2118 		}
2119 	}
2120 
2121 	return mode;
2122 }
2123 
2124 static void ssb_select_mitigation(void)
2125 {
2126 	ssb_mode = __ssb_select_mitigation();
2127 
2128 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2129 		pr_info("%s\n", ssb_strings[ssb_mode]);
2130 }
2131 
2132 #undef pr_fmt
2133 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2134 
2135 static void task_update_spec_tif(struct task_struct *tsk)
2136 {
2137 	/* Force the update of the real TIF bits */
2138 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2139 
2140 	/*
2141 	 * Immediately update the speculation control MSRs for the current
2142 	 * task, but for a non-current task delay setting the CPU
2143 	 * mitigation until it is scheduled next.
2144 	 *
2145 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2146 	 * always the current task.
2147 	 */
2148 	if (tsk == current)
2149 		speculation_ctrl_update_current();
2150 }
2151 
2152 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2153 {
2154 
2155 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2156 		return -EPERM;
2157 
2158 	switch (ctrl) {
2159 	case PR_SPEC_ENABLE:
2160 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2161 		return 0;
2162 	case PR_SPEC_DISABLE:
2163 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2164 		return 0;
2165 	default:
2166 		return -ERANGE;
2167 	}
2168 }
2169 
2170 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2171 {
2172 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2173 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2174 		return -ENXIO;
2175 
2176 	switch (ctrl) {
2177 	case PR_SPEC_ENABLE:
2178 		/* If speculation is force disabled, enable is not allowed */
2179 		if (task_spec_ssb_force_disable(task))
2180 			return -EPERM;
2181 		task_clear_spec_ssb_disable(task);
2182 		task_clear_spec_ssb_noexec(task);
2183 		task_update_spec_tif(task);
2184 		break;
2185 	case PR_SPEC_DISABLE:
2186 		task_set_spec_ssb_disable(task);
2187 		task_clear_spec_ssb_noexec(task);
2188 		task_update_spec_tif(task);
2189 		break;
2190 	case PR_SPEC_FORCE_DISABLE:
2191 		task_set_spec_ssb_disable(task);
2192 		task_set_spec_ssb_force_disable(task);
2193 		task_clear_spec_ssb_noexec(task);
2194 		task_update_spec_tif(task);
2195 		break;
2196 	case PR_SPEC_DISABLE_NOEXEC:
2197 		if (task_spec_ssb_force_disable(task))
2198 			return -EPERM;
2199 		task_set_spec_ssb_disable(task);
2200 		task_set_spec_ssb_noexec(task);
2201 		task_update_spec_tif(task);
2202 		break;
2203 	default:
2204 		return -ERANGE;
2205 	}
2206 	return 0;
2207 }
2208 
2209 static bool is_spec_ib_user_controlled(void)
2210 {
2211 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2212 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2213 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2214 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2215 }
2216 
2217 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2218 {
2219 	switch (ctrl) {
2220 	case PR_SPEC_ENABLE:
2221 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2222 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2223 			return 0;
2224 
2225 		/*
2226 		 * With strict mode for both IBPB and STIBP, the instruction
2227 		 * code paths avoid checking this task flag and instead,
2228 		 * unconditionally run the instruction. However, STIBP and IBPB
2229 		 * are independent and either can be set to conditionally
2230 		 * enabled regardless of the mode of the other.
2231 		 *
2232 		 * If either is set to conditional, allow the task flag to be
2233 		 * updated, unless it was force-disabled by a previous prctl
2234 		 * call. Currently, this is possible on an AMD CPU which has the
2235 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2236 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2237 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2238 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2239 		 */
2240 		if (!is_spec_ib_user_controlled() ||
2241 		    task_spec_ib_force_disable(task))
2242 			return -EPERM;
2243 
2244 		task_clear_spec_ib_disable(task);
2245 		task_update_spec_tif(task);
2246 		break;
2247 	case PR_SPEC_DISABLE:
2248 	case PR_SPEC_FORCE_DISABLE:
2249 		/*
2250 		 * Indirect branch speculation is always allowed when
2251 		 * mitigation is force disabled.
2252 		 */
2253 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2254 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2255 			return -EPERM;
2256 
2257 		if (!is_spec_ib_user_controlled())
2258 			return 0;
2259 
2260 		task_set_spec_ib_disable(task);
2261 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2262 			task_set_spec_ib_force_disable(task);
2263 		task_update_spec_tif(task);
2264 		if (task == current)
2265 			indirect_branch_prediction_barrier();
2266 		break;
2267 	default:
2268 		return -ERANGE;
2269 	}
2270 	return 0;
2271 }
2272 
2273 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2274 			     unsigned long ctrl)
2275 {
2276 	switch (which) {
2277 	case PR_SPEC_STORE_BYPASS:
2278 		return ssb_prctl_set(task, ctrl);
2279 	case PR_SPEC_INDIRECT_BRANCH:
2280 		return ib_prctl_set(task, ctrl);
2281 	case PR_SPEC_L1D_FLUSH:
2282 		return l1d_flush_prctl_set(task, ctrl);
2283 	default:
2284 		return -ENODEV;
2285 	}
2286 }
2287 
2288 #ifdef CONFIG_SECCOMP
2289 void arch_seccomp_spec_mitigate(struct task_struct *task)
2290 {
2291 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2292 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2293 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2294 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2295 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2296 }
2297 #endif
2298 
2299 static int l1d_flush_prctl_get(struct task_struct *task)
2300 {
2301 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2302 		return PR_SPEC_FORCE_DISABLE;
2303 
2304 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2305 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2306 	else
2307 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2308 }
2309 
2310 static int ssb_prctl_get(struct task_struct *task)
2311 {
2312 	switch (ssb_mode) {
2313 	case SPEC_STORE_BYPASS_DISABLE:
2314 		return PR_SPEC_DISABLE;
2315 	case SPEC_STORE_BYPASS_SECCOMP:
2316 	case SPEC_STORE_BYPASS_PRCTL:
2317 		if (task_spec_ssb_force_disable(task))
2318 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2319 		if (task_spec_ssb_noexec(task))
2320 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2321 		if (task_spec_ssb_disable(task))
2322 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2323 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2324 	default:
2325 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2326 			return PR_SPEC_ENABLE;
2327 		return PR_SPEC_NOT_AFFECTED;
2328 	}
2329 }
2330 
2331 static int ib_prctl_get(struct task_struct *task)
2332 {
2333 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2334 		return PR_SPEC_NOT_AFFECTED;
2335 
2336 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2337 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2338 		return PR_SPEC_ENABLE;
2339 	else if (is_spec_ib_user_controlled()) {
2340 		if (task_spec_ib_force_disable(task))
2341 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2342 		if (task_spec_ib_disable(task))
2343 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2344 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2345 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2346 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2347 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2348 		return PR_SPEC_DISABLE;
2349 	else
2350 		return PR_SPEC_NOT_AFFECTED;
2351 }
2352 
2353 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2354 {
2355 	switch (which) {
2356 	case PR_SPEC_STORE_BYPASS:
2357 		return ssb_prctl_get(task);
2358 	case PR_SPEC_INDIRECT_BRANCH:
2359 		return ib_prctl_get(task);
2360 	case PR_SPEC_L1D_FLUSH:
2361 		return l1d_flush_prctl_get(task);
2362 	default:
2363 		return -ENODEV;
2364 	}
2365 }
2366 
2367 void x86_spec_ctrl_setup_ap(void)
2368 {
2369 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2370 		update_spec_ctrl(x86_spec_ctrl_base);
2371 
2372 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2373 		x86_amd_ssb_disable();
2374 }
2375 
2376 bool itlb_multihit_kvm_mitigation;
2377 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2378 
2379 #undef pr_fmt
2380 #define pr_fmt(fmt)	"L1TF: " fmt
2381 
2382 /* Default mitigation for L1TF-affected CPUs */
2383 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2384 #if IS_ENABLED(CONFIG_KVM_INTEL)
2385 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2386 #endif
2387 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2388 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2389 
2390 /*
2391  * These CPUs all support 44bits physical address space internally in the
2392  * cache but CPUID can report a smaller number of physical address bits.
2393  *
2394  * The L1TF mitigation uses the top most address bit for the inversion of
2395  * non present PTEs. When the installed memory reaches into the top most
2396  * address bit due to memory holes, which has been observed on machines
2397  * which report 36bits physical address bits and have 32G RAM installed,
2398  * then the mitigation range check in l1tf_select_mitigation() triggers.
2399  * This is a false positive because the mitigation is still possible due to
2400  * the fact that the cache uses 44bit internally. Use the cache bits
2401  * instead of the reported physical bits and adjust them on the affected
2402  * machines to 44bit if the reported bits are less than 44.
2403  */
2404 static void override_cache_bits(struct cpuinfo_x86 *c)
2405 {
2406 	if (c->x86 != 6)
2407 		return;
2408 
2409 	switch (c->x86_model) {
2410 	case INTEL_FAM6_NEHALEM:
2411 	case INTEL_FAM6_WESTMERE:
2412 	case INTEL_FAM6_SANDYBRIDGE:
2413 	case INTEL_FAM6_IVYBRIDGE:
2414 	case INTEL_FAM6_HASWELL:
2415 	case INTEL_FAM6_HASWELL_L:
2416 	case INTEL_FAM6_HASWELL_G:
2417 	case INTEL_FAM6_BROADWELL:
2418 	case INTEL_FAM6_BROADWELL_G:
2419 	case INTEL_FAM6_SKYLAKE_L:
2420 	case INTEL_FAM6_SKYLAKE:
2421 	case INTEL_FAM6_KABYLAKE_L:
2422 	case INTEL_FAM6_KABYLAKE:
2423 		if (c->x86_cache_bits < 44)
2424 			c->x86_cache_bits = 44;
2425 		break;
2426 	}
2427 }
2428 
2429 static void __init l1tf_select_mitigation(void)
2430 {
2431 	u64 half_pa;
2432 
2433 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2434 		return;
2435 
2436 	if (cpu_mitigations_off())
2437 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2438 	else if (cpu_mitigations_auto_nosmt())
2439 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2440 
2441 	override_cache_bits(&boot_cpu_data);
2442 
2443 	switch (l1tf_mitigation) {
2444 	case L1TF_MITIGATION_OFF:
2445 	case L1TF_MITIGATION_FLUSH_NOWARN:
2446 	case L1TF_MITIGATION_FLUSH:
2447 		break;
2448 	case L1TF_MITIGATION_FLUSH_NOSMT:
2449 	case L1TF_MITIGATION_FULL:
2450 		cpu_smt_disable(false);
2451 		break;
2452 	case L1TF_MITIGATION_FULL_FORCE:
2453 		cpu_smt_disable(true);
2454 		break;
2455 	}
2456 
2457 #if CONFIG_PGTABLE_LEVELS == 2
2458 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2459 	return;
2460 #endif
2461 
2462 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2463 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2464 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2465 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2466 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2467 				half_pa);
2468 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2469 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2470 		return;
2471 	}
2472 
2473 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2474 }
2475 
2476 static int __init l1tf_cmdline(char *str)
2477 {
2478 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2479 		return 0;
2480 
2481 	if (!str)
2482 		return -EINVAL;
2483 
2484 	if (!strcmp(str, "off"))
2485 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2486 	else if (!strcmp(str, "flush,nowarn"))
2487 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2488 	else if (!strcmp(str, "flush"))
2489 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2490 	else if (!strcmp(str, "flush,nosmt"))
2491 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2492 	else if (!strcmp(str, "full"))
2493 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2494 	else if (!strcmp(str, "full,force"))
2495 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2496 
2497 	return 0;
2498 }
2499 early_param("l1tf", l1tf_cmdline);
2500 
2501 #undef pr_fmt
2502 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2503 
2504 enum srso_mitigation {
2505 	SRSO_MITIGATION_NONE,
2506 	SRSO_MITIGATION_UCODE_NEEDED,
2507 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2508 	SRSO_MITIGATION_MICROCODE,
2509 	SRSO_MITIGATION_SAFE_RET,
2510 	SRSO_MITIGATION_IBPB,
2511 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2512 };
2513 
2514 enum srso_mitigation_cmd {
2515 	SRSO_CMD_OFF,
2516 	SRSO_CMD_MICROCODE,
2517 	SRSO_CMD_SAFE_RET,
2518 	SRSO_CMD_IBPB,
2519 	SRSO_CMD_IBPB_ON_VMEXIT,
2520 };
2521 
2522 static const char * const srso_strings[] = {
2523 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2524 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2525 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2526 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2527 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2528 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2529 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2530 };
2531 
2532 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2533 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2534 
2535 static int __init srso_parse_cmdline(char *str)
2536 {
2537 	if (!str)
2538 		return -EINVAL;
2539 
2540 	if (!strcmp(str, "off"))
2541 		srso_cmd = SRSO_CMD_OFF;
2542 	else if (!strcmp(str, "microcode"))
2543 		srso_cmd = SRSO_CMD_MICROCODE;
2544 	else if (!strcmp(str, "safe-ret"))
2545 		srso_cmd = SRSO_CMD_SAFE_RET;
2546 	else if (!strcmp(str, "ibpb"))
2547 		srso_cmd = SRSO_CMD_IBPB;
2548 	else if (!strcmp(str, "ibpb-vmexit"))
2549 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2550 	else
2551 		pr_err("Ignoring unknown SRSO option (%s).", str);
2552 
2553 	return 0;
2554 }
2555 early_param("spec_rstack_overflow", srso_parse_cmdline);
2556 
2557 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2558 
2559 static void __init srso_select_mitigation(void)
2560 {
2561 	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2562 
2563 	if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2564 		goto pred_cmd;
2565 
2566 	if (has_microcode) {
2567 		/*
2568 		 * Zen1/2 with SMT off aren't vulnerable after the right
2569 		 * IBPB microcode has been applied.
2570 		 */
2571 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2572 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2573 			return;
2574 		}
2575 
2576 		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2577 			srso_mitigation = SRSO_MITIGATION_IBPB;
2578 			goto out;
2579 		}
2580 	} else {
2581 		pr_warn("IBPB-extending microcode not applied!\n");
2582 		pr_warn(SRSO_NOTICE);
2583 
2584 		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2585 		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2586 	}
2587 
2588 	switch (srso_cmd) {
2589 	case SRSO_CMD_OFF:
2590 		goto pred_cmd;
2591 
2592 	case SRSO_CMD_MICROCODE:
2593 		if (has_microcode) {
2594 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2595 			pr_warn(SRSO_NOTICE);
2596 		}
2597 		break;
2598 
2599 	case SRSO_CMD_SAFE_RET:
2600 		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2601 			/*
2602 			 * Enable the return thunk for generated code
2603 			 * like ftrace, static_call, etc.
2604 			 */
2605 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2606 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2607 
2608 			if (boot_cpu_data.x86 == 0x19) {
2609 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2610 				x86_return_thunk = srso_alias_return_thunk;
2611 			} else {
2612 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2613 				x86_return_thunk = srso_return_thunk;
2614 			}
2615 			if (has_microcode)
2616 				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2617 			else
2618 				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2619 		} else {
2620 			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2621 			goto pred_cmd;
2622 		}
2623 		break;
2624 
2625 	case SRSO_CMD_IBPB:
2626 		if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2627 			if (has_microcode) {
2628 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2629 				srso_mitigation = SRSO_MITIGATION_IBPB;
2630 
2631 				/*
2632 				 * IBPB on entry already obviates the need for
2633 				 * software-based untraining so clear those in case some
2634 				 * other mitigation like Retbleed has selected them.
2635 				 */
2636 				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2637 				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2638 			}
2639 		} else {
2640 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2641 			goto pred_cmd;
2642 		}
2643 		break;
2644 
2645 	case SRSO_CMD_IBPB_ON_VMEXIT:
2646 		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2647 			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2648 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2649 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2650 
2651 				/*
2652 				 * There is no need for RSB filling: entry_ibpb() ensures
2653 				 * all predictions, including the RSB, are invalidated,
2654 				 * regardless of IBPB implementation.
2655 				 */
2656 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2657 			}
2658 		} else {
2659 			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2660 			goto pred_cmd;
2661                 }
2662 		break;
2663 
2664 	default:
2665 		break;
2666 	}
2667 
2668 out:
2669 	pr_info("%s\n", srso_strings[srso_mitigation]);
2670 
2671 pred_cmd:
2672 	if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) &&
2673 	     boot_cpu_has(X86_FEATURE_SBPB))
2674 		x86_pred_cmd = PRED_CMD_SBPB;
2675 }
2676 
2677 #undef pr_fmt
2678 #define pr_fmt(fmt) fmt
2679 
2680 #ifdef CONFIG_SYSFS
2681 
2682 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2683 
2684 #if IS_ENABLED(CONFIG_KVM_INTEL)
2685 static const char * const l1tf_vmx_states[] = {
2686 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2687 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2688 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2689 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2690 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2691 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2692 };
2693 
2694 static ssize_t l1tf_show_state(char *buf)
2695 {
2696 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2697 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2698 
2699 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2700 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2701 	     sched_smt_active())) {
2702 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2703 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2704 	}
2705 
2706 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2707 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2708 			  sched_smt_active() ? "vulnerable" : "disabled");
2709 }
2710 
2711 static ssize_t itlb_multihit_show_state(char *buf)
2712 {
2713 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2714 	    !boot_cpu_has(X86_FEATURE_VMX))
2715 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2716 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2717 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2718 	else if (itlb_multihit_kvm_mitigation)
2719 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2720 	else
2721 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2722 }
2723 #else
2724 static ssize_t l1tf_show_state(char *buf)
2725 {
2726 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2727 }
2728 
2729 static ssize_t itlb_multihit_show_state(char *buf)
2730 {
2731 	return sysfs_emit(buf, "Processor vulnerable\n");
2732 }
2733 #endif
2734 
2735 static ssize_t mds_show_state(char *buf)
2736 {
2737 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2738 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2739 				  mds_strings[mds_mitigation]);
2740 	}
2741 
2742 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2743 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2744 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2745 				   sched_smt_active() ? "mitigated" : "disabled"));
2746 	}
2747 
2748 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2749 			  sched_smt_active() ? "vulnerable" : "disabled");
2750 }
2751 
2752 static ssize_t tsx_async_abort_show_state(char *buf)
2753 {
2754 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2755 	    (taa_mitigation == TAA_MITIGATION_OFF))
2756 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2757 
2758 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2759 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2760 				  taa_strings[taa_mitigation]);
2761 	}
2762 
2763 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2764 			  sched_smt_active() ? "vulnerable" : "disabled");
2765 }
2766 
2767 static ssize_t mmio_stale_data_show_state(char *buf)
2768 {
2769 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2770 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2771 
2772 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2773 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2774 
2775 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2776 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2777 				  mmio_strings[mmio_mitigation]);
2778 	}
2779 
2780 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2781 			  sched_smt_active() ? "vulnerable" : "disabled");
2782 }
2783 
2784 static ssize_t rfds_show_state(char *buf)
2785 {
2786 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2787 }
2788 
2789 static char *stibp_state(void)
2790 {
2791 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2792 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2793 		return "";
2794 
2795 	switch (spectre_v2_user_stibp) {
2796 	case SPECTRE_V2_USER_NONE:
2797 		return "; STIBP: disabled";
2798 	case SPECTRE_V2_USER_STRICT:
2799 		return "; STIBP: forced";
2800 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2801 		return "; STIBP: always-on";
2802 	case SPECTRE_V2_USER_PRCTL:
2803 	case SPECTRE_V2_USER_SECCOMP:
2804 		if (static_key_enabled(&switch_to_cond_stibp))
2805 			return "; STIBP: conditional";
2806 	}
2807 	return "";
2808 }
2809 
2810 static char *ibpb_state(void)
2811 {
2812 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2813 		if (static_key_enabled(&switch_mm_always_ibpb))
2814 			return "; IBPB: always-on";
2815 		if (static_key_enabled(&switch_mm_cond_ibpb))
2816 			return "; IBPB: conditional";
2817 		return "; IBPB: disabled";
2818 	}
2819 	return "";
2820 }
2821 
2822 static char *pbrsb_eibrs_state(void)
2823 {
2824 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2825 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2826 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2827 			return "; PBRSB-eIBRS: SW sequence";
2828 		else
2829 			return "; PBRSB-eIBRS: Vulnerable";
2830 	} else {
2831 		return "; PBRSB-eIBRS: Not affected";
2832 	}
2833 }
2834 
2835 static const char *spectre_bhi_state(void)
2836 {
2837 	if (!boot_cpu_has_bug(X86_BUG_BHI))
2838 		return "; BHI: Not affected";
2839 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2840 		return "; BHI: BHI_DIS_S";
2841 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2842 		return "; BHI: SW loop, KVM: SW loop";
2843 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2844 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2845 		 rrsba_disabled)
2846 		return "; BHI: Retpoline";
2847 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2848 		return "; BHI: Vulnerable, KVM: SW loop";
2849 
2850 	return "; BHI: Vulnerable";
2851 }
2852 
2853 static ssize_t spectre_v2_show_state(char *buf)
2854 {
2855 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2856 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2857 
2858 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2859 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2860 
2861 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2862 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2863 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2864 
2865 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2866 			  spectre_v2_strings[spectre_v2_enabled],
2867 			  ibpb_state(),
2868 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2869 			  stibp_state(),
2870 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2871 			  pbrsb_eibrs_state(),
2872 			  spectre_bhi_state(),
2873 			  /* this should always be at the end */
2874 			  spectre_v2_module_string());
2875 }
2876 
2877 static ssize_t srbds_show_state(char *buf)
2878 {
2879 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2880 }
2881 
2882 static ssize_t retbleed_show_state(char *buf)
2883 {
2884 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2885 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2886 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2887 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2888 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2889 
2890 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2891 				  !sched_smt_active() ? "disabled" :
2892 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2893 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2894 				  "enabled with STIBP protection" : "vulnerable");
2895 	}
2896 
2897 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2898 }
2899 
2900 static ssize_t srso_show_state(char *buf)
2901 {
2902 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2903 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2904 
2905 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2906 }
2907 
2908 static ssize_t gds_show_state(char *buf)
2909 {
2910 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2911 }
2912 
2913 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2914 			       char *buf, unsigned int bug)
2915 {
2916 	if (!boot_cpu_has_bug(bug))
2917 		return sysfs_emit(buf, "Not affected\n");
2918 
2919 	switch (bug) {
2920 	case X86_BUG_CPU_MELTDOWN:
2921 		if (boot_cpu_has(X86_FEATURE_PTI))
2922 			return sysfs_emit(buf, "Mitigation: PTI\n");
2923 
2924 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2925 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2926 
2927 		break;
2928 
2929 	case X86_BUG_SPECTRE_V1:
2930 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2931 
2932 	case X86_BUG_SPECTRE_V2:
2933 		return spectre_v2_show_state(buf);
2934 
2935 	case X86_BUG_SPEC_STORE_BYPASS:
2936 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2937 
2938 	case X86_BUG_L1TF:
2939 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2940 			return l1tf_show_state(buf);
2941 		break;
2942 
2943 	case X86_BUG_MDS:
2944 		return mds_show_state(buf);
2945 
2946 	case X86_BUG_TAA:
2947 		return tsx_async_abort_show_state(buf);
2948 
2949 	case X86_BUG_ITLB_MULTIHIT:
2950 		return itlb_multihit_show_state(buf);
2951 
2952 	case X86_BUG_SRBDS:
2953 		return srbds_show_state(buf);
2954 
2955 	case X86_BUG_MMIO_STALE_DATA:
2956 	case X86_BUG_MMIO_UNKNOWN:
2957 		return mmio_stale_data_show_state(buf);
2958 
2959 	case X86_BUG_RETBLEED:
2960 		return retbleed_show_state(buf);
2961 
2962 	case X86_BUG_SRSO:
2963 		return srso_show_state(buf);
2964 
2965 	case X86_BUG_GDS:
2966 		return gds_show_state(buf);
2967 
2968 	case X86_BUG_RFDS:
2969 		return rfds_show_state(buf);
2970 
2971 	default:
2972 		break;
2973 	}
2974 
2975 	return sysfs_emit(buf, "Vulnerable\n");
2976 }
2977 
2978 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2979 {
2980 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2981 }
2982 
2983 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2984 {
2985 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2986 }
2987 
2988 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2989 {
2990 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2991 }
2992 
2993 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2994 {
2995 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2996 }
2997 
2998 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2999 {
3000 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3001 }
3002 
3003 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3004 {
3005 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3006 }
3007 
3008 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3009 {
3010 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3011 }
3012 
3013 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3014 {
3015 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3016 }
3017 
3018 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3019 {
3020 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3021 }
3022 
3023 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3024 {
3025 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3026 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3027 	else
3028 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3029 }
3030 
3031 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3032 {
3033 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3034 }
3035 
3036 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3039 }
3040 
3041 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3042 {
3043 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3044 }
3045 
3046 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3047 {
3048 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3049 }
3050 #endif
3051