1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bitops.h> 4 #include <linux/elf.h> 5 #include <linux/mm.h> 6 7 #include <linux/io.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/random.h> 11 #include <linux/topology.h> 12 #include <asm/processor.h> 13 #include <asm/apic.h> 14 #include <asm/cacheinfo.h> 15 #include <asm/cpu.h> 16 #include <asm/spec-ctrl.h> 17 #include <asm/smp.h> 18 #include <asm/numa.h> 19 #include <asm/pci-direct.h> 20 #include <asm/delay.h> 21 #include <asm/debugreg.h> 22 #include <asm/resctrl.h> 23 24 #ifdef CONFIG_X86_64 25 # include <asm/mmconfig.h> 26 #endif 27 28 #include "cpu.h" 29 30 /* 31 * nodes_per_socket: Stores the number of nodes per socket. 32 * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX 33 * Node Identifiers[10:8] 34 */ 35 static u32 nodes_per_socket = 1; 36 37 /* 38 * AMD errata checking 39 * 40 * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or 41 * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that 42 * have an OSVW id assigned, which it takes as first argument. Both take a 43 * variable number of family-specific model-stepping ranges created by 44 * AMD_MODEL_RANGE(). 45 * 46 * Example: 47 * 48 * const int amd_erratum_319[] = 49 * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), 50 * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), 51 * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); 52 */ 53 54 #define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 } 55 #define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 } 56 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ 57 ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) 58 #define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff) 59 #define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff) 60 #define AMD_MODEL_RANGE_END(range) ((range) & 0xfff) 61 62 static const int amd_erratum_400[] = 63 AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), 64 AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); 65 66 static const int amd_erratum_383[] = 67 AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); 68 69 static const int amd_erratum_1485[] = 70 AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x19, 0x10, 0x0, 0x1f, 0xf), 71 AMD_MODEL_RANGE(0x19, 0x60, 0x0, 0xaf, 0xf)); 72 73 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) 74 { 75 int osvw_id = *erratum++; 76 u32 range; 77 u32 ms; 78 79 if (osvw_id >= 0 && osvw_id < 65536 && 80 cpu_has(cpu, X86_FEATURE_OSVW)) { 81 u64 osvw_len; 82 83 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); 84 if (osvw_id < osvw_len) { 85 u64 osvw_bits; 86 87 rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), 88 osvw_bits); 89 return osvw_bits & (1ULL << (osvw_id & 0x3f)); 90 } 91 } 92 93 /* OSVW unavailable or ID unknown, match family-model-stepping range */ 94 ms = (cpu->x86_model << 4) | cpu->x86_stepping; 95 while ((range = *erratum++)) 96 if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && 97 (ms >= AMD_MODEL_RANGE_START(range)) && 98 (ms <= AMD_MODEL_RANGE_END(range))) 99 return true; 100 101 return false; 102 } 103 104 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) 105 { 106 u32 gprs[8] = { 0 }; 107 int err; 108 109 WARN_ONCE((boot_cpu_data.x86 != 0xf), 110 "%s should only be used on K8!\n", __func__); 111 112 gprs[1] = msr; 113 gprs[7] = 0x9c5a203a; 114 115 err = rdmsr_safe_regs(gprs); 116 117 *p = gprs[0] | ((u64)gprs[2] << 32); 118 119 return err; 120 } 121 122 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) 123 { 124 u32 gprs[8] = { 0 }; 125 126 WARN_ONCE((boot_cpu_data.x86 != 0xf), 127 "%s should only be used on K8!\n", __func__); 128 129 gprs[0] = (u32)val; 130 gprs[1] = msr; 131 gprs[2] = val >> 32; 132 gprs[7] = 0x9c5a203a; 133 134 return wrmsr_safe_regs(gprs); 135 } 136 137 /* 138 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 139 * misexecution of code under Linux. Owners of such processors should 140 * contact AMD for precise details and a CPU swap. 141 * 142 * See http://www.multimania.com/poulot/k6bug.html 143 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 144 * (Publication # 21266 Issue Date: August 1998) 145 * 146 * The following test is erm.. interesting. AMD neglected to up 147 * the chip setting when fixing the bug but they also tweaked some 148 * performance at the same time.. 149 */ 150 151 #ifdef CONFIG_X86_32 152 extern __visible void vide(void); 153 __asm__(".text\n" 154 ".globl vide\n" 155 ".type vide, @function\n" 156 ".align 4\n" 157 "vide: ret\n"); 158 #endif 159 160 static void init_amd_k5(struct cpuinfo_x86 *c) 161 { 162 #ifdef CONFIG_X86_32 163 /* 164 * General Systems BIOSen alias the cpu frequency registers 165 * of the Elan at 0x000df000. Unfortunately, one of the Linux 166 * drivers subsequently pokes it, and changes the CPU speed. 167 * Workaround : Remove the unneeded alias. 168 */ 169 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 170 #define CBAR_ENB (0x80000000) 171 #define CBAR_KEY (0X000000CB) 172 if (c->x86_model == 9 || c->x86_model == 10) { 173 if (inl(CBAR) & CBAR_ENB) 174 outl(0 | CBAR_KEY, CBAR); 175 } 176 #endif 177 } 178 179 static void init_amd_k6(struct cpuinfo_x86 *c) 180 { 181 #ifdef CONFIG_X86_32 182 u32 l, h; 183 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 184 185 if (c->x86_model < 6) { 186 /* Based on AMD doc 20734R - June 2000 */ 187 if (c->x86_model == 0) { 188 clear_cpu_cap(c, X86_FEATURE_APIC); 189 set_cpu_cap(c, X86_FEATURE_PGE); 190 } 191 return; 192 } 193 194 if (c->x86_model == 6 && c->x86_stepping == 1) { 195 const int K6_BUG_LOOP = 1000000; 196 int n; 197 void (*f_vide)(void); 198 u64 d, d2; 199 200 pr_info("AMD K6 stepping B detected - "); 201 202 /* 203 * It looks like AMD fixed the 2.6.2 bug and improved indirect 204 * calls at the same time. 205 */ 206 207 n = K6_BUG_LOOP; 208 f_vide = vide; 209 OPTIMIZER_HIDE_VAR(f_vide); 210 d = rdtsc(); 211 while (n--) 212 f_vide(); 213 d2 = rdtsc(); 214 d = d2-d; 215 216 if (d > 20*K6_BUG_LOOP) 217 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 218 else 219 pr_cont("probably OK (after B9730xxxx).\n"); 220 } 221 222 /* K6 with old style WHCR */ 223 if (c->x86_model < 8 || 224 (c->x86_model == 8 && c->x86_stepping < 8)) { 225 /* We can only write allocate on the low 508Mb */ 226 if (mbytes > 508) 227 mbytes = 508; 228 229 rdmsr(MSR_K6_WHCR, l, h); 230 if ((l&0x0000FFFF) == 0) { 231 unsigned long flags; 232 l = (1<<0)|((mbytes/4)<<1); 233 local_irq_save(flags); 234 wbinvd(); 235 wrmsr(MSR_K6_WHCR, l, h); 236 local_irq_restore(flags); 237 pr_info("Enabling old style K6 write allocation for %d Mb\n", 238 mbytes); 239 } 240 return; 241 } 242 243 if ((c->x86_model == 8 && c->x86_stepping > 7) || 244 c->x86_model == 9 || c->x86_model == 13) { 245 /* The more serious chips .. */ 246 247 if (mbytes > 4092) 248 mbytes = 4092; 249 250 rdmsr(MSR_K6_WHCR, l, h); 251 if ((l&0xFFFF0000) == 0) { 252 unsigned long flags; 253 l = ((mbytes>>2)<<22)|(1<<16); 254 local_irq_save(flags); 255 wbinvd(); 256 wrmsr(MSR_K6_WHCR, l, h); 257 local_irq_restore(flags); 258 pr_info("Enabling new style K6 write allocation for %d Mb\n", 259 mbytes); 260 } 261 262 return; 263 } 264 265 if (c->x86_model == 10) { 266 /* AMD Geode LX is model 10 */ 267 /* placeholder for any needed mods */ 268 return; 269 } 270 #endif 271 } 272 273 static void init_amd_k7(struct cpuinfo_x86 *c) 274 { 275 #ifdef CONFIG_X86_32 276 u32 l, h; 277 278 /* 279 * Bit 15 of Athlon specific MSR 15, needs to be 0 280 * to enable SSE on Palomino/Morgan/Barton CPU's. 281 * If the BIOS didn't enable it already, enable it here. 282 */ 283 if (c->x86_model >= 6 && c->x86_model <= 10) { 284 if (!cpu_has(c, X86_FEATURE_XMM)) { 285 pr_info("Enabling disabled K7/SSE Support.\n"); 286 msr_clear_bit(MSR_K7_HWCR, 15); 287 set_cpu_cap(c, X86_FEATURE_XMM); 288 } 289 } 290 291 /* 292 * It's been determined by AMD that Athlons since model 8 stepping 1 293 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 294 * As per AMD technical note 27212 0.2 295 */ 296 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 297 rdmsr(MSR_K7_CLK_CTL, l, h); 298 if ((l & 0xfff00000) != 0x20000000) { 299 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 300 l, ((l & 0x000fffff)|0x20000000)); 301 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 302 } 303 } 304 305 /* calling is from identify_secondary_cpu() ? */ 306 if (!c->cpu_index) 307 return; 308 309 /* 310 * Certain Athlons might work (for various values of 'work') in SMP 311 * but they are not certified as MP capable. 312 */ 313 /* Athlon 660/661 is valid. */ 314 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 315 (c->x86_stepping == 1))) 316 return; 317 318 /* Duron 670 is valid */ 319 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 320 return; 321 322 /* 323 * Athlon 662, Duron 671, and Athlon >model 7 have capability 324 * bit. It's worth noting that the A5 stepping (662) of some 325 * Athlon XP's have the MP bit set. 326 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 327 * more. 328 */ 329 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 330 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 331 (c->x86_model > 7)) 332 if (cpu_has(c, X86_FEATURE_MP)) 333 return; 334 335 /* If we get here, not a certified SMP capable AMD system. */ 336 337 /* 338 * Don't taint if we are running SMP kernel on a single non-MP 339 * approved Athlon 340 */ 341 WARN_ONCE(1, "WARNING: This combination of AMD" 342 " processors is not suitable for SMP.\n"); 343 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 344 #endif 345 } 346 347 #ifdef CONFIG_NUMA 348 /* 349 * To workaround broken NUMA config. Read the comment in 350 * srat_detect_node(). 351 */ 352 static int nearby_node(int apicid) 353 { 354 int i, node; 355 356 for (i = apicid - 1; i >= 0; i--) { 357 node = __apicid_to_node[i]; 358 if (node != NUMA_NO_NODE && node_online(node)) 359 return node; 360 } 361 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 362 node = __apicid_to_node[i]; 363 if (node != NUMA_NO_NODE && node_online(node)) 364 return node; 365 } 366 return first_node(node_online_map); /* Shouldn't happen */ 367 } 368 #endif 369 370 /* 371 * Fix up cpu_core_id for pre-F17h systems to be in the 372 * [0 .. cores_per_node - 1] range. Not really needed but 373 * kept so as not to break existing setups. 374 */ 375 static void legacy_fixup_core_id(struct cpuinfo_x86 *c) 376 { 377 u32 cus_per_node; 378 379 if (c->x86 >= 0x17) 380 return; 381 382 cus_per_node = c->x86_max_cores / nodes_per_socket; 383 c->cpu_core_id %= cus_per_node; 384 } 385 386 /* 387 * Fixup core topology information for 388 * (1) AMD multi-node processors 389 * Assumption: Number of cores in each internal node is the same. 390 * (2) AMD processors supporting compute units 391 */ 392 static void amd_get_topology(struct cpuinfo_x86 *c) 393 { 394 int cpu = smp_processor_id(); 395 396 /* get information required for multi-node processors */ 397 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 398 int err; 399 u32 eax, ebx, ecx, edx; 400 401 cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); 402 403 c->cpu_die_id = ecx & 0xff; 404 405 if (c->x86 == 0x15) 406 c->cu_id = ebx & 0xff; 407 408 if (c->x86 >= 0x17) { 409 c->cpu_core_id = ebx & 0xff; 410 411 if (smp_num_siblings > 1) 412 c->x86_max_cores /= smp_num_siblings; 413 } 414 415 /* 416 * In case leaf B is available, use it to derive 417 * topology information. 418 */ 419 err = detect_extended_topology(c); 420 if (!err) 421 c->x86_coreid_bits = get_count_order(c->x86_max_cores); 422 423 cacheinfo_amd_init_llc_id(c, cpu); 424 425 } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { 426 u64 value; 427 428 rdmsrl(MSR_FAM10H_NODE_ID, value); 429 c->cpu_die_id = value & 7; 430 431 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id; 432 } else 433 return; 434 435 if (nodes_per_socket > 1) { 436 set_cpu_cap(c, X86_FEATURE_AMD_DCM); 437 legacy_fixup_core_id(c); 438 } 439 } 440 441 /* 442 * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. 443 * Assumes number of cores is a power of two. 444 */ 445 static void amd_detect_cmp(struct cpuinfo_x86 *c) 446 { 447 unsigned bits; 448 int cpu = smp_processor_id(); 449 450 bits = c->x86_coreid_bits; 451 /* Low order bits define the core id (index of core in socket) */ 452 c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); 453 /* Convert the initial APIC ID into the socket ID */ 454 c->phys_proc_id = c->initial_apicid >> bits; 455 /* use socket ID also for last level cache */ 456 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id = c->phys_proc_id; 457 } 458 459 u32 amd_get_nodes_per_socket(void) 460 { 461 return nodes_per_socket; 462 } 463 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); 464 465 static void srat_detect_node(struct cpuinfo_x86 *c) 466 { 467 #ifdef CONFIG_NUMA 468 int cpu = smp_processor_id(); 469 int node; 470 unsigned apicid = c->apicid; 471 472 node = numa_cpu_node(cpu); 473 if (node == NUMA_NO_NODE) 474 node = get_llc_id(cpu); 475 476 /* 477 * On multi-fabric platform (e.g. Numascale NumaChip) a 478 * platform-specific handler needs to be called to fixup some 479 * IDs of the CPU. 480 */ 481 if (x86_cpuinit.fixup_cpu_id) 482 x86_cpuinit.fixup_cpu_id(c, node); 483 484 if (!node_online(node)) { 485 /* 486 * Two possibilities here: 487 * 488 * - The CPU is missing memory and no node was created. In 489 * that case try picking one from a nearby CPU. 490 * 491 * - The APIC IDs differ from the HyperTransport node IDs 492 * which the K8 northbridge parsing fills in. Assume 493 * they are all increased by a constant offset, but in 494 * the same order as the HT nodeids. If that doesn't 495 * result in a usable node fall back to the path for the 496 * previous case. 497 * 498 * This workaround operates directly on the mapping between 499 * APIC ID and NUMA node, assuming certain relationship 500 * between APIC ID, HT node ID and NUMA topology. As going 501 * through CPU mapping may alter the outcome, directly 502 * access __apicid_to_node[]. 503 */ 504 int ht_nodeid = c->initial_apicid; 505 506 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 507 node = __apicid_to_node[ht_nodeid]; 508 /* Pick a nearby node */ 509 if (!node_online(node)) 510 node = nearby_node(apicid); 511 } 512 numa_set_node(cpu, node); 513 #endif 514 } 515 516 static void early_init_amd_mc(struct cpuinfo_x86 *c) 517 { 518 #ifdef CONFIG_SMP 519 unsigned bits, ecx; 520 521 /* Multi core CPU? */ 522 if (c->extended_cpuid_level < 0x80000008) 523 return; 524 525 ecx = cpuid_ecx(0x80000008); 526 527 c->x86_max_cores = (ecx & 0xff) + 1; 528 529 /* CPU telling us the core id bits shift? */ 530 bits = (ecx >> 12) & 0xF; 531 532 /* Otherwise recompute */ 533 if (bits == 0) { 534 while ((1 << bits) < c->x86_max_cores) 535 bits++; 536 } 537 538 c->x86_coreid_bits = bits; 539 #endif 540 } 541 542 static void bsp_init_amd(struct cpuinfo_x86 *c) 543 { 544 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 545 546 if (c->x86 > 0x10 || 547 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 548 u64 val; 549 550 rdmsrl(MSR_K7_HWCR, val); 551 if (!(val & BIT(24))) 552 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 553 } 554 } 555 556 if (c->x86 == 0x15) { 557 unsigned long upperbit; 558 u32 cpuid, assoc; 559 560 cpuid = cpuid_edx(0x80000005); 561 assoc = cpuid >> 16 & 0xff; 562 upperbit = ((cpuid >> 24) << 10) / assoc; 563 564 va_align.mask = (upperbit - 1) & PAGE_MASK; 565 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 566 567 /* A random value per boot for bit slice [12:upper_bit) */ 568 va_align.bits = get_random_u32() & va_align.mask; 569 } 570 571 if (cpu_has(c, X86_FEATURE_MWAITX)) 572 use_mwaitx_delay(); 573 574 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 575 u32 ecx; 576 577 ecx = cpuid_ecx(0x8000001e); 578 __max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1; 579 } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { 580 u64 value; 581 582 rdmsrl(MSR_FAM10H_NODE_ID, value); 583 __max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1; 584 } 585 586 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && 587 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && 588 c->x86 >= 0x15 && c->x86 <= 0x17) { 589 unsigned int bit; 590 591 switch (c->x86) { 592 case 0x15: bit = 54; break; 593 case 0x16: bit = 33; break; 594 case 0x17: bit = 10; break; 595 default: return; 596 } 597 /* 598 * Try to cache the base value so further operations can 599 * avoid RMW. If that faults, do not enable SSBD. 600 */ 601 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { 602 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); 603 setup_force_cpu_cap(X86_FEATURE_SSBD); 604 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; 605 } 606 } 607 608 resctrl_cpu_detect(c); 609 610 /* Figure out Zen generations: */ 611 switch (c->x86) { 612 case 0x17: { 613 switch (c->x86_model) { 614 case 0x00 ... 0x2f: 615 case 0x50 ... 0x5f: 616 setup_force_cpu_cap(X86_FEATURE_ZEN1); 617 break; 618 case 0x30 ... 0x4f: 619 case 0x60 ... 0x7f: 620 case 0x90 ... 0x91: 621 case 0xa0 ... 0xaf: 622 setup_force_cpu_cap(X86_FEATURE_ZEN2); 623 break; 624 default: 625 goto warn; 626 } 627 break; 628 } 629 case 0x19: { 630 switch (c->x86_model) { 631 case 0x00 ... 0x0f: 632 case 0x20 ... 0x5f: 633 setup_force_cpu_cap(X86_FEATURE_ZEN3); 634 break; 635 case 0x10 ... 0x1f: 636 case 0x60 ... 0xaf: 637 setup_force_cpu_cap(X86_FEATURE_ZEN4); 638 break; 639 default: 640 goto warn; 641 } 642 break; 643 } 644 default: 645 break; 646 } 647 648 return; 649 650 warn: 651 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); 652 } 653 654 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 655 { 656 u64 msr; 657 658 /* 659 * BIOS support is required for SME and SEV. 660 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 661 * the SME physical address space reduction value. 662 * If BIOS has not enabled SME then don't advertise the 663 * SME feature (set in scattered.c). 664 * If the kernel has not enabled SME via any means then 665 * don't advertise the SME feature. 666 * For SEV: If BIOS has not enabled SEV then don't advertise the 667 * SEV and SEV_ES feature (set in scattered.c). 668 * 669 * In all cases, since support for SME and SEV requires long mode, 670 * don't advertise the feature under CONFIG_X86_32. 671 */ 672 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 673 /* Check if memory encryption is enabled */ 674 rdmsrl(MSR_AMD64_SYSCFG, msr); 675 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 676 goto clear_all; 677 678 /* 679 * Always adjust physical address bits. Even though this 680 * will be a value above 32-bits this is still done for 681 * CONFIG_X86_32 so that accurate values are reported. 682 */ 683 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 684 685 if (IS_ENABLED(CONFIG_X86_32)) 686 goto clear_all; 687 688 if (!sme_me_mask) 689 setup_clear_cpu_cap(X86_FEATURE_SME); 690 691 rdmsrl(MSR_K7_HWCR, msr); 692 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 693 goto clear_sev; 694 695 return; 696 697 clear_all: 698 setup_clear_cpu_cap(X86_FEATURE_SME); 699 clear_sev: 700 setup_clear_cpu_cap(X86_FEATURE_SEV); 701 setup_clear_cpu_cap(X86_FEATURE_SEV_ES); 702 } 703 } 704 705 static void early_init_amd(struct cpuinfo_x86 *c) 706 { 707 u64 value; 708 u32 dummy; 709 710 early_init_amd_mc(c); 711 712 if (c->x86 >= 0xf) 713 set_cpu_cap(c, X86_FEATURE_K8); 714 715 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 716 717 /* 718 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 719 * with P/T states and does not stop in deep C-states 720 */ 721 if (c->x86_power & (1 << 8)) { 722 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 723 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 724 } 725 726 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 727 if (c->x86_power & BIT(12)) 728 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 729 730 /* Bit 14 indicates the Runtime Average Power Limit interface. */ 731 if (c->x86_power & BIT(14)) 732 set_cpu_cap(c, X86_FEATURE_RAPL); 733 734 #ifdef CONFIG_X86_64 735 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 736 #else 737 /* Set MTRR capability flag if appropriate */ 738 if (c->x86 == 5) 739 if (c->x86_model == 13 || c->x86_model == 9 || 740 (c->x86_model == 8 && c->x86_stepping >= 8)) 741 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 742 #endif 743 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 744 /* 745 * ApicID can always be treated as an 8-bit value for AMD APIC versions 746 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 747 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 748 * after 16h. 749 */ 750 if (boot_cpu_has(X86_FEATURE_APIC)) { 751 if (c->x86 > 0x16) 752 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 753 else if (c->x86 >= 0xf) { 754 /* check CPU config space for extended APIC ID */ 755 unsigned int val; 756 757 val = read_pci_config(0, 24, 0, 0x68); 758 if ((val >> 17 & 0x3) == 0x3) 759 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 760 } 761 } 762 #endif 763 764 /* 765 * This is only needed to tell the kernel whether to use VMCALL 766 * and VMMCALL. VMMCALL is never executed except under virt, so 767 * we can set it unconditionally. 768 */ 769 set_cpu_cap(c, X86_FEATURE_VMMCALL); 770 771 /* F16h erratum 793, CVE-2013-6885 */ 772 if (c->x86 == 0x16 && c->x86_model <= 0xf) 773 msr_set_bit(MSR_AMD64_LS_CFG, 15); 774 775 /* 776 * Check whether the machine is affected by erratum 400. This is 777 * used to select the proper idle routine and to enable the check 778 * whether the machine is affected in arch_post_acpi_init(), which 779 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 780 */ 781 if (cpu_has_amd_erratum(c, amd_erratum_400)) 782 set_cpu_bug(c, X86_BUG_AMD_E400); 783 784 early_detect_mem_encrypt(c); 785 786 /* Re-enable TopologyExtensions if switched off by BIOS */ 787 if (c->x86 == 0x15 && 788 (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && 789 !cpu_has(c, X86_FEATURE_TOPOEXT)) { 790 791 if (msr_set_bit(0xc0011005, 54) > 0) { 792 rdmsrl(0xc0011005, value); 793 if (value & BIT_64(54)) { 794 set_cpu_cap(c, X86_FEATURE_TOPOEXT); 795 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); 796 } 797 } 798 } 799 800 if (cpu_has(c, X86_FEATURE_TOPOEXT)) 801 smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1; 802 803 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { 804 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) 805 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 806 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { 807 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 808 setup_force_cpu_cap(X86_FEATURE_SBPB); 809 } 810 } 811 } 812 813 static void init_amd_k8(struct cpuinfo_x86 *c) 814 { 815 u32 level; 816 u64 value; 817 818 /* On C+ stepping K8 rep microcode works well for copy/memset */ 819 level = cpuid_eax(1); 820 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 821 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 822 823 /* 824 * Some BIOSes incorrectly force this feature, but only K8 revision D 825 * (model = 0x14) and later actually support it. 826 * (AMD Erratum #110, docId: 25759). 827 */ 828 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { 829 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 830 if (!rdmsrl_amd_safe(0xc001100d, &value)) { 831 value &= ~BIT_64(32); 832 wrmsrl_amd_safe(0xc001100d, value); 833 } 834 } 835 836 if (!c->x86_model_id[0]) 837 strcpy(c->x86_model_id, "Hammer"); 838 839 #ifdef CONFIG_SMP 840 /* 841 * Disable TLB flush filter by setting HWCR.FFDIS on K8 842 * bit 6 of msr C001_0015 843 * 844 * Errata 63 for SH-B3 steppings 845 * Errata 122 for all steppings (F+ have it disabled by default) 846 */ 847 msr_set_bit(MSR_K7_HWCR, 6); 848 #endif 849 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 850 } 851 852 static void init_amd_gh(struct cpuinfo_x86 *c) 853 { 854 #ifdef CONFIG_MMCONF_FAM10H 855 /* do this for boot cpu */ 856 if (c == &boot_cpu_data) 857 check_enable_amd_mmconf_dmi(); 858 859 fam10h_check_enable_mmcfg(); 860 #endif 861 862 /* 863 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 864 * is always needed when GART is enabled, even in a kernel which has no 865 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 866 * If it doesn't, we do it here as suggested by the BKDG. 867 * 868 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 869 */ 870 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 871 872 /* 873 * On family 10h BIOS may not have properly enabled WC+ support, causing 874 * it to be converted to CD memtype. This may result in performance 875 * degradation for certain nested-paging guests. Prevent this conversion 876 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 877 * 878 * NOTE: we want to use the _safe accessors so as not to #GP kvm 879 * guests on older kvm hosts. 880 */ 881 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 882 883 if (cpu_has_amd_erratum(c, amd_erratum_383)) 884 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 885 } 886 887 static void init_amd_ln(struct cpuinfo_x86 *c) 888 { 889 /* 890 * Apply erratum 665 fix unconditionally so machines without a BIOS 891 * fix work. 892 */ 893 msr_set_bit(MSR_AMD64_DE_CFG, 31); 894 } 895 896 static bool rdrand_force; 897 898 static int __init rdrand_cmdline(char *str) 899 { 900 if (!str) 901 return -EINVAL; 902 903 if (!strcmp(str, "force")) 904 rdrand_force = true; 905 else 906 return -EINVAL; 907 908 return 0; 909 } 910 early_param("rdrand", rdrand_cmdline); 911 912 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) 913 { 914 /* 915 * Saving of the MSR used to hide the RDRAND support during 916 * suspend/resume is done by arch/x86/power/cpu.c, which is 917 * dependent on CONFIG_PM_SLEEP. 918 */ 919 if (!IS_ENABLED(CONFIG_PM_SLEEP)) 920 return; 921 922 /* 923 * The self-test can clear X86_FEATURE_RDRAND, so check for 924 * RDRAND support using the CPUID function directly. 925 */ 926 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) 927 return; 928 929 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); 930 931 /* 932 * Verify that the CPUID change has occurred in case the kernel is 933 * running virtualized and the hypervisor doesn't support the MSR. 934 */ 935 if (cpuid_ecx(1) & BIT(30)) { 936 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); 937 return; 938 } 939 940 clear_cpu_cap(c, X86_FEATURE_RDRAND); 941 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); 942 } 943 944 static void init_amd_jg(struct cpuinfo_x86 *c) 945 { 946 /* 947 * Some BIOS implementations do not restore proper RDRAND support 948 * across suspend and resume. Check on whether to hide the RDRAND 949 * instruction support via CPUID. 950 */ 951 clear_rdrand_cpuid_bit(c); 952 } 953 954 static void init_amd_bd(struct cpuinfo_x86 *c) 955 { 956 u64 value; 957 958 /* 959 * The way access filter has a performance penalty on some workloads. 960 * Disable it on the affected CPUs. 961 */ 962 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 963 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 964 value |= 0x1E; 965 wrmsrl_safe(MSR_F15H_IC_CFG, value); 966 } 967 } 968 969 /* 970 * Some BIOS implementations do not restore proper RDRAND support 971 * across suspend and resume. Check on whether to hide the RDRAND 972 * instruction support via CPUID. 973 */ 974 clear_rdrand_cpuid_bit(c); 975 } 976 977 static void fix_erratum_1386(struct cpuinfo_x86 *c) 978 { 979 /* 980 * Work around Erratum 1386. The XSAVES instruction malfunctions in 981 * certain circumstances on Zen1/2 uarch, and not all parts have had 982 * updated microcode at the time of writing (March 2023). 983 * 984 * Affected parts all have no supervisor XSAVE states, meaning that 985 * the XSAVEC instruction (which works fine) is equivalent. 986 */ 987 clear_cpu_cap(c, X86_FEATURE_XSAVES); 988 } 989 990 void init_spectral_chicken(struct cpuinfo_x86 *c) 991 { 992 #ifdef CONFIG_CPU_UNRET_ENTRY 993 u64 value; 994 995 /* 996 * On Zen2 we offer this chicken (bit) on the altar of Speculation. 997 * 998 * This suppresses speculation from the middle of a basic block, i.e. it 999 * suppresses non-branch predictions. 1000 * 1001 * We use STIBP as a heuristic to filter out Zen2 from the rest of F17H 1002 */ 1003 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) { 1004 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { 1005 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; 1006 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); 1007 } 1008 } 1009 #endif 1010 } 1011 1012 static void init_amd_zn(struct cpuinfo_x86 *c) 1013 { 1014 setup_force_cpu_cap(X86_FEATURE_ZEN); 1015 #ifdef CONFIG_NUMA 1016 node_reclaim_distance = 32; 1017 #endif 1018 } 1019 1020 static void init_amd_zen1(struct cpuinfo_x86 *c) 1021 { 1022 fix_erratum_1386(c); 1023 1024 /* Fix up CPUID bits, but only if not virtualised. */ 1025 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 1026 1027 /* Erratum 1076: CPB feature bit not being set in CPUID. */ 1028 if (!cpu_has(c, X86_FEATURE_CPB)) 1029 set_cpu_cap(c, X86_FEATURE_CPB); 1030 1031 /* 1032 * Zen3 (Fam19 model < 0x10) parts are not susceptible to 1033 * Branch Type Confusion, but predate the allocation of the 1034 * BTC_NO bit. 1035 */ 1036 if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO)) 1037 set_cpu_cap(c, X86_FEATURE_BTC_NO); 1038 } 1039 1040 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); 1041 setup_force_cpu_bug(X86_BUG_DIV0); 1042 } 1043 1044 static bool cpu_has_zenbleed_microcode(void) 1045 { 1046 u32 good_rev = 0; 1047 1048 switch (boot_cpu_data.x86_model) { 1049 case 0x30 ... 0x3f: good_rev = 0x0830107b; break; 1050 case 0x60 ... 0x67: good_rev = 0x0860010c; break; 1051 case 0x68 ... 0x6f: good_rev = 0x08608107; break; 1052 case 0x70 ... 0x7f: good_rev = 0x08701033; break; 1053 case 0xa0 ... 0xaf: good_rev = 0x08a00009; break; 1054 1055 default: 1056 return false; 1057 break; 1058 } 1059 1060 if (boot_cpu_data.microcode < good_rev) 1061 return false; 1062 1063 return true; 1064 } 1065 1066 static void zen2_zenbleed_check(struct cpuinfo_x86 *c) 1067 { 1068 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 1069 return; 1070 1071 if (!cpu_has(c, X86_FEATURE_AVX)) 1072 return; 1073 1074 if (!cpu_has_zenbleed_microcode()) { 1075 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); 1076 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 1077 } else { 1078 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 1079 } 1080 } 1081 1082 static void init_amd_zen2(struct cpuinfo_x86 *c) 1083 { 1084 fix_erratum_1386(c); 1085 zen2_zenbleed_check(c); 1086 } 1087 1088 static void init_amd_zen3(struct cpuinfo_x86 *c) 1089 { 1090 } 1091 1092 static void init_amd_zen4(struct cpuinfo_x86 *c) 1093 { 1094 } 1095 1096 static void init_amd(struct cpuinfo_x86 *c) 1097 { 1098 early_init_amd(c); 1099 1100 /* 1101 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 1102 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 1103 */ 1104 clear_cpu_cap(c, 0*32+31); 1105 1106 if (c->x86 >= 0x10) 1107 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 1108 1109 /* AMD FSRM also implies FSRS */ 1110 if (cpu_has(c, X86_FEATURE_FSRM)) 1111 set_cpu_cap(c, X86_FEATURE_FSRS); 1112 1113 /* get apicid instead of initial apic id from cpuid */ 1114 c->apicid = read_apic_id(); 1115 1116 /* K6s reports MCEs but don't actually have all the MSRs */ 1117 if (c->x86 < 6) 1118 clear_cpu_cap(c, X86_FEATURE_MCE); 1119 1120 switch (c->x86) { 1121 case 4: init_amd_k5(c); break; 1122 case 5: init_amd_k6(c); break; 1123 case 6: init_amd_k7(c); break; 1124 case 0xf: init_amd_k8(c); break; 1125 case 0x10: init_amd_gh(c); break; 1126 case 0x12: init_amd_ln(c); break; 1127 case 0x15: init_amd_bd(c); break; 1128 case 0x16: init_amd_jg(c); break; 1129 case 0x17: init_spectral_chicken(c); 1130 fallthrough; 1131 case 0x19: init_amd_zn(c); break; 1132 } 1133 1134 if (boot_cpu_has(X86_FEATURE_ZEN1)) 1135 init_amd_zen1(c); 1136 else if (boot_cpu_has(X86_FEATURE_ZEN2)) 1137 init_amd_zen2(c); 1138 else if (boot_cpu_has(X86_FEATURE_ZEN3)) 1139 init_amd_zen3(c); 1140 else if (boot_cpu_has(X86_FEATURE_ZEN4)) 1141 init_amd_zen4(c); 1142 1143 /* 1144 * Enable workaround for FXSAVE leak on CPUs 1145 * without a XSaveErPtr feature 1146 */ 1147 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 1148 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 1149 1150 cpu_detect_cache_sizes(c); 1151 1152 amd_detect_cmp(c); 1153 amd_get_topology(c); 1154 srat_detect_node(c); 1155 1156 init_amd_cacheinfo(c); 1157 1158 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { 1159 /* 1160 * Use LFENCE for execution serialization. On families which 1161 * don't have that MSR, LFENCE is already serializing. 1162 * msr_set_bit() uses the safe accessors, too, even if the MSR 1163 * is not present. 1164 */ 1165 msr_set_bit(MSR_AMD64_DE_CFG, 1166 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); 1167 1168 /* A serializing LFENCE stops RDTSC speculation */ 1169 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 1170 } 1171 1172 /* 1173 * Family 0x12 and above processors have APIC timer 1174 * running in deep C states. 1175 */ 1176 if (c->x86 > 0x11) 1177 set_cpu_cap(c, X86_FEATURE_ARAT); 1178 1179 /* 3DNow or LM implies PREFETCHW */ 1180 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 1181 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 1182 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 1183 1184 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 1185 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) 1186 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1187 1188 /* 1189 * Turn on the Instructions Retired free counter on machines not 1190 * susceptible to erratum #1054 "Instructions Retired Performance 1191 * Counter May Be Inaccurate". 1192 */ 1193 if (cpu_has(c, X86_FEATURE_IRPERF) && 1194 (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f)) 1195 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 1196 1197 check_null_seg_clears_base(c); 1198 1199 /* 1200 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up 1201 * using the trampoline code and as part of it, MSR_EFER gets prepared there in 1202 * order to be replicated onto them. Regardless, set it here again, if not set, 1203 * to protect against any future refactoring/code reorganization which might 1204 * miss setting this important bit. 1205 */ 1206 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1207 cpu_has(c, X86_FEATURE_AUTOIBRS)) 1208 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS)); 1209 1210 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && 1211 cpu_has_amd_erratum(c, amd_erratum_1485)) 1212 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); 1213 1214 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ 1215 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 1216 } 1217 1218 #ifdef CONFIG_X86_32 1219 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 1220 { 1221 /* AMD errata T13 (order #21922) */ 1222 if (c->x86 == 6) { 1223 /* Duron Rev A0 */ 1224 if (c->x86_model == 3 && c->x86_stepping == 0) 1225 size = 64; 1226 /* Tbird rev A1/A2 */ 1227 if (c->x86_model == 4 && 1228 (c->x86_stepping == 0 || c->x86_stepping == 1)) 1229 size = 256; 1230 } 1231 return size; 1232 } 1233 #endif 1234 1235 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 1236 { 1237 u32 ebx, eax, ecx, edx; 1238 u16 mask = 0xfff; 1239 1240 if (c->x86 < 0xf) 1241 return; 1242 1243 if (c->extended_cpuid_level < 0x80000006) 1244 return; 1245 1246 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 1247 1248 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; 1249 tlb_lli_4k[ENTRIES] = ebx & mask; 1250 1251 /* 1252 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 1253 * characteristics from the CPUID function 0x80000005 instead. 1254 */ 1255 if (c->x86 == 0xf) { 1256 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1257 mask = 0xff; 1258 } 1259 1260 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1261 if (!((eax >> 16) & mask)) 1262 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; 1263 else 1264 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; 1265 1266 /* a 4M entry uses two 2M entries */ 1267 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; 1268 1269 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1270 if (!(eax & mask)) { 1271 /* Erratum 658 */ 1272 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 1273 tlb_lli_2m[ENTRIES] = 1024; 1274 } else { 1275 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1276 tlb_lli_2m[ENTRIES] = eax & 0xff; 1277 } 1278 } else 1279 tlb_lli_2m[ENTRIES] = eax & mask; 1280 1281 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; 1282 } 1283 1284 static const struct cpu_dev amd_cpu_dev = { 1285 .c_vendor = "AMD", 1286 .c_ident = { "AuthenticAMD" }, 1287 #ifdef CONFIG_X86_32 1288 .legacy_models = { 1289 { .family = 4, .model_names = 1290 { 1291 [3] = "486 DX/2", 1292 [7] = "486 DX/2-WB", 1293 [8] = "486 DX/4", 1294 [9] = "486 DX/4-WB", 1295 [14] = "Am5x86-WT", 1296 [15] = "Am5x86-WB" 1297 } 1298 }, 1299 }, 1300 .legacy_cache_size = amd_size_cache, 1301 #endif 1302 .c_early_init = early_init_amd, 1303 .c_detect_tlb = cpu_detect_tlb_amd, 1304 .c_bsp_init = bsp_init_amd, 1305 .c_init = init_amd, 1306 .c_x86_vendor = X86_VENDOR_AMD, 1307 }; 1308 1309 cpu_dev_register(amd_cpu_dev); 1310 1311 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); 1312 1313 static unsigned int amd_msr_dr_addr_masks[] = { 1314 MSR_F16H_DR0_ADDR_MASK, 1315 MSR_F16H_DR1_ADDR_MASK, 1316 MSR_F16H_DR1_ADDR_MASK + 1, 1317 MSR_F16H_DR1_ADDR_MASK + 2 1318 }; 1319 1320 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) 1321 { 1322 int cpu = smp_processor_id(); 1323 1324 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1325 return; 1326 1327 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1328 return; 1329 1330 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) 1331 return; 1332 1333 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); 1334 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; 1335 } 1336 1337 unsigned long amd_get_dr_addr_mask(unsigned int dr) 1338 { 1339 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1340 return 0; 1341 1342 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1343 return 0; 1344 1345 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); 1346 } 1347 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); 1348 1349 u32 amd_get_highest_perf(void) 1350 { 1351 struct cpuinfo_x86 *c = &boot_cpu_data; 1352 1353 if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) || 1354 (c->x86_model >= 0x70 && c->x86_model < 0x80))) 1355 return 166; 1356 1357 if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) || 1358 (c->x86_model >= 0x40 && c->x86_model < 0x70))) 1359 return 166; 1360 1361 return 255; 1362 } 1363 EXPORT_SYMBOL_GPL(amd_get_highest_perf); 1364 1365 static void zenbleed_check_cpu(void *unused) 1366 { 1367 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 1368 1369 zen2_zenbleed_check(c); 1370 } 1371 1372 void amd_check_microcode(void) 1373 { 1374 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) 1375 return; 1376 1377 on_each_cpu(zenbleed_check_cpu, NULL, 1); 1378 } 1379 1380 /* 1381 * Issue a DIV 0/1 insn to clear any division data from previous DIV 1382 * operations. 1383 */ 1384 void noinstr amd_clear_divider(void) 1385 { 1386 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) 1387 :: "a" (0), "d" (0), "r" (1)); 1388 } 1389 EXPORT_SYMBOL_GPL(amd_clear_divider); 1390